用户名: 密码: 验证码:
库水位下降对滑坡稳定性的影响及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区是滑坡等地质灾害多发地带,2003年三峡水库蓄水后,库水位从135m上升至175m将导致一部分滑坡部分或全部被水淹没,库水位下降产生的渗流作用对滑坡稳定性的影响是三峡水库运营面临的一个新的重要课题。滑坡渗流和稳定性评价既是一个复杂的理论课题,也是一个重大的工程应用课题。
    本论文以三峡库区为背景,全面分析了库区滑坡的工程地质特征,提出了适应于渗流稳定性分析的滑坡分类;将渗流理论运用于滑坡裂隙岩体渗流研究中,并与Monte—Carlo方法相结合研究滑坡的裂隙特征。在全面系统地分析滑坡稳定性评价的基础上,将工程地质分析法、刚体极限平衡理论和有限元数值模拟来研究库水位下降对滑坡稳定性的影响。论文取得了以下主要成果包括:
    1.通过对三峡库区滑坡工程地质特征的研究,分析了地质环境与自然环境对滑坡发育的影响;以及地层、构造、暴雨等因素对滑坡发育的敏感性,由此建立概化的库区滑坡评价的工程地质模型。根据滑坡岩性、空间位置、裂隙特征对三峡库区滑坡进行分类,并建立了相应的滑坡渗流模型,为研究渗流作用下滑坡稳定性评价提供了新的思路。
    2.在库区滑坡滑动后滑体变化不大或滑坡整体滑动的情况下,运用Monte—Carlo方法对岩体进行结构面网络模拟是研究滑坡裂隙几何特性重要手段,通过结构面网络图和结构面连通图来描述滑坡裂隙网络特征,由此建立基岩滑坡的渗流模型。根据结构面网络连通图确定滑体优势结构面,并由此得到裂隙网络的渗透张量。
    3.通过对滑坡裂隙特征的研究,建立基岩滑坡渗流三类模型:离散网络模型、等效连续介质模型、双重介质模型。并讨论了三类模型的适应性。对于裂隙密度大、滑体面积较大时,建立等效连续介质渗流模型。通过Monte—Carlo方法求滑坡裂隙网络的渗透张量,利用有限元求解渗流方程。并以裂隙渗流理论和变形本构关系为基础,对渗流场与应力场进行耦合分析。
    4.系统地将离散数学图论用于滑坡裂隙岩体的网络连通性研究,并用数值矩阵将其形象地表示出来,使裂隙系统的定性描述和几何图形表示上升到数学表示。在Wittke离散模型 的基础上,以单一裂隙立方定律为基础,建立节点流量守恒、回路压力守恒方程、条形基元水压差方程联立求解。在滑体裂隙几何特征已查明、裂隙较稀疏、滑坡面积不大的情况下,建立此模型能有效地反映滑体的渗流特性,为滑坡渗流研究提供了新的方法。
    当研究区较大且裂隙较密集时,为整个渗流区内每条裂隙所建立的模型在计算机上就难以实现,这种情况就需划分出主干裂隙网络,细小裂隙采用渗透张量法表示,建立主干裂隙网络渗流方程与块体有限元渗流方程的耦合模型,仍会得到满意的结果。而且对于区域不大或裂隙稀疏的实际课题,直接应用本文模型将会得到理想的结果。
    5.对于岩体孔隙发育的情况,将裂隙作为孔隙岩块的一类边界,并通过隙壁进行水量
    
    交换。建立非连续介质裂隙网络模型(离散介质模型)和岩块孔隙渗流模型。所建立的双重介质水流耦合离散模型,不仅能综合地描述两类空隙系统的空间结构特征,还能真实反映出裂隙系统渗透空间的各向异性、非均匀性和非连通性以及两类系统间的水量交替特征。该模型既利于理论研究、又不失真,而且利于实际运用。
    6.针对库区内松散堆积层滑坡分布广、三峡水库蓄水后对这一类滑坡稳定性影响大的特点,建立了松散堆积层滑坡渗流模型。编制了库水位下降滑坡渗流场与稳定性分析计算机程序,用于对红石包Ⅲ号滑坡在库水位下降时的滑坡稳定性评价,取得如下主要成果:
    1)红石包Ⅲ号滑坡在水库蓄水至175m水位仍处于稳定状态。
    2)库水位下降对滑坡产生渗流作用,渗流场受降速的影响很大,库水位下降速度增大,渗透力也增大,滑坡稳定性降低。因此,得出滑坡失稳的临界降速。红石包Ⅲ号滑坡的临界降速为0.8m/d。
    3)滑坡稳定性与库水位的关系呈抛物线变化趋势。渗流浸润线开始时比较陡,经过一段时间趋于平缓。在滑坡稳定性变化上表现为开始降幅较大,经过一段时间后,滑坡稳定性达到最低点。然后滑坡稳定性逐渐升高。
    4)若库水位下降速度超过临界降速,滑坡稳定性还没有跌至最低点时,滑坡就会失稳。此时对应的库水位称临界库水位。随着降速的增大,滑坡临界库水位也随之上升,且渗透系数越小,临界库水位上升越大。红石包Ⅲ号滑坡的降速为0.8m/d时,临界库水位为155m;若降速为1m/d,临界库水位为160m。
    5)暴雨对滑坡稳定性的影响显著,它取决于入渗补给强度、滑坡渗透系数、给水度等。研究表明,渗透系数对滑坡稳定性的影响呈抛物线变化规律。渗透系数越小,滑坡稳定性系数越低。渗透系数的降低会使滑坡库水位临界值上升。因此,低渗透性、强暴雨入渗是诱发滑坡的主要因素。红石包Ⅲ号滑坡暴雨使滑坡稳定性降低8%左右。
    6)通过对库水位从175m降至165m水位时滑坡的有限元模拟表明,滑坡稳定性降低10%左右,这与库水位下降时滑坡稳定性评价采用不平衡推力法得到的结果可以相互验证。
There is a zone of frequent geological hazard of landslide in the Three Gorges reservoir regions. When the reservoir is in operation in 2003, the rising of reservoir water level from 135m to 175m will lead to the submerging of part or whole of the landslides. It is a new and important subject for the operation of the Three Gorges reservoir that the stability of landslide will be influenced by the seepage flow resulting from the drawdown of the reservoir. The seepage flow of landslide and the stability evaluation are a complicated theoretical and application subject.
    On basis of the analysis of the engineering geological characters of landslide in the Three Gorges reservoir regions, the classification of landslides is made suitable to analyze landslide stability by seepage flow. The seepage flow theory for fractured rock masses is applied to the study of the seepage flow of landslide and Monte-Carlo method is used to study the fracture character. The theory of limit equilibrium of rigid body and the numerical simulation of finite element are applied to the research on the evaluation of stability for landslide caused by the seepage flow. The main achievements are as following:
    1. Through the research on the engineering geological characters of landslide in the Three Gorges reservoir regions, the influence of the geological and natural environment factors upon the development of landslide, and the sensitivity of stratum, structure and rainstorm factors to the development of landslide were discussed in detail. According to the results, the general engineering geology model and the seepage flow models of landslides which are classified by lithology, space location and fracture character in the Three Gorges reservoir regions were established, which offer a new ideal for the stability evaluation of landslide by seepage flow.
    2. In the condition of the landslide with whole body, Monte-Carlo method, by which discontinuities network in rock is simulated, is the main way of the study on geometry features of landslide fissures. By this method, the preponderant discontinuities of landslide rock masses, network graph and connected graph of discontinuities have been gotten and the permeability tensor of the discontinuities network has been obtained.
    3. According to fracture character of landslide, three kinds of seepage flow models for the bedrock landslide have been established and its adaptability has been discussed. The models include: the discrete network model, the equivalent continuum media model and the double porosity medium model. It is valid to establish the equivalent continuum media model for these landslides in condition of high dense fracture and wide area, The permeability tensor of the discontinuities network has been solved by Monte-Carlo method and the seepage flow equation by the finite element. Based on the theory of fracture seepage flow and the deformation constitutive relations, the couplings of seepage field and stress field have been analyzed.
    4. The graph theory in the discrete mathematics has been applied to the research on the connectivity of fissure networks and the qualitative description and geometry graph have been defined by mathematic express, the express of numerical matrix. Based on Wittke discrete model
    
    and the singular fissure cube theory, the node flux conservation equation, the loop pressure conservation equation and the bar unit water pressure equation have been established. This model shows its efficiency in condition of sparseness landslide fissure or a small area landslide and the geometry feature of landslide fissure ascertained and it provides a new way for the research of landslide seepage.
    It's hard to establish the model of every fissure in whole seepage zone for computer simulation when the fractures are very dense. In this case, the main fissures network must be classified and the small fissures should be expressed by the method of permeability tensor. The satisfying results can be attained by establishing the seepage flow equation of main fissures network an
引文
[1] 唐辉明、晏鄂川等,2001,工程地质数值模拟的理论与方法,武汉:中国地质大学出版社
    [2] 潘别桐、唐辉明等,1993,岩体结构模型与应用,武汉:中国地质大学出版社
    [3] 刘佑荣、唐辉明,1999,岩体力学,武汉:中国地质大学出版社
    [4] 唐辉明、晏同珍,1993,岩体断裂力学理论与工程应用,武汉:中国地质大学出版社
    [5] 陈仲颐、周景星等,1994,土力学,北京:清华大学出版社
    [6] 赵阳升,1994,矿山岩石流体力学,北京:煤炭工业出版社
    [7] 张金才、张玉卓等,1997,岩体渗流与煤层底板突水,北京:地质出版社
    [8] 毛昶熙,1990,渗流计算分析与控制,北京: 水利电力出版社
    [9] 王恩志,岩体裂隙的网络分析及渗流模型,岩土力学与工程学报,Vol.12,No3,1993
    [10] 王恩志、杨成田,裂隙网络及地下水网络流数值方法的研究,勘察科学技术,No4,1991
    [11] 毛昶熙、陈平等,裂隙岩体渗流计算方法研究,岩土工程学报,Vol.13,No6,1991
    [12] 王恩志,双重介质地下水流耦合离散模型的研究,工程勘察,No4,1992
    [13] 三峡库区巴东县城黄土坡前缘斜坡稳定性预测与防治对策研究,中国地质大学(武汉),1997
    [14] 朱永标,渗流场与应力场耦合分析及边坡稳定性评价,硕士学位论文,1996
    [15] 贺少辉,裂隙渗流对岩体工程稳定性影响的理论及工程应用,博士学位论文,1995
    [16] 王大通,岩质边坡裂隙渗流的研究,硕士学位论文,1995
    [17] 陶振宇,沈小莹,库区应力场的耦合分析,武汉水利电力学院学报,No.1,1988
    [18] 周志芳,钱孝星,坝基各向异性岩体内渗透力的三维边界元分析,岩土工程学报,Vol.13,No2,1992
    [19] 于青春,黄喜新,非连续裂隙网络水流的计算机模拟,水文地质工程地质,Vol.19,No3,1992
    [20] 吴旭君,水对岩质边坡稳定性的影响,水文地质工程地质,Vol.18,No3,1991
    [21] 杨静照、陈士俊等,裂隙岩体三维渗流的有限单元法计算,水利学报,No8,1992
    [22] 杨达源,李徐生等,长江三峡库区崩塌滑坡的初步研究,地质力学学报,No2,2002
    [23] 段小宁等, 应力场和渗流场相互作用下裂隙岩体水流运动的数值模拟,大连理工大学学报,Vol.32,No6,1992
    [24] 潘别桐,吴旭君,工程岩体渗透性研究现状和趋向,地质科技情报,Vol.7,No2,1988
    [25] 王明玉,陈劲松等,离散裂隙渗流方法与裂隙化渗透介质建模,地球科学,No4,2002
    [26] 唐金荣等,边坡渗流场边界元分析和实例,勘察科学技术,No5,1992
    [27] 魏玉琥,许模等,长江三峡工程节库岸地下水渗流场模拟分析,地质灾害与环境保护,No1,2002
    [28] 胡尊国等,多孔介质的分维特征与渗流模型,水文地质工程地质,No3,1990
    
    
    [29] 刘继山,结构面力学参数与水力参数耦合分析及其应用,水文地质工程地质,No2,1988
    [30] 张有天等,有地表入渗的岩体渗流分析,岩石力学与工程学报,Vol.10,No2,1991
    [31] 殷坤龙,汪洋等,降雨对滑坡的作用机理及动态模拟研究,地质科技情报,No1,2002
    [32] 杨静熙等,裂隙岩体三维渗流的有限元法计算,水利学报,No8,1992
    [33] 杜延龄等,复杂岩基三维渗流有限元分析研究,水利学报,No7,1991
    [34] 吉庆丰,刘超等,计算复杂边界渗流的蒙特卡罗方法,计算力学学报,No4,2000
    [35] 魏泽光等,三维稳定渗流的有限元计算,水利学报,No1,1982
    [44] 柴军瑞,仵彦卿,岩体裂隙网络渗流自由面的确定方法,工程勘察,No1,2000
    [45] 吴益平,滑坡灾害空间预测系统研究,博士学位论文,2001
    [46] 黄志全,边坡演化的非线性机制及滑坡预测预报研究,博士学位论文,1999
    [47] 程国栋,1999,山的呼唤,地震出版社
    [48] 陈洪凯 裂隙岩体渗流研究现状,重庆交通学院学报,Vol.15,No1,1991
    [49] 朱岳明,裂隙岩体渗流研究述评,河海科技进展,Vol.15,No2,1991。
    [50] 仵彦卿,岩体裂隙系统渗流场与应力场耦合模型,地质灾害与环境保护,Vol.7,No1,1996
    [51] 李定方,万力,渗流对岩体高边坡位移的影响,工程地质学报,No2,2000
    [52] 窦铁生,裂隙岩体水力特性研究,博士学位论文,1995
    [53] 柴军瑞,采用Monte—Carlo模拟技术计算裂隙岩体的渗透系数张量,工程勘察,No5,2000
    [54] 王媛等,裂隙岩体渗流模型综述,水利科学进展,Vol.7,No3,1996
    [55] 刘广润,三峡工程地质概况,水文地质工程地质,No6,1992
    [56] 刘广润,三峡工程地质概况,水文地质工程地质,No1,1993
    [57] 孙广忠,1993,工程地质与地质工程,北京:地震出版社
    [58] 杜榕桓、刘新民等,1990,滑坡与泥石流研究,成都:四川科学技术出版社
    [59] 唐辉明,1992,节理岩体损伤张量的确定,水文地质及工程地质论文集,武汉:中国地质大学出版社
    [60] 徐曾和,徐小荷,弹塑性非线性渗流耦合问题的一个解析解,重庆大学学报,No1,2000
    [61] 陶振宇等,1993,裂隙岩体特性与洞群施工力学问题,武汉:中国地质大学出版社
    [62] 田开铭,裂隙水交叉流的水力特性,地质学报, No2,1986
    [63] 王大纯等,1986,水文地质学基础,北京:地质出版社,
    [64] 王思敬,1990,坝基岩体工程地质力学分析,科学出版社
    [65] 汪自力,朱明霞等,饱和—非饱和渗流作用下边坡稳定性分析的混合法,郑州大学学报,No1,2002
    [66] 周创兵等,双场耦合条件下裂隙岩体的渗透张量,岩石力学与工程学报,Vol.15,No4,1996
    [67] 黄润秋,邓荣贵,1991,高边坡物质运动全过程模拟,成都:成都科技出版社
    [68] 仵彦卿,张倬元等,1995,岩体水力学原理,成都:西南交通大学出版社
    [69] 尚岳全,黄润秋,1991,工程地质研究中的数值分析方法,成都:成都科技大学出版社
    [70] 周维垣,1990,高等岩石力学,北京:水利电力出版社
    
    
    [71] 杨延毅,周维垣,裂隙岩体的渗流一损伤耦合分析模型及其工程应用,水利学报,No5,1991
    [72] 吴梦喜等,有自由面渗流分析的虚单元法,水利学报,No8,1994
    [73] 高骥等,堤坝饱和——非饱和渗流的数值分析,岩土工程学报,Vol.10,No6,1988
    [74] 朱岳明等,渗透系数反分析最优估计方法,岩土工程学报,Vol.13,No4,1991
    [75] 刘杰,王媛等,岩土工程渗流参数反问题,岩土力学,No2,2002
    [76] 杨太华等,岩体裂隙渗流地质力学模型及应用,同济大学学报,Vol.23,No3,1995
    [77] 杨太华、孙钧,岩体裂隙非规则几何水力学特性研究,岩土工程学报,Vol.19,No4,1997
    [78] 黄润秋等,1997,工程地质广义系统科学分析原理及应用,北京:地质出版社
    [79] 黄涛,裂隙岩体渗流场—应力—温度耦合作用研究,岩石力学与工程学报,No1,2002
    [80] 王恩志,孙役等,三维裂隙网络渗流模型与实验模拟,水利学报,No5,2002
    [81 ]陈庆中,张弥等,应力场、渗流场、流场耦合系统定边值定初值问题的变分原理,岩石力学与工程学报,1999
    [82] 陈庆中,张弥等,土坡稳定分析最优控制法,北方交通大学学报,1999
    [83] 柴军瑞,岩体裂隙网络非线性渗流分析,水动力学研究与进展,No2,2002
    [84] 陈祖煜,土坡稳定分析通用条分法及其改进,岩土工程学报,Vol. 5,1983
    [85] 陈祖煜,边坡稳定分析一极限平衡法的改进和应用,清华大学博士论文,1991
    [86] 陈祖煜,邵长明,最优化方法在确定边坡最小安全系数方面的应用,岩土工程学报,Vol. 10,1988
    [87] 切尔内绍夫,C. H. 著,1987,盛志浩,田开铭译,水在裂隙网络中的运动,地质出版社,
    [88] 田开铭,论裂隙岩石的水文地质模型,勘察科学技术,No4,1984
    [89] 张有天,裂隙岩体渗流的理论和实践,岩土与水工建筑物相互作用研究成果汇编,1990
    [90] 程心恕,杨晓贞,基于非稳定性渗流有限元的坝坡稳定性分析,福州大学学报,No3,2002
    [91] 陶振宇,窦铁生,关于岩石水力模型,力学进展,Vol.24,No3,1994
    [92] 速宝玉等,节理岩体渗流等效连续介质模型的研究,河海大学学报,No6,1995
    [93] 赵坚,杨志敏等,裂隙网络水流特性实验研究初探,河海大学学报,No1,1997
    [94] 刘耀儒,杜广林,降雨入渗条件下三峡船阐边坡渗流场的变化,岩石力学与工程学报,No3,2002
    [95] 王泳嘉,邢纪波等,1991,离散单元法及其在岩土力学中的应用,东北工学院出版社
    [96] 方义琳,卓家寿等,具有任意形状单元离散模型的界面元法,工程力学,Vol.15,No2,1998
    [97] 项彦勇,裂隙岩体中非饱和渗流与运移的概念模型及数值模拟,工程地质力学,No2,2002
    [98] 俞洪良,陆杰峰等,深基坑工程渗流特性分析,浙江大学学报,No5,2002
    [99] 严仁军,王长军等,考虑渗流影响的均匀岩体参数识别,武汉理工大学学报,No2,2002
    [100] 石根华著,裴觉民译,1997,数值流形方法与非连续变形分析,清华大学出版社
    
    
    [101] 黄由玲,张广健等,随机块体理论及其在地下工程中的应用,河海大学学报,Vol.21,No3,1993
    [102] 安关峰,唐辉明等,黄土坡滑坡的离散元研究,地球科学,Vol.27,No4,2002
    [103] Snow D.T. Rock fracture spacings,openings and porosities J.Soil Mech. and found. div.,Proc.ASCE,1968
    [104] Louis C.,Rock Hydraulics,Rock Mechanics,Ed. by Muller L., Springer—Verlag,Vdine,1974
    [105] Wittke W.,Improvement of the properties of rock masses ,Proc.2nd Cong.ISRM,1970
    [106] ResslerP., Determination of the water Permeability of jointed Rock,Publication of the institute for Foundation Engineering,Soil Mechanics,Rock Mech.And Water Ways Construction,Aachem,1978
    [107] Witherspoon P.A.et a1,Validity of cubic 1aw for fluid flow in a deformable rock fracture,Water Resources Research,Vo1.16,1980
    [108] Iwai K.,Fundamental studies of fluid flow through a single Ph.D.thesis,University of California,Berkeley,1976
    [109] Snow D.T.,A parallel plate model of fractured permeable media,Ph.D.thesis,Univ. of California,Berkeley,1965
    [110] Nolte, D.D. et al, The fractal geometry of flow paths in natural fractures in rock and the approach to percolation, Fractals in Geophysics,1989
    [111] Brown E. T., Boodt P.I. Permeability determinations for discontinuous crystalline rack mass. Proc. Int. Conf. of ISRM, 1987
    [112] Witherspoon P.A. et al, New approaches to problems of fluid flow in fractured rock masses, Proc. 22nd U.S. Symposium on Rock Mechanics, 1982
    [113] Desai C.S., Finite element residual schemes for unconfined flow. Int. J. Num. Engng.,1976(10)
    [114] Bathe K. J. et al., Finite element free surface seepage analysis without mesh iteration. Int. J. for Num. Anal. Methods in Geomechanics, Vol.3,1979
    [115] Goodman R.E., Taylor R.L. and Brekke T.L., A model for the mechanics of jointed rock Proc. of ASCE, SM3, 1968
    [116] C.H.Juang, Stability analysis of existing slopes considering uncertainty, Engineering Geology,1998(49)
    [117] D.V.Grffiths, Slope stability analysis by finite elements, Geotechnique,1999(49)
    [118] Nilmar Janbu, Slope stability evaluations in engineering practice, landslides, Proceedings of the seventh international symposium on landslides, 1996
    [119] Haruyama M., An evaluation method by quantification theory for the risk of landslides caused by rainfall in active volcanic area, proc. of 4th ISL,Toronto, 1984
    [120] H.S.Yu, Limit analysis versus limit equilibrium for slope stability, Journal of Geotechnical techniques, Landslides,1996
    [121] Stormont J. C. et al., Laboratory study of gas permeability changes in rock salt during deformation, Int. J. Rock. Mech. Sci. and Geomech. 1992(4)
    [122] Cacas M. C. et al., Modeling fracture flow with a stochastic discrete fracture Network.
    
    Water Resour. Res.,1990(3)
    [123] Oda M. Elastic compliance for rock like materials with random cracks. Proc. Soc. Soil Mech. Found. Eng., 1984
    [124] Dershowitz W. S. et al., Characterizing rock joint geometry with joint system models. Rock Mech. Rock Eng., 1988
    [125] Odling N. E. Natural fracture profiles. Fractal dimension and joint roughness coefficients. Rock Mech. Rock Eng., 1994(2)
    [126] Desai C S. Finite element residual schemes for unconfined flow. Int. J. Num. Mech. Eng., 1976
    [127] Desai C S.,et al., A numerical procedure for three—dimensional transient free surface seepage. Water Resour. Res.,1983
    [128] Raven T.G. et al., Water flow in a natural rock fracture as a function of stress and sample size. Int. J. Rock Mech. Min. Sci.Geomech. 1985
    [129] Noorishad I M. S. et al., A finite element method coupled stress and fluid flow analysis in fractured rock masses Int. J. Rock Mech. Min. Sci.Geomech. 1982
    [130] Pyrak nole L. Hydraulic and mechanical properties of natural fractorles in low permeability rock. Proc. 6th Int. Conf. ISRM. 1987
    [131] Noorishad J. et al., Theoretical and field studies of coupled hydro mechanical behavior of fractured rock , development and verification of a numerical simulator. Int. J. Rock Mech. Min. Sci. Geomech. 1992(4)
    [132] Tsang Y W, and C F Tsang. Channel model of flow through fractured media. Water Resour. Res., 1987
    [133] C. C. Hird,I. C. Pyrah andD. Rrssell. Finite element analysis of the collapse of reinforced embankments on soft ground,Geotechnique.Vol. 40,1990
    [134] Chang Derwen&Hwang Jiannshyang. Stress and failurepotential of earth slop from an analyticai elastic Solution. Computer Methods and Advances in Geomechanics, Jianxin Yuan,1997
    [135] Cividini. A,Gioda. G. &Barla. G. A numerical analysis of tunnels in saturated two—phase media. Proceedings of 11th international conference on Soil mechanics and foundation engineering.1985
    [136] Fuchu. Dai, C.F.Lee, Sijing Wang, Stress-strain behaviour of a loosely compacted fill slope failures. Eng. Geo. Vol.53, 1999
    [137] David B. Prior and James M. Coleman. Slop in Stability. John Wiley&Sons Ltd. 1984
    [138] D.G. FredlUnd and J. Krahn. Comparison of Slope Stability methods of analysis. Can. Geotech. J.Vol. 14,1977
    [139] D. M. Potts,G. T. Dounias and P. R. Vaughan. Finite element analysis of progressive failure of Carsington embankment. Geotechnique, Vol. 40,1990
    [140] E. Spencer,M. SC. TeCh. A Method of Analysis of the Stability of Embankments Assuming Parallel Interslice Forces. Geotechnique,Vol. 17,1967
    [141] S.W.C.Au, Rain-induced slope insability in Hong Kong. Eng. Geo. Vol.51,1998
    
    
    [142] J. Takemura, T. Kimura, A. Hiro—oka&H. Muraishi. Failure of embankments due to seepage f1ows and its countermeasure. Centrifuge 94. 1994
    [143] J. Tohda, K. Nagura, K. Kawasaki, etc. Stability of Slurry trench in sandy ground in Centrifuged models. Centrifuge 91. 1991
    [144] K. Onitsuka&K. Yamamoto. Stability of cut Slopes in Ariake clay. Centrifuge 94. 1994
    [145] T.Kamai, Monitoring the process of ground failure in repeated landslide and associated stability assessments, Eng. Geo. Vol.50,1998
    [146] D. T. Snow, Anisotropic permeability of fractured media, Water Resour.Res.,No5, 1969
    [147] Witherspoon P. A. C.R. Wilson. Steady state flow in rigid networks of fracture,Water Resour. Res., Vo1.10, No2, 1974
    [148] Long,J.C.S.Remer,C.R. Wilson,P.A.Witherspoon, Porous mediae quivalents for networks of discontinuous fractures,WaterResour.Res., Vo1.18, No3, 1982
    [149] Long,J.C.S.,P.Gilmour, and P.A. Withspoon, A model for steady fluid flow in random three dimensional networks of disc-shaped fractures, Water Resources Research, Vo1.21, No8, 1985
    [150] Eisworth,D. A model to evaluate the transient hydraulic response of three dimensional sparsely fractured rock masses, W.R.R., Vo1.22, 1986
    [151] Ezzedine S. and G.De Marsily, Study of transient flow in hard fractured rocks with a discrete fracture network model,Int.J.Rock Mech. Min. Sci. & Geomech. Abstr.,Vol.30, No7,1993
    [152] Julian J. B., Carlos E. R., Earthquake induced landslides in central America Eng. Geo., Vol.63,2002
    [153] Stark T. D., Eid, H.T., Slope stability analyses in stiff fissured clays, J.Geotech. Geoenviron. Eng., Vol.123, 1997
    [154] J. A. Wang, H.D. Park, Fluid permeability of sedimentary rock in a complete stress—strain process, Eng. Geo. Vol.63, 2002
    [155] Yingtang Mei, Ruichun Xu, Zonation of the landslide hazards in the forereservoir region of the Three Gorges project on the Yangtze River , Eng. Geo. Vol.59,2001
    [156] Y.Ichikawa, K.Kawamura ,M. Nakan. Etc, Seepage and consolidation of bentonite saturated with pure-or salt-water by the method of unified molecular dynamics and homogenization analysis, Eng. Geo. Vol.60, 2001
    [157] H. Shuzui Process of slip-surface development and formation of slip-surface clay in landslides in Tertiary volcanic rocks. Eng. Geo. Vol.61,2001
    [158] M. Chigyira, Micro-sheeting of granite and its relationship with landslide specifically after the heavy rainstorm in June 1999,Hiroshipna prefectune ,Japan , Eng. Geo. Vol.59,2001
    [159] D.Nichol and J.R.Graham, Remediation and monitoring of a highway across an active landslide at Trevor,North Wales. Eng. Geo. Vol.59,2001
    [160] T.Sang,Y. W., and C.F.Tsang, Channel model of flow through fractured media,Water Resour. Res., Vol.23, No3, 1987
    
    
    [161] Jin—Zhang Zou, DaVid J. W1iilams and Wen—Lin Xiong. Search for critical slip Surfaces based on finite element method. Can. Geotech. J., Vo1.32,1995
    [162] C. Reji, Engineering geological problems in the Three Gorges project on The Yangtze ,China, Eng. Geo. Vol.51,1998
    [163] M.Polemio and F.Sdao, The role of rainfall in the landslide hazard: the case of the Avigliano urban area. Eng. Geo. Vol.53,1999
    [164] C. Van Rhee and A. BeZUijen. Influence of Seepage on Stability of Sandy Slope. ASCE Journal of Geotechnical Engineering. Vo1. 118,1988
    [165] Nguyen, T.S., Selvadurai, A.P.S., A model for coupled mechanical and hydraulic behavior of a rock joint. Int. J.Numer. Anal. Methods Geomech. Vol.22,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700