用户名: 密码: 验证码:
乙烯/乙烷络合分离吸附剂的制备及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分离过程的高选择性、高分离能力及高传质速率是其追求的目标,对于难以用物理法分离或物理法分离能耗甚高的体系,则着眼于研究高分离能力的化学方法,这已成为改进传统分离技术的一个重要发展方向。
     传统的低温精馏法分离乙烯/乙烷,能耗巨大。络合吸附分离是将π络合反应与吸附过程相结合的分离方法,用于乙烯/乙烷的分离具有潜在的节能优势,其关键是络合分离吸附剂的开发。本文在综述了络合吸附分离研究进展及工业应用现状的基础上,探讨络合吸附机理,制备高选择性、高分离能力的乙烯络合吸附剂,并研究新型络合分离吸附剂的吸附平衡及固定床动态吸附行为,为低能耗的乙烯/乙烷分离新过程的工业应用奠定基础。
     CO与C_2H_4都能与某些过渡金属离子如Cu~+,Ag~+发生可逆络合反应,CO络合分离已经有许多工业应用实例,而乙烯络合分离的工业应用至今尚未见报道。本文从CO络合与乙烯络合分离的差别出发,采用量子化学计算工具,结合分子轨道理论,研究络合物分子的构型、络合物分子中各原子间的电荷分布和电子转移以及络合键能,比较CO、C_2H_4和C_3H_6分别与CuCl、AgCl的相互作用,揭示CO、C_2H_4和C_3H_6与CuCl、AgCl发生络合反应的实质,结果表明:CO、C_2H_4和C_3~-H_6均能与CuCl、AgCl发生络合反应,其络合能力大小为:CO>C_2H_4>C_3H_6;对同一配体,CuCl的络合能力大于AgCl。从空间结构看,CO与CuCl的络合物为直线结构,而乙烯与CuCl的络合物则为平面三元环结构。这些研究结果的取得不仅可以给出CO和C_2H_4络合能力差异的合理解释,也为新型乙烯络合分离吸附剂的制备提供了理论指导。
     通过比较CO和C_2H_4络合吸附及其分离体系的不同特点,在络合吸附剂制备过程中,本文提出以表面氧化改性活性炭为载体的设想,并考察了活性炭氧化改性前后负载CuCl的微观特征,研究了CuCl在活性炭表面的单层分散,用现代固体表征方法如BET、XRD以及TEM进行了表征。探讨了活性炭负载CuCl吸附剂的制备工艺,得到新型络合分离吸附剂。与文献报道的乙烯络合吸附剂相比,本文制备的吸附剂具有较大的乙烯选择性、较低的吸附热和稳定的变压再生特性,因此具有更好的工业应用前景。
     对所研制的络合吸附剂,测定了乙烯、乙烷纯组分及其二元混合气吸附平衡数据,依据络合吸附剂的吸附机理,建立了分别考虑物理吸附和化学吸附的吸附平衡模型,模型不仅可以很好地关联乙烯、乙烷纯组分在络合吸附剂上的吸附平衡数据,参数物理意义明确,而且可以实现从单组分模型参数预测二元
    
    南京工业大学博士学位论文 摘要
    混合组分在络合吸附剂上的吸附平衡,为络合吸附剂工业应用提供了必要的基
    础数据和设计依据。
     研究了乙烯/乙烷及其二元混合体系在络合吸附剂上的吸附动态性能,比较
    了浓度、温度、压力和流量对穿透曲线的影响,并实验测定了在惰性气吹扫的
    条件下络合吸附剂的再生流出曲线,结果对乙烯乙烷混合气体循环吸附分离过
    程的设计提供了重要的数据。在实验的基础上建立了孔扩散模型,模型不仅可
    以比较好地拟合乙烯、乙烷在络会吸附剂上的吸附透过曲线,而且可以预测其
    再生透过曲线,为络合吸附剂的工业应用提供了设计优化工具。
     在上述研究工作基础上,本文从络合吸附剂的工业应用可行性角度,考察
    了络合吸附剂对工业实际排放气的适应性,研究了络合吸附剂对N卜CH八CO。、
    O。等气体的吸附选择性以及变温、变压循环吸附特性,并提出采用真空变压吸
    附(VPSA)工艺回收环氧乙烷尾气中乙烯的方法。结果表明,由于本文研制的
    络合吸附剂具有常温真空再生的稳定性和可行性,装置规模不大,操作方便,
    运行成本低,经济效益显著。进一步表明本文开发的络合吸附剂具有良好业应
    用前景。
Some separation processes based chemical action could bring higher selectivity, separation efficiency and transfer rate. Because of these characteristics, this method was becoming the one of important ways to improve the traditional separation techniques with high energy consumed.
    The separation process of ethylene and ethane by traditional rectification at low temperature consumed a great deal of energy. Adsorption separation via complexation was a method which combined both -complexation reaction and the process of adsorption. This method could be used on the process of ethylene and ethane's separation because of the potential superiority of economizes on energy, and this would focus on development of complexation adsorbent. In this paper, current situation of adsorption separation via complexation in industry application and complexation adsorbent research were summarized. At the same time, adsorption mechanism and preparation of new adsorbents with high adsorption selectivity of ethylene were studied respectively, so did both adsorption equilibrium of the prepared sorbent and behavior of adsorption on fixed bed. All of these studies established a solid foundation of application in industry scale that the new process of ethylene and ethane's separation had lower economizes on energ
    y.
    Both carbon monoxide and ethylene could form complexation with some transition metal cations such as Cu+ and Ag+. Separation via complexation of CO had already been used in industry scale, but there had no report about that of ethylene as yet. On the basis of the differences between carbon monoxide and ethylene in their adsorption behaviors, the molecular configurations of the complex compounds were studied by using calculation tool of quantum chemistry combined with the theory of molecular orbit. In addition, carbon monoxide, ethylene and propylene could react with copper chloride and silver chloride respectively, and from study of these reactions, it could be concluded that the order of complexation abilities was: CO>C2H4>C3H6, and to the same ligand, CuCl > AgCl. Moreover, the structure of the complex of CO and CuCl was linear, and that of alkenes and AgCl was planar three-member ring. These results could offer theoretical guidance to preparation of complexation adsorbent.
    Through comparing the different characteristics of adsorption via complexation and the separation systems of carbon monoxide and ethylene, it had been put forward that surface qualities of active carbon carrier could be modified by oxidation during the course of preparation. At the same time the microcosmic characteristics of active carbon modified by load of CuCl had also been studied. Besides of that, monolayer
    
    
    
    dissipation of CuCl on the surface of active carbon was characterized by BET, XRD and TEM. Preparation techniques of CuCl-loaded active carbon adsorbent were also discussed and new complexation adsorbent for ethylene/ethane separation was obtained. Compared to the ethylene complexation adsorbent, which reported on other documents, CuCl-loaded active carbon adsorbent had higher ethylene selectivity, smaller adsorption heat and more stable regenesis of pressure swing. Therefore, it had better industry application foreground.
    Adsorption equilibrium data of ethylene, ethane and their mixture had been determined after the preparation of complexation adsorbent. An adsorption equilibrium model with physical adsorption and chemical adsorption was established respectively, which according the mechanism of complexation adsorption. Physical meanings of the model parameters were authentic. The adsorption equilibrium of binary mixture on complexation adsorbent could be predicted from the mono component pattern. Thus, necessary data of industry application and design-foundation of the complex adsorbent had been obtained.
    The adsorption dynamic performance of ethylene, ethane and their binary mixture on complexation adsorbent had been studied. The effects of concentration, temperature, pressure and flow rate on breakthrough curve were compared. T
引文
[1] Keller G. E., Vema S. K., Williamson K. D., Olifin recovery and purification via silver complexation. Separation and Purification Technoligy. New York: Marcel Dekker, 1992
    [2] 许峥,周荣琪,段占庭.络合吸收法分离烯烃/烷烃.化工进展.2000,3:14~17
    [3] Yang R. T., Kikkinides E. S., New adsorbents for olefin/paraffin separation by adsorption via π-complixation. AIChE J., 1995, 41(3): 509
    [4] Huang Y. Y.,, Ethylene complexes in copper(Ⅰ) and silver(Ⅰ) Y zeolites. J. catal., 1980(61): 461~476
    [5] Eldridge R B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res., 1993(32): 2208~2212
    [6] Padin J., Yang R. T. New sorbents for olefin/paraffin separation by adsorption via π-complexation: synthesis and effects of substrates. Chem. Eng. Sci. 2000(55): 2607-2616
    [7] 岑沛霖,柴慈恩等.络合吸附分离气体混合物中的一氧化碳.石油化工.1990,19(3):443~448
    [8] 陈鸿雁,涂晋林,施亚钧.载铜活性炭吸附分离氢气中的微量CO.华东理工大学学报.1995,21(1):1~5
    [9] 戴服管,游家骊.工业废气中一氧化碳的分离及利用.石油化工.1989,18(2):128~134
    [10] Hirai H., Keiichiro W. and Makoto K.. Activated carbon-supported copper(Ⅰ) chloride as solid adsorbent for carbon monoxide. Bull Chem Soc Jpn. 1986, 59(7), 2~227
    [11] 居沈贵,刘晓勤,马正飞等.含CO体系在载铜吸附剂上吸附动态性能(1).南京化工大学学报.1999,21(6):92~97
    [12] 居沈贵,刘晓勤,姚虎卿.合成氨原料气中微量CO吸附净化的研究.天然气化工.1997,22(1):5~8
    [13] Kulvaranon S., Findley M. E., Liapis A. I.. Increased separation by variable-temperature stepwise desorption in multicomponent adsorption process. Ind. Eng. Chem. Res. 1990(29): 106
    [14] Ghosh T. K., Dalin H., Hines A. L.. Hybrid adsorption-distillation process for
    
    separation propane and propylene. Ind. Eng. Chem. Res., 1993(32): 2390
    [15] Curtis L., Munson, New Sorbents for Olefin/Paraffin Separations and Olefin Purification for C4 Hydrocarbons, Ind. Eng. Chem. Res., 1999, 38(10): 3614-3621.
    [16] Padin J., Yang R. T.. Tailoring new adsorbents based on π-complexation: cation and substrate effects on selective acetylene adsorption. Ind. Eng. Chem. Res. 1997(36): 4224-4230
    [17] Yang R. T., Chen Y. D., Peck J. D.. Zeolites containing mixed cations for air separation by weak chemsorption-assisted adsorption. Ind. Eng. Chem. Res. 1996, 35: 3093~3099
    [18] 陈慧兰,余宝源.理论无机化学.北京:高等教育出版社,1989
    [19] Yang R. T., Folfes R.. New sorbents based on principles of chemical complexation: monolayer-dispered nickel(Ⅱ) for acetylene separation by π-complexation. Ind. Eng. Chem. Res. 1996(35): 1006-1011
    [20] Huang H. Y. and Yang R. T. Anion effects on the adsorption of acetlene by nickel halide. Langmuir. 1999(15): 7647-7652
    [21] Takahashi A., Yang F. H., Yang R. T.. Aromatic/aliphatics separation by adsorption - new sorbents for selective aromatics adsorption by π-complexation. Ind. Eng. Chem. Res. 2000, 39(10): 3093~3099
    [22] 加藤 顺,小林博行,村田义夫.碳一化学工业生产技术.北京:化学工业出版社,1988
    [23] 黄景梁.气体净化技术进展.现代化工.1986,6(3):4~39
    [24] 居沈贵.络合吸附净化含氮气体中微量一氧化碳的研究.【学位论文】.南京化工大学,1997
    [25] 横江甚大朗等.分离回收一氧化碳的吸附剂及其制法和用途.ZL 86106219.1
    [26] 蔡升,钮根林,杨朝合.我国催化干气的综合利用技术及其新的研究进展.石油与天然气化工.2001,30(3):124~129
    [27] 刘晓勤,马正飞,梅华等.稀土复合吸附剂变压吸附净化氢氮气中CO.南京化工大学学报.1998,20(增刊):1~4
    [28] Eldridge R. B.. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res., 1993(32): 2208~2212
    [29] 化学工业部科学技术情报研究所.国外乙烯工业手册.1980
    [30] Safarik D. J., Eldridge R. B.. Olefin/paraffin separations by reactive
    
    absorption: a review. Ind. Eng. Chem. Res.. 1998(37): 2571~2581
    [31] Patricia A. T., Richard D. N., Daniel S. and Carl A. K.. Electrochemically modulated complexation process for ethylene/ethane separation. AICHE J. 1997, 43(7): 1709-1716
    [32] Rege S. U., Padin J., Yang R. T.. Olefin/paraffin separation by adsorption: π-complexation vs. kinetic separation. AIChE J. 1998, 44(4): 799
    [33] Hirai H. USP4747855, 1988
    [34] Teramoto Masaaki, Matsuyama Hideto, Yamashiro Takumi, et al. Separation of ethylene from ethane by supported liquid membranes containing silver nitrate as a carrier. J. Chem. Eng. Jpn., 1986, 19(5): 419~424
    [35] Teramoto Masaaki, Matsuyama Hideto, Yamashiro Takumi, et al. Separation of ethylene from ethane by a flowing liquid membrane using silver nitrate as a carrier. J. Membr. Sci., 1989, 45(1-2): 115~136
    [36] Boom J. P., Bargeman D., Strathmann H.. Zeolite-filled membranes for gas separation and pervaporation. CA, 1994(122): 292626
    [37] Schoellner R. Ger(East) patent, DD150888, 1981
    [38] Schoellner R. Ger (East) patent, DD150887,1981
    [39] Hutson N. D., Rege S. U., Yang R.T.. Mixed cation zeolites : Li_xAg_y-X as a superior adsorbent for air separation. AIChE J., 1999, 45(4): 724~734
    [40] Pearce G. K.. USP4717398, 1988
    [42] 岑沛霖.Cu(Ⅰ)-NaY分子筛的制备及乙烯乙烷在该分子筛上吸附平衡的研究.高校化学工程学报,1989,45(4):16~23
    [43] 谢有畅等.催化裂化干气吸附分离乙烯工艺.中国专利,CN1073422, 1993
    [44] Choudhary V. R., Mayadevi S.. Adsorption of methane, ethane, ethylene, and carbon dioxide on X, Y, L, and M zeolites using a gas chromatography pulse technique. CA, 1993(118): 88187
    [45] Hirai H.. Macromolecule-metal complexes for gas separation. J. Macromol. sci. chem., 1990, A27(9-11): 1293~1303
    [46] Hirai H.. Polystyrene-supported aluminium silver chloride as selective ethylene adsorbent. Die Angew. Makro. Chem., 1985(130): 207-212
    [47] Wu Zhongbiao, Han S. S., Cho Soon-haeng, et al. Modification of resin-type adsorbents for ethane/ethylene separation. Ind. Eng. Chem. Res., 1997(36): 2749~2756
    [48] 谢有畅,杨乃芳,刘英俊等.某些催化剂活性组分在载体表面分散的自
    
    发倾向.中国科学B辑,1982(8):673-682
    [49] Deng S. G. Sol-gel preparation and properties of alumina adsorbents for gas separation. AIChE J., 1995, 41(3): 559~570
    [50] Valenzuela, D. P., Myers A. L.. Adsorption equilibrium data handbook, PrenticeHall, Inc., New Jersey, 1989
    [51] Nishikawa. JP61012633, 1986
    [52] Yang R. T., Baksh M. S. A. Pillared clays as a new class of sorbents for gas separation. AICHEJ. 1991, 37(5): 679-686
    [53] Kummar, R., White T. R., Rokichi A.. Novel adsorption distillation hybrid scheme for propane/propylene separation. Sep. Sci. Tech.. 1991, 27(15): 2157
    [54] Lin Y. S., Ji W., Wang Y., and Higgins R. J.. Cuprous-Chloride-Modified Nanoporous Alumina Membranes for Ethylene-Ethane Separation, Ind. Eng. Chem. Res. 1999, 38(6): 2292-2298.
    [55] Hirayama Y., Tanihara N., and Kusuki Y.. Olefin/Paraffin Separation through Carbonized Membranes Derived from an Asymmetric Polyimide Hollow Fiber Membrane, Ind. Eng. Chem. Res. 1999, 38(11): 4424-4432.
    [56] 于京华,程新,刘福田等.量子化学在水泥化学领域的研究进展.硅酸盐通报.1999(1):40~44
    [57] 朱维良,蒋华良,陈凯先等.分子间相互作用的量子化学研究方法.化学进展.1999,11(3):247~251
    [58] 程新,陈亚明.量子化学计算方法在材料科学领域的初步应用.山东建材学院学报.1994,8(2):1~4
    [59] 黎乐民.理论无机化学研究近况.无机化学学报.1997,13(4):359~365
    [60] 陈志达.量子化学的第二次革命——1998年诺贝尔化学奖简介.大学化学,1999,14(3):3~6
    [61] Sauer J. Molecular models in ab initio studies of solids and surface. Chem. Rew. 1989, 89: 199-255
    [62] Huang H. Y., Padin J., and Yang R. T.. Comparison of π-complexation of ethylene and carbon monoxide with Cu~+ and Ag~+. Ind. Eng. Chem. Res. 1999, 38: 2720-2725
    [63] Huang H. Y., Yang R. T, and Chen N. Anion effects on the adsorption of acetylene by nickel halides. Langmuir, 1999, 15: 7647-7652
    [64] 贡雪东,肖鹤鸣.高岭石吸附乙烯和苯的Delft分子力学研究.分子科学学报.1998,14(3):149-154
    
    
    [65] 徐光宪,黎乐民,王德民.量予化学基本原理和从头计算法.北京:科学出版社,1985
    [66] 王志中,李向东.半经验分子轨道理论与实践.北京:科学出版社,1981
    [67] 徐光宪.物质结构.北京:人民教育出版社,1961
    [68] 桂琳琳,郭沁林,谢有畅等.CuCl等在γ-Al_2O_3表面的分散及其对乙烯吸附的研究.中国科学B辑,1984(1):1-9
    [69] Hajime Tamen, Kitamura K., Okazaki M.. Adsorption of carbon monoxide on activated carbon impregnated with metal halide. AIChE J., 1996, 42(2): 422~430
    [70] Winston H., Doyle G., Savage D. W. et al. Olefin separations via complexation with cuprous diketonate. Ind. Eng. Chem. Res., 1988(27): 334~337
    [71] Hirai H. Macromolecule-metal complexes for gas separation. J. Macromol. sci. chem., 1990, A27(9-11): 1293~1303
    [72] 王重庆,刘晓勤,姚虎卿.表面改性活性炭对CO_2的吸附性能.南京化工大学学报,2000,22(2):63~65
    [73] 马正飞.气固吸附平衡与吸附动力学研究.【学位论文】.南京化工大学,1997
    [74] 北川浩,铃木谦一郎.吸附的基础与设计.北京:化学工业出版社,1983
    [75] 杨R.T.著,王树森等译.吸附法气体分离.北京:化学工业出版社,1987
    [76] Jaroniec M., Madey R.. 非均匀固体上的物理吸附(Physical adsorption on heterogeneous solids). 北京:化学工业出版社,1997
    [77] Suzuki M. Adsorption engineering. Japan: Kadansha ltd. 1990
    [78] Ruthven D. M.. Principles of adsorption and adsorption processes. New York: John Wiley & Sons, Inc. 1984
    [79] 叶振华.化工吸附分离过程.北京:中国石油出版社,1992
    [80] Holland C. D., Liapis A. I.. Computer methods for solving dynamic separation problems. New York: McGraw-Hill, 1983
    [81] Finlayson B. A.. Nonlinear analysis in chemical engineering. New York: McGraw-Hill, 1980
    [82] 叶振华.吸着分离过程基础.北京:化学工业出版社,1988
    [83] Liapis A. I., Rippin D. W. T.. The simulation of binary adsorption in activated carbon columes using estimates of diffusional resistance within the carbon particles derived from batch experiments. Chem. Eng. Sci. 1978(3): 593~600
    
    
    [84] Raghavan N. S., Ruthven D. M.. Numerical simulation of a fixed-bed adsorption column by the method orthogonal collocation. AIChE J. 1983, 29(6): 922~925
    [85] 居沈贵.含CO体系在载铜吸附剂上吸附动态性能(2)-数学模型化研究.南京化工大学学报.2000,22(2):17~22
    [86] 张澎增,李成岳.正交配点法在化学工程中的应用(Ⅰ).化学工程,1987,(2)
    [87] 张澎增,李成岳.正交配点法在化学工程中的应用(Ⅱ).化学工程,1987,(3)
    [88] Edwards M. F., Richardson J. F.. Gas dispersion in packed beds. Chem. Eng. Sci., 1968, 23: 109~123
    [89] 化学工程手册编委会.化学工程手册:传质.北京:化学工业出版社,11-14~11-15
    [90] 高敦仁.干气中乙烯回收技术路线的可行性分析.金陵石油化工.1993,(2):2~17
    [91] 尹晔东,白庚辛.用吸附法脱除环氧乙烷生产中的Ar、CO_2并回收乙烯.石油化工.1998,27(1):18~23
    [92] 李德伏,曾海,张艳等.分子筛吸附分离乙烯和氮气性能研究.低温与特气.2000,18(6):22~24
    [93] 张雄福,王金渠.吸附法脱除乙醛装置尾气乙烯中的二氧化碳以回收乙烯的新吸附剂研究.石油学报(石油加工).1998,14(2):71~74
    [94] 张雄福,王金渠,王青川.炭分子筛改性及其对乙烯和氧气的吸附分离性能.化工学报.1999,50(3):343~350

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700