用户名: 密码: 验证码:
水—气—盐流体体系低温相平衡的理论模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体参与了大多数地质过程并在其中起着重要的作用。研究表明,H2O,CH4,CO2,N2和NaCl是许多富水地质流体体系最重要的组分。H2O-CH4-CO2-N2-NaCl体系(水-气-盐流体体系)在低温条件下(-20~+200℃)存在多种相平衡关系,其中重要的是水-气-盐流体体系的气液相平衡和水合物相平衡。研究H2O-CH4-CO2-N2-NaCl体系的低温相平衡性质对于研究地质流体在地球表面和地壳浅部的地质作用过程中所起的作用,对于指导石油天然气资源和天然气水合物资源的勘探和开发有着重要的意义。对于化学工业和石油天然气工业中的许多分离过程设计,了解H2O-CH4-CO2-N2-NaCl体系在低温条件下的气液相平衡性质也是必不可少的。
    由于实验数据的有限性,热力学模型是研究流体相平衡性质和其它热力学性质的最重要的工具。虽然迄今为止,前人建立了许多预测水-气-盐流体体系气液相平衡的热力学模型,但没有一个模型能够精确预测H2O-CO2和H2O-CH4体系在0-100℃的低温条件下的气液相平衡,没有一个模型能够精确预测低温条件下CO2和N2在NaCl水溶液中的溶解度。前人建立的甲烷水合物相平衡模型适用的温压范围较小,而且模型存在较大的理论缺陷。本研究的目标是建立精确预测水-气-盐体系低温气液相平衡和甲烷水合物相平衡的热力学模型。本研究的主要成果如下:
    (1)建立了一个精确预测CH4-H2O体系低温气液相平衡的状态方程。该方程由两部分组成——“参考流体”部分和“微扰”校正部分。借鉴Anderko和Pitzer(1993)处理“参考流体”的方法,采用“硬球”模型和“偶极硬球”模型描述“参考流体”的贡献;而“微扰”校正项则采用新的多参数维里型展开式处理。模型的经验参数通过拟合纯组分的PVT数据和混合体系的气液相平衡数据得到。通过与实验数据的对比,证实该方程能够精确预测CH4和H2O在273-623 K,0-3000 bar的温压范围内的PVT性质,平均误差约为0.3%。更重要的是,该方程能够精确预测CH4-H2O体系在273-383 K,0-1000 bar的温压范围内的气液相平衡,预测的液相组成平均误差小于4%,明显优于前人的模型。本模型的创新主要体现在:(1)建立了一个新的状态方程,将Anderko和Pitzer(1993)处理含水体系的方法推广到低温条件;(2)第一个能够精确预测CH4-H2O体系低温(0-100℃)气液相平衡的状态方程;(3)相对于大多数只能预测气液相平衡的热力学模型,该方程还能精确预测CH4-H2O体系的PVT性质。
    (2)建立了一个能够精确预测甲烷水合物在H2O-CH4-NaCl体系中的相平衡条件(生成压力)的热力学模型,模型适用于243-318 K,0-3000 bar的温度、压力范围,预测精度与实验数据的精度相当。本模型以Van der Waals-Platteeuw模型(1959)为基础,采用Exp-6势能函数计算Langmuir常数,采用Englezos-Bishnoi模型(1988)考虑NaCl对水的活度的影响。相对于前人的模型,本模型的主要创新和改进体现在:(1)采用Exp-6势能函数拟合Cao等(2001)的量子力学研究成果(从头计算法计算CH4-H2O之间的相互作用势能),
    
    势能参数随温度变化,而大多数水合物模型采用的Kihara势能函数并不能准确地描述CH4-H2O之间的相互作用势能(相互作用力);(2)计算Langmuir常数时考虑多层(超过10层)水分子与甲烷分子的相互作用对Langmuir常数的影响,而前人的模型一般只考虑一层或三层水分子的影响;(3)采用第三章建立的高精度的状态方程计算甲烷的逸度系数和逸度,而前人模型采用的S-RK和P-R方程对纯甲烷逸度的预测误差较大。
    (3)建立了一个预测CO2和N2在纯水和氯化钠水溶液中的溶解度的热力学模型。模型参照Duan等(1992a)的处理方法,采用Pitzer特征相互作用模型处理液相,采用高精度的状态方程处理气相——CO2气相采用DMW-92方程(Duan等,1992b),N2气相采用DMW-96方程(Duan等,1996)。本模型能够精确预测CO2在273-533 K,0-2000bar,0-4.3 m NaCl的T-P-m范围内的溶解度;N2在273-623 K,0-600 bar,0-4 m NaCl的T-P-m范围内的溶解度。预测精度与实验数据的精度相当(7%)。对比前人的模型,本模型适用的温压范围更宽广,预测的精度更高。虽然本模型的参数仅从H2O-CO2-NaCl和H2O-N2-NaCl体系的实验数据拟合得到,参照Duan等(1992a)的处理方法,我们将本模型外延到复杂的含多种可溶盐的卤水体系。通过与实验数据的对比,证实本模型能够精确预测CO2和N2在海水中的溶解度。本研究的主要创新在于拓展了Duan-92(Duan等,1992a)模型,建立了精确预测低温条件下(T<200℃)CO2和N2溶解度的模型。
Fluids take part in many geological processes and play important roles in them. Previous researches indicate that, water (H2O), methane (CH4), carbon dioxide (CO2), nitrogen (N2), and sodium Chloride (NaCl) are major components of many Geo-fluids. In H2O-CH4-CO2-N2-NaCl fluid systems (water-gases-salts fluid systems), several phase equilibria may occur at low temperatures (from -20 to 200℃). Among of them, Gas-Liquid Equilibrium and Gas hydrates-Gas-Liquid Equilibrium are the most important. To study phase equilibria of water-gases-salts fluid systems at low temperatures is important both to investigate the role of Geo-fluids play in the geological processes that take place in the surface and upper Crust of the Earth and to guide the prospecting and exploitation of oil and gases and natural gas hydrates resources. The knowledge on phase equilibria of water-gases-salts fluid systems at low temperatures is also essential for designing certain separation equipment in the chemical or oil-related industries.
    Due to the scarcity of the experimental data, thermodynamic models are the most important tools to study phase equilibria and other thermodynamic properties of fluids. Many thermo- dynamic models have been developed to predict gas-liquid equilibria of water-gases-salts fluid systems by previous researchers. However, none of them can predict gas-liquid equilibria of H2O-CH4 system and H2O-CO2 system at low temperatures between 0 and 100℃ accurately. None of them can predict carbon dioxide solubility and nitrogen solubility in pure water and aqueous NaCl solutions at temperatures below 200℃ accurately. Previous thermodynamic models for clathrate hydrates can't predict phase equilibrium of methane hydrate at pressures more than 500 bar with sufficient accuracy. Furthermore, there still exist some theoretical flaws in these models. The aim of this study is to establish new thermodynamic models to predict gas-liquid equilibrium of water-gases-salts fluid systems and methane hydrate phase equilibrium at low temperatures. The following are the major achievements of this study.
    (1) A new equation of state (EOS) has been developed to predict Gas-Liquid Equilibrium and volumetric properties of CH4-H2O system at low temperatures. The equation of state consists of a reference part and a perturbation contribution. Following the approach of Anderko and Pitzer (1993), we adopt hard sphere model and dipolar hard sphere model to account for the contribution of "Reference Fluid". A new virial-type expansion was adopted to deal with perturbation contribution. The adjustable parameters of the equation of state were evaluated from experimental PVT data of pure water and methane and phase equilibrium data of CH4-H2O system. Comparison of the model predictions with experimental data demonstrates that this equation of state can predict PVT data of pure water and methane from 273 to 623 K, and from 0 to 3000 bar with an average error about 0.3%. Moreover, the equation of state can predict
    
    gas-liquid equilibrium of CH4-H2O system accurately from 273 to 373 K, and from 0 to 1000 bar. The deviation of this model is within experimental uncertainty. The main advantages of this model are: (a) The accuracy of this model is much better than previous models; (b) This model can predict volumetric properties of liquid water and aqueous solutions accurately, while most of models to deal with gas-liquid equilibria of fluids can't predict volumetric properties of liquid water and aqueous solutions quantitatively.
     (2) A new model to predict phase equilibrium of methane hydrates has been established. This model is based on the Van der Waals-Platteeuw Model (1959). Langmuir constant, the key parameter of Van der Waals-Platteeuw model, is calculated from exp-6 potential. Englezos- Bishnoi model (1988) was adopted to account for the effect of NaCl on the activity of water. The improvements of this study on Van der Waals-Platteeuw model are: (a) this model adopted exp-6 potential to calculate Langmuir constant. The parameters of exp-6 poten
引文
1. 曹荣龙。(1996)地幔流体的前缘研究。地学前缘,3(3-4):161-171。
    2. 胡春,裘俊红。(2000)天然气水合物的结构性质及应用。天然气化工,25(4):48-52。
    3. 刘建明,储雪雷,刘伟。(1997)地壳中的成矿地质流体体系。地球物理学进展,12(1):31-40。
    4. 卢焕章。(1991)从包裹体研究探索太古代一些金矿的成矿机理。矿物学报,11(4):289-297。
    5. 孙志高,王如竹,樊栓狮,郭开华。(2001)天然气水合物研究进展。天然气工业,21(1):93-97。
    6. Aasberg-Petersen K., Stenby E., and Fredenslund A. (1991) Prediction of high-pressure gas solubilities in aqueous mixtures of electrolytes. Ind. Eng. Chem. Res. 30, 2180-2185.
    7. Adisasmato S., Franck R. J., and Sloan E. D. (1991) Hydrates of carbon dioxide and methane mixtures. J. Chem. Eng. Data 36, 68-71.
    8. Alvarez J., Corti H. R., Fernandez-Prini R., and Japas M. L. (1994) Distribution of solutes between coexisting steam and water. Geochim. Cosmochim. Acta 58, 2789-2798.
    9. Alvarez J., Crovetto R. and Fernandez-Prini R. (1988) The dissolution of N2 and of H2 in water from room temperature to 640 K. Ber.Bunsenges.Phys.Chem. 92, 935-940.
    10.Alvarez J., Fernandez-Prini R. (1991) A semiempirical procedure to describe the thermo- dynamics of dissolution of non-polar gases in water. Fluid Phase Equilibria 66, 309-326.
    11.Anderko A., and Pitzer K. S. (1993) Equation of state representation of phase equilibria and volumetric properties of the system NaCl-H2O above 573 K. Geochim. Cosmochim. Acta 57, 1657-1680.
    12.Anderson F. E., Prausnitz J. M. (1986) Inhibition of Gas Hydrates by Methanol. AIChE J. 32, 1321-1333.
    13.Avlonitis D. (1994) The determination of Kihara potential parameters from gas hydrate data. Chem. Eng. Sci. 49(8), 1161-1173.
    14.Battino R., Rettich T.R., and Tominaga T. (1984) The solubility of nitrogen and air in liquids. J.Phys.Chem.Ref.Data 13(2), 563-600.
    15.Belonoshko A. B., and Saxena S. K. (1992) A unified equation of state for fluids of C-H-O-N-S-Ar composition and their mixtures up to very high temperatures and pressures. Geochim. Cosmochim. Acta 56, 3611-3626.
    16.Benedict M., Webb G. B., and Rubin L. C. (1940) An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. I. Methane, ethane, propane and butane. J. Chem. Phys. 8, 334-345.
    17.Boublik T. (1970) Hard sphere equation of state. J. Chem. Phys. 53, 47I-472.
    
    
    18.Bowers T. S., and Helgeson H. C. (1983) Calculation of the thermodynamic and geochemical consequences in the system H2O-CO2-NaCl on phase relations: Equation os state for H2O- CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 47, 1247-1275.
    19.Burnham C. W., Holloway J. R., and Davis N. F. (1969) The specific volume of water in the range 100 to 8900 bars, 20 to 900℃. Amer. J. Sci. 267(A), 70-95.
    20.Camahan N. F., and Starling K. E. (1969) Equation of state for non-attracting rigid spheres. J. Chem. Phys. 51, 635-636.
    21.Cao Z., Tester J. W., Sparks K. A., and Trout B. L. (2001) Molecular Computations Using Robust Hydrocarbon-Water Potentials for Predicting Gas Hydrate Phase Equilibria. J. Phys. Chem. B 105, 10950-10960.
    22.Carroll J. J., and Mather A. E. (1997) A model for the solubility of light hydrocarbons in water and aqueous solutions of alkanolamines. Chem. Eng. Sci. 52(4), 545-552.
    23.Carroll J.J., Slupsky J.D. and Mather A.E. (1991) The solubility of carbon dioxide in water at low pressure. J. Phys. Chem. Ref. Data 20(6), 1201-1209.
    24.Carson D. B., and Katz D. L. (1942) Natural gas hydrates. Trans. AIME 146, 150-158.
    25.Chapman W. G., Gubbins K. E., Jackson G., and Radosz M. (1990) New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709.
    26.Chapman W. G., Jackson G., and Gubbins K. E. (1988) Phase equilibria of associating fluids: Chain molecules with multiple bonding sites. Mol. Phys. 65, 1057.
    27.Chen G., and Guo T. (1996) Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilibria 122(1-2), 43-65.
    28.Claussen W. F. (1951) A second water structure for inert gas hydrates. J. Chem. Phys. 19, 1452.
    29.Crovetto R. (1991) Evaluation of solubility data of the system CO2-H2O from 273 K to the critical point of water. J. Phys. Chem. Ref. Data 20, 575-589.
    30.Culberson O. L., and Mcketta J. J. (1951) Phase equilibria in hydrocarbon-water systems. III—the solubility of methane in water pressures to 10000 psi. Petrol. Trans. AIME 192, 223-226.
    31.D'Ans J., Bartels J., Bruggencate P. T., Schmidt A., Joos G., and Rote W. A. (1967) Thermo- dynamiche Eigenschaften von Wasser und Wasserdapf (International Skeleton Table). Landolt-Bornstein 4-4a, 534-535.
    32.Davidson D. W., Handa Y. P., and Ripmeester J. A. (1986) Xenon-129 NMR and the thermo- dynamic parameters of xenon hydrate. J. Phys. Chem. 90, 6549-6552.
    33.De Roo J. L., Peters C. J., Lichtenthaler R. N., and Diepen G. A. M. (1983) Occurrence of methane hydrate in saturated and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure. AIChE J. 29, 651-657.
    34.Deaton W.M., and Frost M. (1946) Gas hydrates and their relation to the operation of natural-gas pipelines. US Bur. Mines. Monograph 8.
    35.Deffet L., and Ficks F. (1965) Advanced thermodynamical properties. Symposium on Thermodynamical Properties, Purdue University, Lafayette, Indiana, 107.
    
    
    36.Denbigh, K. (1971) The principles of chemical equilibrium. Cambridge University Press., Cambridge.
    37.Dharmawardhana P. B., Parrish W. R., and Sloan E. D. (1980) Experimental thermodynamic parameters for the prediction of natural gas hydrate dissociation conditions. Ind. Eng. Chem. Fund. 19, 410-414.
    38.Dhima A., Hemptinne J., and Moracchini G. (1998) Solubility of light hydrocarbons and their mixtures in pure water under high pressure. Fluid Phase Equilibria 145, 129-150.
    39.Dimitrelis D., and Prausnit 1. M. (1986) Comparison of two hard-sphere reference systems for perturbation theories for mixtures. Fluid Phase Equilibria 31, l-21.
    40.Din. F. (1961) Thermodynamic Functions of Gases. Butterworths.
    41.Donohue M. D., and Prausnitz J. M. (1978) Perturbed Hard Chain Theory for fluid mixtures: Thermodynamic properties for mixtures in natural gas and petroleum technology. AIChE J. 24, 849-860.
    42.Douslin D.R., Harrison R.H., Moore R.T., and McCullough J.P. (1964) P-V-T relations of methane. J. Chem. Eng. Data 9, 358-363.
    43.Drummond, S.E. (1981) Boiling and mixing of hydrothermal fluids: Chemical effects on mineral precipitation. Ph.D. Thesis, Penn. State Univ.
    44.Duan Z., Moller N., and Weare J. H. (1992b) An equation of state for the CH4-CO2-H2O system: I. Pure systems from 0 to 1000℃ and 0 to 8000 bar. Geochim. Cosmochim. Acta 56, 2605-2617.
    45.Duan Z., Moller N., and Weare J. H. (1992c) An equation of state for the CH4-CO2-H2O system: II. Mixtures from 50 to 1000℃ and 0 to 1000 bar. Geochim. Cosmochim. Acta 56, 2619-2631.
    46.Duan Z., Moller N., and Weare J. H. (1995) Equation of state for the NaCl-H2O-CO2 system: Prediction of phase equilibria and volumetric properties. Geochim. Cosmochim. Acta 59, 2869-2882.
    47.Duan Z., Moller N., and Weare J. H. (1996) A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochim. Cosmochim. Acta 60, 1209-1216.
    48.Duan, Z., Moller, N., Greenberg, J., and Weare, J.H. (1992a) The prediction of methane solubility in natural waters to high ionic strength from 0 to 250℃ and from 0 to 1600 bar. Geochim. Cosmochim. Acta, 56, 1451-1460.
    49.Duffy J. R., Smith N. O., and Nagy B. (1961) Solubility of natural gases in aqueous salt solutions: I. Liquidus surfaces in the system CH4-H2O-NaCl-CaCl2 at room temperatures and at pressures below 1000 psi. Geochim. Cosmochim. Acta 24, 23-31.
    50.Ellis A.J. (1959) The solubility of carbon dioxide in water at high temperatures. Amer. J. Sci. 257, 217-234.
    51.Ellis A.J., and Golding R.M. (1963) The solubility of carbon dioxide above 100℃ in water and in sodium chloride solutions. Amer. J. Sci. 261, 47-60.
    52.Englezos P. (1992) Computation of the Incipient Equilibrium Carbon Dioxide Hydrate
    
    Formation Conditions in Aqueous Electrolyte Solutions. Ind. Eng. Chem. Res. 31, 2232-2237.
    53.Englezos P. and P. R. Bishnoi. (1988) Prediction of gas hydrate formation conditions in aqueous electrolyte solutions. AIChE J. 34, 1718-1721.
    54.Falabella B. J. (1975) A study of natural gas hydrates. Ph. D. Thesis. University of Massa- chusetts, Boston.
    55.Fernandez-Prini R. F., and Crovetto R. (1989) Evaluation of data on solubility of simple apolar gases in light and heavy water at high temperature. J. Phys. Chem. Ref. Data 18, 1231-1243.
    56.Fox C.J.J. (1909) On the coefficients of absorption of nitrogen and oxygen in distilled water and seawater, and of atmospheric carbonic acid in sea-water. Trans.Faraday Soc. 5, 68-87.
    57.Francesconi A. Z. (1978) Kristische Kurve, Phasengleichgewichte und PVT-daten im system methanol-methan bis 3 kbar und 240℃. Ph. D. Thesis. Univ. Fridericiana Karlsruhe, Germany.
    58.Fyfe W.S., Price N.J., and Thompson A.B. (1978) Fluids in the Earth's Crust. Elsevier, Amsterdam.
    59.Gao J., Zheng D., and Guo T. (1997) Solubilities of methane, nitrogen, carbon dioxide, and a natural gas mixture in aqueous sodium bicarbonate solutions under high pressure and elevated tempera- ture. J. Chem. Eng. Data 42(1), 69-73.
    60.Gehrig M. (1980) Phasengleichgewichte und pVT-daten ternarer Mischungen aus Wasser, Kohlendioxid und Natriumchlorid bis 3 kbar und 550℃. Ph.D. Thesis, Univ. Karlsruhe, Freiburg.
    61.Goodman J.B., Krase N.W. (1931) Solubility of nitrogen in water at high pressures and temperatures. Ind.Eng.Chem. 23, 401-404.
    62.Greenwood H. G. (1969) The compressibility of gaseous mixtures of carbon dioxide and water between 0 and 500 bars pressure and 450 and 800℃. Amer. J. Sci. 267A, 191-208.
    63.Haar L., Gallagher J. S., and Kell G.S. (1984) NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI units. Hemisphere Publishing Co.
    64.Handa Y. P., and Tse J. S. (1986) Thermodynamic properties of empty lattices of structure I and structure II clathrate hydrates. J. Phys. Chem. 90, 5917-5921.
    65.Harned H.S., and Davis R. (1943) The ionization constant of carbonic acid in water and the solubility of carbon dioxide in water and aqueous salt solutions from 0 to 50℃. J. Am. Chem. Soc. 65, 2030-2037.
    66.Harvey A.H., and Prausnitz J.M. (1989) Thermodynamics of high-pressure aqueous systems containing gases and salts. AIChE J. 35(4), 635-644.
    67.Harvie C.E., and Weare J.H. (1984) The prediction of mineral solubility in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system from zero to high concentration at 25℃. Geochim. Cosmochim. Acta 48, 723-751.
    68.Holder G. D., Corbin G., and Papadopoulos K. D. (1980) Thermodynamic and molecular properties of gas hydrates from mixtures containing methane, argon, and krypton. Ind. Eng.
    
    Chem. Fundam. 19(3), 282-286.
    69.Holder G. D., Hand J. H. (1982) Multiple-phase equilibria in hydrates from methane, ethane, propane and water mixtures. AIChE J. 28, 440-447.
    70.Holder G. D., Malekar S. T., and Sloan E. D. (1984) Determination of hydrate thermodynamic reference properties from experimental hydrate composition data. Ind. Eng. Chem. Fundam. 23, 123-126.
    71.Holder G.D., Zetts S.P., and Pradhan N. (1988) Phase behavior in systems containing clathrate hydrates. Rev. Chem. Eng. 5, 1-70.
    72.Holland H.D. (1978) The chemistry of the atmosphere and oceans. Wiley-Interscience, New York.
    73.Huron M. J., and Vidal J. (1979) New mixing rules in simple equation of state for representing Vapour-Liquid Equilibria of strongly nonideal mixtures. Fluid Phase Equilibria 3, 255-271.
    74.Hwang, M. J, Holder, G. D, Zele, S. R. (1993) Lattice Distortion by Guest Molecules in Gas- Hydrates. Fluid Phase Equilibria 83, 437-444.
    75.Jager M.D., Sloan E.D. (2001) The effect of pressure on methane hydration in pure water and sodium chloride solutions. Fluid Phase Equilibria 185, 89-99
    76.Janak M., O'Brien P.J., Hurai V., and Reurel C. (1996) Metamorphic evolution and composition of garnet-clinopyroxene amphibolites from the Tatra Mountains, Western Carpathians. Lithos 39, 57-59.
    77.Jhaveri J., and Robinson D.B. (1965) Hydrates in the methane-nitrogen system. Can. J. Chem. Eng. 43, 75-78.
    78.Joffrion L.L., and Eubank P.T. (1989) Compressibility factors, densities and residual thermo- dynamic properties for methane-water mixtures. J. Chem. Eng. Data 34, 215-220.
    79.John V. T., and Holder G. D. (1981) Choice of cell size in the cell theory of hydrate phase gas-water interactions. J. Phys. Chem. 85(13), 1811-1814.
    80.John V. T., and Holder G. D. (1982) Contribution of second and subsequent water shells to the potential energy of guest-host interactions in clathrate hydrates. J. Phys. Chem. 86(4), 455-459.
    81.John V. T., Papadopoulos K. D., and Holder G. D. (1985) A Generalized Model for Predicting Equilibrium Conditions for Gas Hydrates. AIChE J. 31, 252-259.
    82.Kennan R.P., Pollack G.L. (1990) Pressure dependence of the solubility of nitrogen, argon, krypton and xenon in water. J.Chem.Phys. 93(4), 2724-35.
    83.Kerrick D. M., and Jacobs G. K. (1981) A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures. Amer. J. Sci. 281, 735-767.
    84.Keyes F.G., and Burks H.G. (1922) The isometrics of gaseous methane. J. Math. Phys. 1, 1403-1409.
    85.King M.B., Mubarak A., Kim J.D., and Bott T.R. (1992) The mutual solubilities of water with supercritical and liquid carbon dioxide. The Journal of Supercritical Fluids 5, 296-302.
    86.Klauda J. B., and Sandler S. I. (2000) A fugacity model for gas hydrate phase equilibria. Ind. Eng. Chem. Res. 39(9), 3377-3386.
    
    
    87.Klots C.E., Benson B.B. (1963) Solubilities of nitrogen, oxygen, and argon in distilled water. J.Marine Res. 21:48-57.
    88.Kobayashi R., and Katz D. L. (1949) Methane hydrates at high pressure. Trans. AIME 186, 66-70.
    89.Krichevsky I. R., and Kasarnovsky J. S. (1935) Thermodynamical calculations of solubilities of nitrogen and hydrogen in water at high pressures. J. Am. Chem. Soc. 57, 2168-2172.
    90.Larson S.D. (1955) Phase studies of the two-component carbon dioxide-water system involving the carbon dioxide hydrate. Ph.D. dissertation. Univ. Michigan.
    91.Lee B. I., and Kesler M. G. (1975) A generalized thermodynamic correlation based on three- parameter corresponding states. AIChE J. 21, 510-527.
    92.Li J., Topphoff M., Fischer K., and Gmehling J. (2001) Prediction of gas solubilities in aqueous electrolyte systems using the predictive Soave-Redlich-Kwong model. Ind. Eng. Chem. Res. 40, 3703-3710.
    93.Li J., Vanderbeken I., Ye S., Carrier H., and Xans P. (1997) Prediction of the solubility and gas-liquid equilibria for gas-water and light hydrocarbon-water systems at high temperatures and pressures with a group contribution equation of state. Fluid Phase Equilibria 131, 107-118.
    94.Li Y., and Nghiem L.X. (1986) Phase equilibria of oil, gas and water/brine mixtures from a cubic equation of state and Henry's law. Can. J. Chem. Eng. 64, 486-496.
    95.Liao J., Mei D., Yang J., and Guo T. (1999) Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions Containing Electrolytes and (Electrolytes + Methanol). Ind. Eng. Chem. Res. 38, 1700-1705.
    96.Lundgaard L., and Mollerup J. M. (1991) The Influence of Gas Phase Fugacity and Solubility on Correlation of Gas Hydrate Formation Pressure. Fluid Phase Equilibria 70, 199-213.
    97.Lundgaard L., and Mollerup J. M. (1992) Calculation of Phase Diagrams of Gas Hydrates. Fluid Phase Equilibria 76, 141-149.
    98.Makogon T. Y., and Sloan E. D. (1994) Phase Equilibrium for methane hydrate from 190 to 262 K. J. Chem. Eng. Data 39, 351-353.
    99.Malinin S.D. (1959) The system water-carbon dioxide at high temperatures and pressures. Geokhimiya(3), 292-306.
    100.Malinin S.D., and Kurorskaya N.A. (1975) Investigation of CO2 solubility in a solution of chlorides at elevated temperatures and presures of CO2. Geokhimiya(4), 547-551.
    101.Malinin S.D., and Savelyeva N.I. (1972) The solubility of CO2 in NaCl and CaCl2 solutions at 25, 50, and 75°C under elevated CO2 pressures. Geokhimiya(6), 643-653.
    102.Mansoori G. A., Carnahan N. F., Starling K. E., and Leland T. W. (1971) Equilibrium thermo- dynamic properties of the mixture of hard spheres. J. Chem. Phys. 54, 1523-1525.
    103.Markham A. E., and Kobe K. A. (1941) The solubility of carbon dioxide and nitrous oxide in aqueous salt solutions. J. Am. Chem. Soc. 63, 449-454.
    104.Marshall D. R., Saito S., Kobayashi R. (1964) Hydrates at High Pressures. Methane-Water and Argon-Water Systems. AIChE J. 10, 202-205.
    
    
    105.Mckoy V., and Sinanoglu O. (1963) Theory of Dissociation Pressure of Some Gas Hydrates. J. Chem. Phys. 38, 2946-2956.
    106.McLeod H. O., Campbell J. M. (1961) Natural Gas Hydrates at Pressures to 10,000 lb./sq. in. Abs. J. Pet. Technol. 13, 590-594.
    107.McMullan R. K., and Jeffrey G. A. (1965) Polyhedral clathrate hydrates. IX. Structure of ethylene oxide hydrate. J. Chem. Phys. 42(8), 2725-2732.
    108.Mei D., Liao J., Yang J., and Guo T. (1996) Experimental and Modeling Studies on the Hydrate Formation of a Methane+Nitrogen Gas Mixture in the Presence of Aqueous Electrolyte Solutions. Ind. Eng. Chem. Res. 35, 4342-4347.
    109.Michels A., and Nederbragt G. W. (1936) Isotherms of methane between 0 and 150℃ for densities up to 225 Amagat. Calculated specific heat, energy and entropy in the same region. Physica 3, 569-577.
    110.Michels A., Gerver J., and Bijl A. (1936) The influence of pressure on the solubility of gases. Physica 3, 797-807.
    111.Michelsen M. L. (1993) Phase equilibrium calculations. What is easy and what is difficult? Computers Chem. Engng. 17(5/6), 431-439.
    112.Morita K., Nakano S., and Ohgaki K. (2000) Structure and stability of ethane hydrate crystal. Fluid Phase Equilibria 169, 167-175.
    113.Morrison T.J., and Billett F. (1952) The salting-out of non-electrolytes: Part I. The effect of variation in non-electrolyte. J. Chem. Soc., 3819-3822.
    114.Müller G., Bender E., and Maurer G. (1988) Das Dampf-Flussigkeits gleichgewicht des ternaren Systems Ammoniak-Kohlendioxid-Wasser bei holen Wassergehalten im Bereich zwischen 373 und 473 Kelvin. Ber. Bunsenges. Phys. Chem., 92, 148-160.
    115.Murray C.N., and Riley J.P. (1971) The solubility of gases in distilled water and sea water-IV. Carbon dioxide. Deep-Sea Research 18, 533-541.
    116.Murray C.N., Riley J.P., and Wilson T.R.S. (1969) The solubility of gases in distilled water and sea water-I. Nitrogen. Deep-Sea Research 16, 297-310.
    117.Nakano S., Moritoki M., and Ohgaki K. (1998) High-Pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the CO2 Hydrate System. J. Chem. Eng. Data 43, 807-810.
    118.Nakano S., Moritoki M., and Ohgaki K. (1999) High-Pressure Phase Equilibrium and Raman Microprobe Spectroscopic Studies on the Methane Hydrate System. J. Chem. Eng. Data 44, 254-257.
    119.Ng H.-J., and Robinson D. B. (1976) The Measurement and Prediction of Hydrate Formation in Liquid Hydrocarbon-Water Systems. Ind. Eng. Chem. Fundam. 15, 293-298.
    120.Nighswander J.A., Kalogerakis N., and Mehrotra A.K. (1989) Solubilities of carbon dioxide in water and 1wt% NaCl solution at pressures up to 10 MPa and temperatures from 80 to 200℃. J. Chem. Eng. Data 34, 355-360.
    121.O'Sullivan T. D., and Smith N. O. (1970) The solubility and partial molar volume of nitrogen and methane in water and in aqueous sodium chloride from 50 to 125℃ and 100
    
    to 600 atm. J. Phys. Chem. 74, 1460-1466.
    122.Olds R. H., Reamer H. H., Sage B. H., and Lacey W. N. (1943) Phase equilibrium in hydrocarbon systems: Volumetric behavior of methane. Ind. Eng. Chem. 35, 922-924.
    123.Olds R. H., Sage B. H., and Lacey W. N. (1942) Phase equilibria in hydrocarbon systems. Ind. Eng. Chem. 34(10), 1223-1227.
    124.Parrish W. R., and Prausnitz J. M. (1972) Dissociation pressures of gas hydrates formed by gas mixtures. Ind. Eng. Chem. Process Des. Develop. 11(1), 26-35.
    125.Patel N. C., and Teja A. S. (1982) A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 37, 463-473.
    126.Pauling L., and Marsh R. E. (1952) The structure of chorine hydrate. Proc. Natl. Acad. Sci. 38, 112.
    127.Peng D. Y., and Robinson D. B. (1976) A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59-64.
    128.Pitzer K.S. (1973) Thermodynamics of electrolytes: I. Theoretical basis and general equations. J. Phys. Chem. 77, 268-277.
    129.Pitzer K.S., Peiper J.C., and Busey R.H. (1984) Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1-102.
    130.Price L. C. (1979) Aqueous solubility of methane at elevated pressures and temperatures. AAPG Bull. 632, 1527-1533.
    131.Price L. C. (1981) Methane solubility in brines with application to the geopressured resource. Proceedings of the 5th Geopressured and Geothermal Energy Conference 5, 205-214.
    132.Prutton C.F., and Savage R.L. (1945) The solubility of carbon dioxide in calcium chloride- water solutions at 75, 100, 120℃ and high pressures. J. Am. Chem. Soc.. 67, 1550-1554.
    133.Redlich O., and Kwong J. N. S. (1949) On the thermodynamics of solutions. V: An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233-244.
    134.Rigby M., and Prausnitz J. M. (1968) Solubility of water in compressed nitrogen, argon, and methane. J. Phys. Chem. 72(1), 330-334.
    135.Ripmeester J. A., and Ratcliffe C. I. (1990) 129Xe NMR Studies of Clathrate Hydrates: New Guests for Structure II and Structure H. J. Phys. Chem., 94, 8773-8776.
    136.Ripmeester J. A., Tse J. S., Ratcliffe C. I., and Powell B. M. (1987) A New Clathrate Hydrate Structure. Nature 325, 135-136.
    137.Roberts O. L., Brownscombe E. R., and Howe L. S. (1940) Hydrates of methane and ethane. Oil Gas J. 39, 37.
    138.Robertson S.L., and Babb S.E. (1969) PVT properties of methane and propene to 10 kbar and 200C. J. Chem. Phys. 51, 1357-1361.
    139.Roedder, E. (1984) Fluid inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, Virginia.
    140.Rumpf B., and Maurer G. (1993) An experimental and theretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes. Ber. Bunsenges.
    
    Phys. Chem. 97, 85-97
    141.Rumpf B., Nicolaisen H., Ocal C., and Maurer G. (1994) Solubility of carbonn dioxide in aqueous solutions of sodium chloride: Experimental results and correlation. J. Solution Chem. 23(3), 431-448.
    142.Rushbrooke G. S., Stell G., and Heye J. S. (1973) Theory of polar fluids. I. Dipolar hard spheres. J. Mol. Phys. 26, 1199-1215.
    143.Saddington A.W., Krase N.W. (1934) Vapor-liquid equilibria in the system nitrogen-water. J. Am. Chem. Soc. 56, 353-361.
    144.Saito S., Marshall D. R., and Kobayashi R. (1964) Hydrates at high pressures. AIChE J. 10, 734-740.
    145.Schamp H.W., Mason E.A., Richardson A.C.B., and Altman A. (1958) Compressibility and intermolecular forces in gases: Methane. Physics Fluid 1, 329-337.
    146.Seo Y., and Lee H. (2001) Hydrate Phase Equilibria of the Carbon Dioxide, Methane, and Water System. J. Chem. Eng. Data 46, 381-384.
    147.Shinta A. A. and Firoozabadi A. (1995) Equation of state representation of aqueous mixtures using an association model. Can. J. Chem. Eng. 73, 367-379.
    148.Shyu G.-S., Hanif N. S. M., Hall K. R., and Eubank P. T. (1997) Carbon dioxide-water phase equilibria results from the Wong-Sandler combining rules. Fluid Phase Equilibria 130, 73-85.
    149.Sloan E. D. (1998) Clathrate Hydrates of Natural Gases. Marcel Decker.
    150.Smith N.O., Kelemen S., And Nagy B. (1962) Solubility of natural gases in aqueous salt solutions. II- Nitrogen in aqueous NaCl, CaCl2, Na2SO4 and MgSO4 at room temperatures and at pressures below 1000 psia. Geochim.Cosmochim.Acta 26, 921-926.
    151.Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 27, 1197-1203.
    152.Stell G., Rasaiab J. C., and Narang H. (1972) Thermodynamic perturbation theory for simple polar fluids I. J. Mol. Phys. 23, 393-406.
    153.Stell G., Rasaiah J. C., and Narang H. (1974) Thermodynamic perturbation theory for simple polar fluids, II. J. Mol. Phys. 27, l393-1414.
    154.Sultanov R.C., Skripka V.E., and Namiot A.Y. (1972) Solubility of methane in water at high temperatures and pressures. Gazovaia Promyshlennost. 17, 6-7(in Russian).
    155.Takenouchi S., and Kennedy G.C. (1964) The binary system H2O-CO2 at high temperatures and pressures. Amer. J. Sci. 262, 1055-1074.
    156.Takenouchi S., and Kennedy G. C. (1965) The solubility of carbon dioxide in NaCl solutions at high temperatures and pressures. Amer. J. Sci. 263, 445-454.
    157.Takenouchi, S., Kennedy, G. C. (1965) Dissociation Pressures of the Phase CO2?5.75H2O. J. Geol. 73, 383-390.
    158.Tee L. S., Gotoh S., and Stewart W. E. (1966) Molecular parameters for normal fluids. Ind. Eng. Chem. Fundam. 5(3), 363-367.
    159.Thakore J. L., and Holder G. D. (1987) Solid-vapor azeotropes in hydrate-forming systems.
    
    Ind. Eng. Chem. Res. 26, 462-469.
    160.Thiery R., Vidal J., and Dubessy J. (1994) Phase equilibria modelling applied to fluid inclusions: Liquid-vapor equilibria and calculation of the molar volume in the CO2-CH4-N2 system. Geochim. Cosmochim. Acta 58, 1073-1082.
    161.Tochigi K., Iizumi T., Sekikawa H., Kurihara K., and Kojima K. (1998) High-pressure vapor-liquid and solid-gas equilibria using a Peng-Robinson Group Contribution Method. Ind. Eng. Chem. Res. 37, 3731-3740.
    162.Todheide K. and Franck E.U. (1963) Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z. Physik Chem. 37, 387-401.
    163.Trebble M. A., Bishnoi P. R. (1988) Extension of the Trebble-Bishnoi equation of state to fluid mixtures. Fluid Phase Equilibria 40, 1-21.
    164.Tsiklis D. S., and Linshits L. R. (1967) Molar volumes and thermodynamic properties of methane at high pressures and temperatures. Dokl. Akad. Nauk SSSR 176, 423-425.
    165.Van Cleef A., and Diepen G.A.M. (1960) Gas hydrates of nitrogen and oxygen. Rec. Trav. Chim. 79, 582-586.
    166.Verma V. K. (1974) Gas hydrates from liquid hydrocarbon-water systems. Ph. D. Thesis. University of Michigan, Ann Arbor, Michigan.
    167.Von Stackelberg, M., and Muller, H. R. (1951) On the structure of gas hydrates. J. Chem. Phys. 19, 1319-1320.
    168.Von Stackelberg, M., and Muller, H. R. (1954) Feste gashydrate. Z. Electrochem. 58, 25-39.
    169.Voutsas E. C., Boulougouris G. C., Economou I. G., and Tassios D. P. (2000) Water/ hydrocarbon phase equilibria using the thermodynamic perturbation theory. Ind. Eng. Chem. Res. 39, 797-804.
    170.Waals J. H. V. D. and Platteeuw J. C. (1959) Clathrate Solutions. In Advances in Chemical Physics (ed. I. Prigogine), pp. 1-57. Interscience.
    171.Weare J.H. (1987) Models of mineral solubility in concentrated brines with application to field observations. Rev. Mineral. 17, 143.
    172.Wendland M., Hasse H., and Maurer G. (1999) Experimental Pressure-Temperature Data on Three- and Four-Phase Equilibria of Fluid, Hydrate, and Ice Phases in the System Carbon Dioxide- Water. J. Chem. Eng. Data 44, 901-906.
    173.White D. E., Anderson E. T., and Grubbs, D. K. (1963) Geothermal brine well: Mile-deep drill hole may tap ore-bearing magmatic water and rocks undergoing metamorphism. Science 139, 919-922.
    174.Wiebe R., and Gaddy V.L. (1939) The solubility in water of carbon dioxide at 50(, 75(, and 100( at pressures to 700 atm. J. Am. Chem. Soc. 61, 315-318.
    175.Wiebe R., and Gaddy V.L. (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40( and at pressures to 500 atm. J. Am. Chem. Soc. 62, 815-817.
    176.Wiebe R., Gaddy V.L. and Heins C. (1932) Solubility of nitrogen in water at 25℃ from 25 to 1000 atmospheres. Ind. Eng. Chem. 24, 927.
    177.Wiebe R., Gaddy V.L., and Heins C. (1933) The solubility of nitrogen in water. J. Am.
    
    Chem. Soc. 55, 947-953.
    178.Wilcox W. I., Carson D. B., and Katz D. L. (1941) Natural gas Hydrates. Ind. Eng. Chem. 33, 662-665.
    179.Wong S. S. H., and Sandler S. I. (1992) A theoretically correct mixing rule for cubic equations of state. AIChE J. 38, 671-680.
    180.Wu J. and Prausnitz J. M. (1998) Phase equilibria for systems containing hydrocarbons, water, and salt: An extended Peng-Robinson equation of state. Ind. Eng. Chem. Res. 37, 1634-1643.
    181.Yang S. O., Cho S. H., Lee H., and Lee C. S. (2001) Measurement and Prediction of Phase Equili- bria for Water + Methane in Hydrate Forming Conditions. Fluid Phase Equilibria 185, 53-63.
    182.Yasunishi A., and Yoshida F. (1979) Solubility of carbon dioxide in aqueous electrolyte solutions. J. Chem. Eng. Data. 24, 11-15.
    183.Young C.L. (1981) Nitrogen solubilities above 200 kPa. In:"IUPAC Solubility Data Series", 1982, Vol. 10, ed. Battino R., Pergamon, Oxford.
    184.Zawisza A., and Malesinska B. (1981) Solubility of carbon dioxide in liquid water and of water in gaseous carbon dioxide in the range 0.2-5 MPa and at temperatures up to 473 K. J. Chem. Eng. Data 26(4), 388-391.
    185.Zele S. R., Lee S.-Y., and Holder G. D. (1999) A Theory of Lattice Distortion in Gas Hydrates. J. Phys. Chem. B 103, 10250-10257.
    186.Zuo Y. and Guo T. (1991) Extension of the Patel-Teja equation of state to the prediction of the solubility of natural gas in formation water. Chem. Eng. Sci. 46(12), 3251-3258.
    187.Zuo Y., Gommesen S., and Guo T. (1996) Equation of state based hydrate model for natural gas systems containing brine and polar inhibitor. The Chin. J. Chem. Eng. 4, 189-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700