用户名: 密码: 验证码:
海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对海洋的广泛开发和利用,海洋环境下金属构筑物的微生物腐蚀已引起了人们广泛的关注。本文研究了海水和海泥环境中硫酸盐还原菌(SRB)影响的海洋用钢的微生物腐蚀行为, 探讨了SRB腐蚀的作用机制,并研究了海泥环境中SRB对阴极保护电位的影响。考虑包括SRB在内的腐蚀环境因子,使用模糊聚类分析技术对区域性海洋沉积物腐蚀性进行了划分。
    从我国渤海海域的海泥中成功富集培养出SRB。荧光显微镜观察发现,在接种SRB的修正的Postgate's C培养基中,SRB在316L SS表面附着发展并形成生物膜。生物膜的形成改变了不锈钢的电化学阻抗谱(EIS)特征。在接近自然腐蚀电位(Ecorr)附近,出现了显著的阳极电流峰值,电流峰值是硫化物氧化的结果。在SRB的厌氧环境中,由于硫化铁作为阴极去极化剂加速了阴极去极化反应,从而使阳极溶解增加,导致其钝性降低。
    在SRB介质中长期浸泡后的XPS分析显示,表层钝化膜中的Cr/Fe比增加,钝化膜中出现了少量的Mo和S。在该环境介质中Cr的增加和Mo的出现,初步认为是一种钝化膜的保护性自修复过程。
    在含有活性SRB的海泥环境中,弱极化曲线和显示,低合金钢的腐蚀速度先降低,后增加。根据EIS变化特征,提出了低合金钢在海泥中的腐蚀过程。初期是厌氧条件下的氢去极化,生成氧化物产物层;然后在SRB代谢产生的H2S作用下,发生氧化物到硫化物的转变。初期硫化物生成,腐蚀速度变化不大,后期随着硫化物的增加,不再具有保护性,而使腐蚀速度加快。根据其后期腐蚀速度变化和阻抗谱特征,有可能生物有机硫化物的存在加快了其腐蚀速度。
    在SRB存在下,最佳阴极保护电位移向更负的值,-1030 mV(相对铜/硫酸铜电极,CSE)甚至更低的电位是需要的。在-1030 mVCSE保护电位下,保护电流密度约为11mA/m2。生成的硫化铁产物的不稳定保护作用,导致保护电位的降低。
    考虑包括SRB在内的腐蚀环境因子,使用模糊聚类分析技术对区域性海洋沉积物腐蚀性进行了划分,并据此绘出腐蚀图谱。与因子打分法相比较,较好的反映了实际情况
Microbiologically influenced corrosion (MIC) has been given severe attention in marine environment concerned of all kinds of structure constructions, such as pipeline, platform for petroleum, etc. In the paper, sulfate-reducing bacteria (SRB) influenced corrosion was studied in seawater and seamud environments, concerned of stainless steel and low alloyed steels, respectively. The influence of SRB on cathodic protection (CP) was also conducted in seamud. Given corrosion factors including SRB, the corrosiveness of regional marine sediment was classified based on the fuzzy clustering analysis technology (FCA).
    SRB was cultured and enriched originated seamud from Bohai gulf using medicated Postgate's C medium. Biofilm containing SRB was observed on the surface of 316L SS by fluorescence microscopy in medicated Postgate's C medium inoculated SRB. The changes of Electrochemical impedance spectra (EIS) could be ascribed to the SRB biofilm and the metabolism activities. SRB biofilm and proliferation resulted the debasement of passivity of stainless steel. The distinct anodic current peak was observed in the seawater containing SRB. It was presumed that it was the result of electrochemical oxidation of sulfide.
    In anaerobic environment containing SRB, iron sulfide as depolarization reagent accelerated the depolarization of cathodic reaction, resulting the increase of anodic dissolution. The result of X-ray photoelectron spectra (XPS) indicated, after exposure to SRB, the ratio of Cr/Fe had an increase, Mo and S were detected in the surface layer of passive film. Organic molybdenum sulphide (Mo(V)-Cysteine) was found in passive film. The increase of Cr and the appearance of Mo were thought an auto-repair behaviour.
    In seamud containing active SRB, the corrosion rate of low-alloyed steels decreased firstly and then increased. According to EIS and surface analysis, the corrosion process of steels in seamud containing active SRB was presented. In the first stage, anaerobic hydrogen depolarization is predominant and produced iron oxide corrosion product layer; in the second stage, due to bio-produced hydrogen sulphide, iron oxide was biomineralized and translated iron sulphide. The iron oxide and initial iron sulphide had a certain extent protect properties, so the corrosion rate decreased and kept stable. Subsequently, the crystal structure and type of iron sulphide changed gradually, there existed crannies in corrosion products, resulting the increase of corrosion rate. According to the characteristics of the EIS change, it is an alternative mechanism that bioorganic sulphide accelerated the corrosion.
    The optimal CP potential shifted to negative direction in seamud containing active SRB, -1030 mV (vs. saturated Cu/CuSO4 electrode, CSE ) or lower potential was needed.Accordingly, the CP current density was about 11 mA/m2.
    Given corrosion factors including SRB, the corrosiveness of regional marine sediment was classified based on FCA. The corrosion rate were predicted by FCA. The chart of corrosiviness was plotted. Compared to the factors analysis, FCA can give better results
引文
1. Buchanan, Microbially Influenced Corrosion, Materials Performance, 1997,36(6): 46-55
    2. Garrett, J.H., The Action Of Water On Lead, H.K.Lewis, London, 1891
    3. Gaines, R.H., N.Eng. Ind. Chem. 1910:2-128
    4. Von Wolzogen Kühr, G.A.H., van der Vlugt L.R., 1934. De Graphiteering Van Gietijzer Ais Electrobiochemisch Proces In Anaerobe Gronden, water 18:147:165.
    5. Federal Highway administration, Corrosion Cost And Preventive Strategies In The United States. FHWA-RD-01-156. 2002 march.
    6. Flemming, H.-C., "Economical and technical overview ", in Heitz, E., Flemming, H.-C., and Sand, W.(Eds), Microbially Influenced Corrosion of Materials, Springer-Verlag, Berlin/Heidelberg,1996.
    7. Walsh, D., Pope, D., Danford, M. and Huff, T., The Effect Of Microstructure On Microbially Influenced Corrosion, JOM, 1993,45(9):.22-30
    8. Environmentally Acceptable Methods Control Pipeline Corrosion At Lower Cost, MP, 1997,36(2):71
    9. Ghassem, H. and Adibi, N., Bacterial corrosion of reformer heater tubes, MP, 1997 (34) 3: 47-48
    10. W.G.Characklis, "Microbial biofouling Control," in Biofilms, eds. W.G.Characklis, K.C. Marshall (New York, NY: John Wiley and Sons. Inc., 1990:585.
    11. A.K.Tiller, "A Review of the European Research effort on microbial corrosion between 1950 and 1984," in biologically induced corrosion (Houston, TX:NACE1986): 8
    12. B.Little, P.Wagner, F.Mansfeld, REVIEW--MICROBIOLOGICALLY INFLUENCED CORROSION OF METALS AND ALLOYS Int. Mater. Rev. 1991,36 (6): 253-272
    13. D.H.Hope, D.Duquette, P.C.Wayner, A.H.Johannes, "Microbiologically influenced Corrosion:A state-of the-art review, " MTI no. 13(Columbus. OH: Materials Technology institute of the Chemical Process Industries, 1984
    14. S.C. Dexter, Biofouling, ROLE OF MICROFOULING ORGANISMS IN MARINE CORROSION.1993, 7 (2):97-127
    15. W.G.Characklis which provide structure to the assemblage termed a biofilm., "Biofilm Processes", eds. W.G. Characklis, K.C. Marshall, New York, NY: John Wiley & Sons. 1990:227
    16. M.B.McNeil, B.J.Little, TECHNICAL NOTE: MACKINAWITE FORMATION DURING MICROBIAL CORROSION Corrosion 1990,46(7): 599-600
    17. M. Eashwar, S.Maruthamuthu, Mechanism of biologically produced ennoblement. Ecological perspectives and a hypothetical model,Biofouling 1995,8(3):203-213
    18. G.Hernandez, V.Kucera, D.Thierry, D. Thierry, A. Pedersen, and M. Hermansson , CORROSION INHIBITION OF STEEL BY BACTERIA, Corrosion 1994,50,(8):603-608
    19. 樊友军,皮振邦,华萍,微生物腐蚀的作用机制与研究方法现状,材料保护,2001,34(5):28-30
    
    
    20. B.Little, P.Wagner, Myths Related To Microbiologically Influenced Corrosion. Mater. Perform, 1997, 36(6): 40-44
    21. B.Little, P.Wagner, Factors influencing the Adhesion of microorganisms to surfaces. J.Adhesion, 1986,20(3): 187-210
    22. L.S.Percival, Review of potable water biofilms in engineered systems, British corrosion Journal. 1998,33(2), 130-137
    23. Xu. K, Dexter, S.C., Luther G.W., Voltammetric microelectrodes for biocorrosion studies. Corrosion, 1998, 54(10): 814-823
    24. Kjetil Rasmussen, Zbigniew Lewandowski, The Accuracy of Oxygen Flux Measurements Using Microelectrodes. Wat. Res., 1998, 32 (12): 3747-3755
    25. E L Hostis; C Comp?re, Characterization of biofilms formed on gold in natural seawater by oxygen diffusion analysis. Corrosion, 1997, 53(1):4-10
    26. 王庆飞,宋诗哲,金属材料海洋环境生物污损腐蚀研究进展,中国腐蚀与防护学报,2002,22(3):184-188
    27. Gill G.Geesey, et al., Role of bacterial exopolymer in the deterioration of metallic copper surfaces. Materials Performance. 1980, 25(2): 37-40
    28. Chen G, Kagwade S.V., French G.E., Clayton C.R., Metal ion and exopolymers interaction: a surface analytical study. Corrosion, 1996,52(12): 891-899
    29. E.Heitz, Mechanistically based prevention strategies of flow-induced corrosion, Electrochimica Acta, 1996.41(4): 503-509
    30. 徐桂英,金属微生物腐蚀的电化学机理,辽宁师范大学学报(自然科学版)。1994,17(2):173-176
    31. PROCEEDINGS: Int. Conf. Biologically induced Corrosion (Houston, TX: NACE, 1985), 254-267
    32. G.Kobrin, ed., A Practical Manual on Microbially Influenced Corrosion, vol.1 (Houston, TX: NACE, 1993): 233
    33. J.G. Stoecker, II, ed., A Practical Manual on Microbially Influenced Corrosion, vol.2 (Houston, TX: NACE, 2001).1-38
    34. R.J.Soracco,L.R.Berger,J.A.Berger,L.A.Mayack,D.H.Pope,E.W,Wilde,Microbiologically Mediated Reduction in the Pitting of Mild Steel Overlaid with Plywood,” NACE Corrosion '84 International Forum and Exhibition, New Orleans, LA (USA), 1 Apr 1984 (Houston,Tx:NACE, 1984)
    35. Pedersen, M.Hermansson, The effects on metal corrosion by Serratia marcescens and a Pseudomonas sp.,Biofouling 1989,1 (4): 313-322
    36. Pedersen, Hermansson M, Inhibition of metal corrosion by bacteria. Biofouling, 1991,3 (1): 1-11
    37. Jayaraman,J.C.Earthman,T.K.Wood, Corrosion inhibition by aerobic biofilms on SAE 1018 steel ,Appl.Microbiol.Biotechnol. 1997,47(1): 2-68
    38. Jayaraman, E.T.Cheng, J.C.Earthman,T.K.Wood, Importance of biofilm formation for corrosion inhibition of SAE 1018 steel by axenic aerobic biofilms , J.Ind. Microbiol. Biotechnol. 1997,18(6): 396-405
    
    
    39. Jayaraman; D.Ornek, D.A.Duarte, C.C.Lee, F.B.Mansfeld, T.K.Wood. Axenix aerobic biofilms inhibit corrosion of copper and aluminum. Appl.Microbiol.Biotechnol. 1999,52 (6): 0787-0790.
    40. S.Mohanan, S.Maruthamuthu, A.Mani,G.Venkatachari,Anti-Corros. Corrosion control by freshwater biofilm formation, Methods Mater, 1996,43,(5):23-27.
    41. Jayaraman,P.J.Hallock, R.M.Carson,C.C.Lee,F.B.Mansfeld,T.K.Wood, Inhibiting sulfate reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ Appl.Microbiol.Biotechnol. 1999,52(2):P.267-275.
    42. Jayaraman, E.T.Chang, J.C.Earthman,T.K.Wood, Axenic aerobic biofilms inhibit corrosion of SAE 1018 steel through oxygen depletion, J.Ind.Microbiol.Biotechnol. 1997,48(1):11-17
    43. Kh.M.Ismall,R.Gehrig,A.Jayaraman,K.Trandem,P.J.Arps,T.K.Wood,J.C.Earthman, Corrosion control of mild steel by aerobic bacteria under continuous flow conditions, Corrosion 2002,58 (5): 417-423
    44. B.C.Syrett,T.K.Wood,F.Mansfeld,J.C.Earthman,P.J.Arps, Corrosion Control using Regenerative Biofilms (CCURB) -An Overview, CORROSION 2001:.272 Houston,TX:NACE,2001
    45. Pedersen,S.Kjelleberg.M.Henmansson, A screening method for bacterial corrosion of metals. J.Microbiol.Methods 1988,8(4): 91-198
    46. H.A.Videla,P.Guiamet, Protection Action of Serratia marcescens in Relation to the Corrosion of Aluminum and its Alloys, in Biodeterloration Research 1, eds.G,Llewellyn,C. O'Rear(New York,NY:Plenum Press,1986) 75
    47. Mansfeld F., Evaluation of MIC and its inhibition with EIS and ENA. Proc. ISMCC-2000 Int. Symp. on "Marine Corrosion and Control", Qingdao, Peoples Republic of China, July 30 - August 1, 2000, Ocean Press
    48. G.Geesey, L.Jang:Binding of Metal Ions by Extracellular polymers," in Metals, Ions, and Bacteria, eds, T.Beveridge, R.Doyle (New York, NY:John Wiley &Sons,1988), .325
    49. Jayaraman,A.K.Sun,T.K.Wood, Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel, J.Appl.Microbiol. 1998,84(4):.485-492
    50. Jayaraman,C.-C.Lee,M.W.Chen,F.Mansfeld,T.K.Wood, Inhibiting sulfate reducing bacteria in biofilms by expressing the antimicrobial peptides indolicidin and bactenecin, J.Ind.Microbiol.Biotechnol. 1999,22(3): 167-175
    51. M.Eashwar, S.Maruthamuthu, S.Sathiyanarayanan, K. Balakrishnan, the ennoblement of stainless alloys by marine biofilms: the neutral pH and passivity enhancement model. Corros.Sci., 1995,37(8):1169-1176
    52. E.McCafferty, J.V.McArdle, Corrosion Inhibition By Biological Siderophore, In Proc.182nd Society Meeting (Toronto,Canade:The Electrochemical Society,1992,185-186.
    53. R.Johnsen, E.Bardal, CATHODIC PROPERTIES OF DIFFERENT STAINLESS STEELS IN NATURAL SEAWATER, Corrosion, 1985,41(5): 296-305
    54. Mollicn,A.,A.Trevis,E.Traverso,G.Ventura,V.Scotto,G.Marcenaro,U.Montini,G.De Carolis,and R.Dellepianne,in proceedings of 6th Iaternational Congress on Marine Corrosion and Fouliong,Athens,Greece,1984,269-281
    
    
    55. Mollica, A.Trevis, in Proceedings of Fourth International Congress Marine Corrosion and Fouling, Juan-Les-Pins, Antibes, France, 1976
    56. S.C.Dexter, G.Y.Gao, effect of seawater biofilms on corrosion potential and oxygen reduction of stainless steel. Corrosion, 1988,44 (10):717-724
    57. S.Motoda, Y.Suzuki, T.Shinohara, THE EFFECT OF MARINE FOULING ON THE ENNOBLEMENT OF ELECTRODE POTENTIAL FOR STAINLESS STEELS, Corros Sci., 1990,31(9):515-520
    58. V.Scotto, R.Di Cintio, G. Marcenaro, THE INFLUENCE OF MARINE AEROBIC MICROBIAL FILM ON STAINLESS STEEL CORROSION BEHAVIOUR, Corros. Sci., 1985,25(3):185-194
    59. B.J.Webster, R.C.Newman, ASTM STP 1232.Producting Rapid Sulfate-Reducing Bacteria-Influenced Corrosion in the Laboratory, in Microbiologically Influenced Corrosion Testing, eds. J.Kearns, B.J.Little (West Conshohocken. PA: ASTM ,1994 ) . 28-41.
    60. Little and R.Ray,A perspective on corrosion Inhibition by biofilms. Corrosion, 2002,58 (5):424-428
    61. 许立铭,董泽华,硫酸盐还原菌对碳钢腐蚀的影响研究,华中理工大学学报, 1996,24(4):78-81
    62. 刘宏芳,董泽华,许立铭,Fe2+对碳钢的微生物腐蚀作用的影响,腐蚀与防护,1998, 19(5):210-214
    63. Durk de Beer, Paul Stooldley, et al., Effects of biofilm structures on oxygen distribution and mass transport. Biotechnology and bioengineering, 1994, 43(11):1131-1138
    64. Roe F L., Lewandowski, Funk T., Simulating microbiologically induced corrosion by depositing estracellular biopolymers on mild steel surface. Corrosion, 1996, 52(10):744-752
    65. 张英,戴明安,王秋,两种硫氧化细菌诱导钢铁腐蚀的电化学评估。中国腐蚀与防护学报, 1994,8(2):168-174
    66. 托马晓夫著,陈俊明译,氧退极化引起的金属腐蚀,科学出版社,1959:
    67. P.chandrasekaram, mechanism of potential on passine metals due to biofilms in seawater, hD dissertation ,uninersiry of Delaware ,Newark ,DE, USA ,1995
    68. V.SCOTTO and M.E.Lai ,Ennoblement of stainless steels in seawater: a likely explanation coming from the field, Corrosion Science, 1998,40(6):1007-1018
    69. Iverson,Microbiany influenced corronion on stainless sseel in waste water treatment plants:part1,BCJ,2001,36(4)277-283,part2,BCJ,2001,36(4):284-291
    70. B.H.Olesen, R.Avci, Z.Lewandowski, Manganese dioxide as apotential cathodic reactant in corrosion of stainless steels. Corros.Sci., 2000,42(2):211-227
    71. S.M.Gerchakov, B.J.Little, and P.Wanger, PROBING MICROBIOLOGICALLY INDUCED CORROSION , Corrosion, 1986,42(11): 689-692
    72. W.H.Dickinson, F.Cacccavo, B.Olesen, Z.Lewandowski, Ennoblement of stainless steel by the manganese-depositing bacteriurn Leptothrix discophora, Appl. Environ. Microbiol., 1997,63(7): 2502-2506
    73. J.A.Hardy, UTILIZATION OF CATHODIC HYDROGEN BY SULPHATE-REDUCING BACTERIA.British Corros. J.,1983, 18(4):190-193
    74. G.H.Booth, et.al., Chemistry and Industry, 1967, 2084
    
    
    75. Warren P. Iverson, Research on the mechanisms of anaerobic corrosion. International biodeterioration & Biodegradation,2001,47(2):63-70
    76. L.J.Seed, Corr.Rev., 9(1990)1
    77. T.S.Rao, T.N.Sariram, B.Viswanathan, K.V.K.Nair, Carbon steel corrosion by iron oxidizing and sulphate reducing bacteria in afreshwater cooling system. Corrosion Sci., 2000,42(8):1417-1431
    78. Warren P. Iverson, Olson, G.S., 1984,Anaerobic corrosion of steel: a novel mechanism ,In :Current prospectives in Microbiology, Col. Klug-Reday.American Society for Microbiology
    79. 唐和清,微生物腐蚀中游离氧的作用,[J].材料保护,1992,25(4):23-26
    80. 张小里,陈志昕,等,环境因素对硫酸盐还原菌生长的影响,[J],中国腐蚀与防护学报,2000,20(4):224-229
    81. Hardy J A,Bown J L. The corrosion of mild steel by biogenic sulfide films exposed to air[J].Corrosion,1984.40(12):650-654
    82. Von Rege H.Sand W.Simulation of metal-MIC for evaluation of counter-measures [J].Werkstoffe und Korrosion,1996,47(9)486-494
    83. Smith J.S,Miller J D, A.Nature of sulphides and their corrosoive effect on ferrous metals:A review[J].Br Corros J,1975,10:136
    84. King R A,Dittmer C K,Miller J D A.Effect of ferrous ion concentration on the corrosion of iron in semicontinuous cultures of sulphate-reducing bacteria [J].Br Corros J,1976,11(2):105-107
    85. Lee W, Characklis W.G.Corrosion of mild steel under anaerobic biofilm[J].Corrosion,1993,49(3):186-198
    86. W.C.Lee和W.G.Characklis],Corrosion f mild steel under an anaerobic biofilm. Corrosion/90, paper no. 126(Houston, TX: NACE, 1990)
    87. Salvarezza R.C.Vidella H A.Arvia A J. The electro-chemical behaviour of mild steel in phosphate-borate-sulphide solutions [J].Corrosion Science,1983,23:717-732
    88. Salvarezza R C. Vidella H A. Passivvity breakdown of mild steel in sea water in the presence of sulfate reducing bacteria[J].Corrosion .1980.36(10):550-554
    89. Ringas C, Robinson F P A. Corrosion of stainless steel by sulfate-reducing bacteria-electrochemical techniques[J].Corrosion,1988,44(9):386-396
    90. Starosvetsky D.Khaselev O, Starosvetskuy J. Effect of iron exposure in SRB media on pitting initiation[J].Corrosion Science,2000,42(2):345-359.
    91. Wagner P, Little B.Impact of alloying on microbiologically influenced corrosion-a review[J].Materials Performance,1993,32(9):65-68
    92. Pinto C V,Pereira R.Carrondo M J T, et al .Influence of micronutrient concentration on growth and activity of sulfate reducing bacteria[J].Corrosion Abstracts,1997,36(2):147
    93. Fonseca.Ines T E,Jose Feio M,Ana Rose Lino.The influence of the media on the corrosion of mild steel by desulfovibrio desulfuricans bacteria:an electrochemical study [J].Electrochemical Acta.1998.43(1-2):213-222
    94. J.B. Sardisco and R.E. Pitts, Corrosion, 1965, 21(11): 350-354.
    G.I. Ogundele and W.E. White, SOME OBSERVATIONS ON THE CORROSION OF
    
    95. CARBON STEEL IN SOUR GAS ENVIRONMENTS: EFFECTS OF H2S AND H2S/CO2/CH4/C3H8 MIXTURES Corrosion, 1986,42, (7),398-408.
    96. Adams,M., Farrer, T.W.,. The influence of ferrous iron on bacterial corrosion. Journal of Applied Chemistry 1953,(3):117-120;
    97. Beer, P.Stoodley, F.Roe and Z.Lewandowski, Effects of biofilm structures on oxygen distribution and mass transport , Biotechnol. Bioeng., 1994,43(1):1131-1138
    98. R.D.Bryant, W.Jansen, J.Boivin, E.J.Laisheley, and J.W.Costerton, Regiospecific dechlorination of pentachlorophenol by dichlorophenol-adapted microorganisms in freshwater, anaerobic sediment slurries, Appl. Environ. Microbiol., 1991,57(8): 2293-2301
    99. G.Chen and C.R.Clayton, Influence of Sulphate Reducing Bacteria on the Passivity of type 304 Stainless Steel, J.Electrochem. Soc., 1997,144(9): 3140
    100. Peter Angell, Understanding Microbially Influenced Corrosion as biofilm-medicated changes in surface chemistry. Current Opinion in Biotechnology, 1999,10(3):269-272
    101. R.G.J.Edyvean, J.Benson, C.J.Thomas, I.B.Beech, H.A.Videla, Biological influences on Hydrogen Effects in Steel in seawater, MP, 1998,37(4):40-44
    102. Turnball ed., Hydrogen Transport and cracking in Metals. London, England: The Institute of Materials, 1995
    103. C.J.Thomas, R.G.J.Edyvean, R.Brook, I.M.Austen, the effect of microbially produced hydrogen sulphide on the corrosion-fatigue for offshore structural steels. Corrosion Science, 1987(27), 1197-1204
    104. C.J.Thomas, R.G.J.Edyvean, R.Brook, Biologically enhanced corrosion-fatigue, Biofouling, 1988 (1): 65-77
    105. F Mansfield; R Tsai; H Shih; B Little, AN ELECTROCHEMICAL AND SURFACE ANALYTICAL STUDY OF STAINLESS STEELS AND TITANIUM EXPOSED TO NATURAL SEAWATER,Corrosion Science, 1992,33(3):445-456
    106. K.Chidambaram, CONTROL OF MICROBIOLOGICALLY INDUCED CORROSION, B. of Electrochem., 1990,6(7): 655-657
    107. M.F.L.de Mele , Electrochemical and ellipsometric study of the oxide films formed on copper in borax solution. II. Effect of ozone, J. Appl. Electrochem , 1997,27(4):396-403
    108. Dexter S.C, LaFontaine J.P., Effect of natural marine biofilms on galvanic corrosion. Corrosion, 1998, 54(11):851-861
    109. R.Schmidt, MICROBIAL DETERIORATION OF MATERIALS-- FUNDAMENTALS: MATHEMATICAL MODELLING OF DESTRUCTION MECHANISMS, Materials and corrosion. 1994, 45(1):21-28
    110. Roe,F.L., Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces. Corrosion, 1996,52(10) :744-752
    111. Stewart P.S., Analysis of biocide transport limitation in an artificial biofilm system. Journal of Applied Microbiology, 1998,85(3): 495-500
    112. 王庆飞,模拟生物膜方法钢在海水中的腐蚀行为,电化学, 1999,5(1):55-58
    113. Dupont.I, Novel.G, Féron.D. Effect of glucose oxidase activity on corrosion potential of stainless steels in seawater. Int. Bio.&Bio. 1998,41(1): 13-18
    P.M.Natishan, J.Jones-Meehan, G.I.Loeb, B.J.Little, R.Ray, and M.Beard, Corrosion
    
    114. behaviour of some transition metals and 4340 steel metals exposed to sulfate-reducing bacteria.Corrosion, 1999, 55(11)1062-1068
    115. M.B. McNeil, A.L.Odom, Microbiologically influenced Corrosion Testing,ASTM, STP1232, eds.,J.R.Kearns, B.J.Little (Philadelphia, PA:ASTM, 1994),173
    116. M.B. McNeil, A.L.Odom, B.J.Little, Corrosion 47(1991): 647
    117. J.A.Hardy, J.L.Bown, THE CORROSION OF MILD STEEL BY BIOGENIC SULFIDE FILMS EXPOSED TO AIR ,Corrosion 1984,40 (12):.650-654
    118. R.A.King, J.D.A.Miller, D.S.Wakerly, Brit. Corros. J. 8(1973):.89
    119. G.Chen, S.V. Kagwade, G.E.French, T.E.Ford, R.Mitchell, C.R.Clayton, Corrosion 53 (1996): 891
    120. K.Pedersen: Biofilm development on stainless steel and PVC surfaces in drinking water , wat.res.,1990,24(2):239-243
    121. G.G.Coaties.Mater. Perform.,1990,29, 147,837-845
    122. Danko,et al.,Mater. Perform.,1992, 29,(1): 72
    123. B.J.Little, THE IMPACT OF SULFATE-REDUCING BACTERIA ON WELDED COPPER-NICKEL SEAWATER PIPING SYSTEMS, Mater. performance.,1988,27 (8):57-61
    124. walsh,etal. THE EFFECT OF MICROSTRUCTURE ON MICROBIOLOGICALLY INFLUENCED CORROSION, J.Min.Met. Mater.Soc., 1993,45(9):22-30
    125. G.G.Geesey,Influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel , Corros.Sci.,1996,38(1):73-95
    126. S.L.Percival,et al., physical factors influencing bacterial of type304 and 316 SS. Br.corros. J. 1998.33 (2)121-129
    127. 王升坤,硫酸盐还原菌检测技术综述, 石油与天然气化工,1998,27(3):192-193
    128. 刘宏芳,不同种类硫酸盐还原菌的鉴定方法探讨,华中理工大学学报,1999,27(7):111-112
    129. DeLong EF, Wickham GS, Pace NR: phylogenetic stains: ribosomal RNA-based probes for the identification of single microbial cells. Science 1989, 243:1360-1363
    130. 吴建华、刘光洲、于辉、钱建华,海洋微生物腐蚀的电化学研究方法,腐蚀与防护,1995,20(5):231-231
    131. Gerchakov.S.M, Little B.J., et al, PROBING MICROBIOLOGICALLY INDUCED CORROSION ,Corrosion, 1986,42 (11):682-692
    132. LittleB.J., Ray R et al., ELECTROCHEMICAL BEHAVIOR OF STAINLESS STEELS IN NATURAL SEAWATER,Corrosion,NACE, Houston, TX.,1990,150
    133. DexterSC,D.J.Duquette, O.W.Siebert, H.A.Videla, Use and limitations of electrochemical techniques for investigating microbiological corrosion. Corrosion, 1991, 47 (4):308-318;
    134. Mansfeld F., Little B., A TECHNICAL REVIEW OF ELECTROCHEMICAL TECHNIQUES APPLIED TO MICROBIOLOGICALLY INFLUENCED CORROSION ,Corros. Sci., 1991, 32(3):247-272;
    135. Schmitt G., Sophisticated Electrochemical Methods for MIC Investigation and Monitoring ,Materials and Corrosion, 1997, 48(9): 586-601
    136. 张远声,电化学技术在微生物腐蚀研究中的应用。化工腐蚀与防护, 1993,1:(2-9)
    
    
    137. R.F.Hadley, The Influence of Sporovibrio desulfuricans on the current and potential behaviour of corroding iron.,National Bureau of Standards Corrosion Conference(1943), J.N.Wanklin, C.I.P.Spruit,Nature 169 (1952):928-929
    138. J.Horvath, Acta Chimica Hungarian, 25(1960):65-78
    139. M.stern, A.L.Geary, J.ECS 104(1957): 33-63
    140. J.R.Scully,Polarization resistance method for determination of instantaneous corrosion rates. Corrosion, 2000 56(2): 199-218
    141. G.H.Booth,A.K.Tiller, Trans. Faraday Soc. 56(1960): 1689-1696
    142. J.A.Costello, South Africa Journal of Sacience 70(1974):202-204;
    143. R.G.J.Edynean,L.A.Terry, Int. Biodeter. Bul. 19,1(1983): 1-11 etc
    144. L.Stockert, F.Hunkeler, and H.Boehni, TECHNICAL NOTE: A CREVICE-FREE MEASUREMENT TECHNIQUE TO DETERMINE REPRODUCIBLE PITTING POTENTIALS,Corrosion, 1985, 41(11):676-677
    145. T.Shibata, T.Takeyama, Corrosion, 1977,33:243
    146. G.O.Ilevbare, G.T.Burstein, The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels. Corros. Sci., 2001, 43(3): 485-513
    147. Akos Kriston, M.Lakatos-Varsanyi, testing and analyzing metastable pitting corrosion. Electrochimica Acta, 2001, 46: 3699-3703
    148. K.Kasahara, F.Kajiyama, Role of sulfate-reducing bacteria in the localized corrosion of buried pipes, Proc. Biologically Induced Corrosion. Ed. S.C.Dexter (Houston, TX NACE, 1986), 172-183;
    149. A.N.Moosavi, J.L.Dawson, C.J.Houghton, R.A.King, "Effect of sulfate-reducing bacteria on corrosion of Reinforced concrete," Proc. Biologically Induced Corrosion. Ed. S.C.Dexter (Houston, TX NACE, 1986), 291-308;
    150. T.Gray-Young, L.Hadjipetrou, M.D.Lilly, Biotech. And Bioengr., 8(1966):.581
    151. B.J.Little, P.Wagner,"An electrochemical Evaluation of Microbiologically induced corrosion by two Iron-oxidizing Bacteria," Corrosion/86,:.122 (Houston, TX: NACE, 1986)
    152. B.J.Little, P.Wagner, S.M.Gerchakov et al, THE INVOLVEMENT OF A THERMOPHILIC BACTERIUM IN CORROSION PROCESSES , Corrosion 1986,42 (9): 533-536
    153. B.J.Little, P.Wagner, D.Duquette, Microbiologically induced cathodic depolarization, Corrosion/87, paper no.370(Houston, TX: NACE, 1987)
    154. 郭公玉,张经磊,钢在中国北部海区海泥中的腐蚀,电化学,2001,7(4):459-464
    155. Iverson. J.Electrochem.Soc.115,6(1968): 617
    156. R.A. Cottis, Interpretation of Electrochemical noise data. Corrosion, 2001, 57(3): 265-285
    157. D.A.Eden, D.G.John, J.L.Dawson, UK Patent 8611518(1986), U
    158. S Patent 5139627(filed 1987, granted 1992);
    159. J.R.Kearns, J.R.Scully,eds., "Electrochemical noise measurement for corrosion applications," ASTM STP 1277,
    160. Annual Book of ASTM standards (West Conshohocken, PA: ASTM,1996);
    161. S.Turgoose, R.A. Cottis, Corrosion Made East: Electrochemical Impedance and Electrochemical Noise(Houston, TX: NACE International, 2000))
    J.Stewart, D.E. Williams, THE INITIATION OF PITTING CORROSION ON AUSTENITIC
    
    162. STAINLESS STEEL: ON THE ROLE AND IMPORTANCE OF SULPHIDE INCLUSIONS ,Corros. Sci., 33,3(1992): 457-474
    163. W.P.Iverson, O.J.Oson, L.F.Heverly, The role of phosphorous and hydrogen sulfide in the anaerobic corrosion of iron and the possible detection of this corrosion by an electrochemical noise technique, in Proc. Biologically Induced Corrosion. Ed. S.C.Dexter (Houston, TX NACE, 1986), 154-161
    164. Stratmann M,Streckel H,On the atmospheric corrosion of metals which are covered with thin electrolyte layers--I. Verification of the experimental technique Corro. Sci., 1990,30 (6-7):681-696
    165. 王佳,水流澈, 使用Kelvin探头参比电极技术进行薄液层下电化学测量,中国腐蚀与防护学报,1995,15(3):173-179
    166. Jurgen Schmitt,H.Flemming, FTIR-Spectroscopy in microbial and material analysis. Int. Biodeter. & Biodeg., 1998, 41(1):1-11
    167. 夏明珠,马家骧,硫酸盐还原菌对金属的腐蚀作用及其防治,腐蚀与防护,1996,17(4): 191-192
    168. Videla, Microbially induced corrosion: an updated overview. International Biodeterioration & Biodegradtion, 2001,48 (1-4):176-201
    169. Olefjord, B.Brook, V.Jelvestam, J. Electrochem. Soc., 1985, 132: 2,854
    170. A.T.FromHold, et al., J. Electrochem. Soc., 1973, 120(6):722
    171. H.H.Uhlig: Passivity and its breakdown on iron based alloys. USA_Japan Seminar, NACE, Houston, 1976,21
    172. 佐藤教男,防食技术,1979,28(2):64
    173. N.Sato, TOWARD A MORE FUNDAMENTAL UNDERSTANDING OF CORROSION PROCESSES Corrosion,1989, 45(5) :354-368
    174. Newman R.C., Alman, H.S., EFFECTS OF SULFUR COMPOUNDS ON THE PITTING BEHAVIOR OF TYPE 304 STAINLESS STEEL IN NEAR-NEUTRAL CHLORIDE SOLUTIONS , Corrosion, 1982,35(5):261-265
    175. N.Sato, the potentials of mixed electrode of corrodible metal and metal oxide. Corros. Sci., 2000,42(11):1957-1973
    176. H.H.Uhlig, R.W. Revice, Corrosion and Corrosion Control, 3rd ed., Wiley, New York, 1985
    177. J.R. Cahoon, R.Bandy, AUGER ELECTRON SPECTROSCOPIC STUDIES ON OXIDE FILMS OF SOME AUSTENITIC STAINLESS STEELS, Corrosion, 1982, 38(6):299-305;
    178. C.R.Clayton, Y.C. Lu, An Xps Study Of The Passive And Transpassive Behavior Of Molybdenum In Deaerated 0.1m Hcl , Corros. Sci., 1989, 29(8): 927-937
    179. J.Baszkiewicz, M.Kaminski, A.Podgorski, J.Jagielski, G.Gawlik, PITTING CORROSION RESISTANCE OF SILICON-IMPLANTED STAINLESS STEELS, Corros. Sci., 1992, 33(5):815-818
    180. N.Boucherit, A.Hugot-le Goff, S.Joiret, INFLUENCE OF Ni, Mo, AND Cr ON PITTING CORROSION OF STEELS STUDIED BY RAMAN SPECTROSCOPY, Corrosion, 1992, 48(7):569-579
    181. A.E. Yaniv, J.B.Lumsden, R.W.Staehle, J.Electrochem. Soc. 1977, 124:490
    
    
    182. Olefjord, B.Elfstorm, THE COMPOSITION OF THE SURFACE DURING PASSIVATION OF STAINLESS STEELS, I , Corrosion, 1982, 38(1):46-52
    183. C.R.Clayton, Y.C. Lu, J.Electrochem. Soc. 1986, 133: 2465
    184. K.Hashimoto, K.Asami, K.Teramoto, Corros. Sci., 1979, 19:3
    185. K.Sugimoto, Y.Sawada, Corros. Sci., 17(1977) 425
    186. J.E.G.Gonzalez, F.J.H.Santana, J.C.Mirza-rosca, effect of bacterial biofilm on 316 SS corrosion in natural seawater by EIS. Corros. Sci., 1998,40 (12): 2141-2154
    187. Neville, T.Hodgkiess. Corrosion of stainless steels in marine conditions containing sulfate reducing bacteria. Brit. Corr. J., 2000, 35(1): 60-71
    188. J.R.Ibars, D.A.Moreno, M.Lloret, C.Ranninger, Microstructural effects on the electrochemical behaviour of AISI 410 in Microbiological media. A.K.Tiller ed. Microbial Corrosion. The Metals Society, London,1983: 287-299
    189. D.A.Moreno, J.R.Ibars, C.Ranninger, and H. ViVidela, TECHNICAL NOTE: USE OF POTENTIODYNAMIC POLARIZATION TO ASSESS PITTING OF STAINLESS STEELS BY SULFATE-REDUCING BACTERIA , Corrosion, 1992,48(3):226-229
    190. Estibaliz Erauzkin, Biocorrosion of AISI stainless steel by sulfate reducing bacteria. A.K.Tiller ed. Microbial Corrosion. The Metals Society, London,1983: 413-430
    191. S.E.Werner, C.A.Johnson, N.J. Latcock, et al., pitting of type 304 stainless steel in the presence of a biofilm containing sulphate reducing bacteria. Corros. Sci., 1998,40 (2,3): 465-480
    192. 侯保荣等著,海洋腐蚀与防护,北京:科学出版社,1997:5
    193. 郭公玉,钢在中国北部海泥中的腐蚀行为研究,电化学,2001,7(4):459-464;
    194. 张经磊,侯保荣, 海泥中SRB对A3钢电偶效应的影响,海洋与湖沼,2000,31(4):448-452
    195. R.A.king, J.D.A.Miller, Nature,233,491,(1971)
    196. T.R.Jack et al., corrosion consequences of secondary oxidation of microbial corrosion, Corrosion, 1998,54(3):246-252
    197. Robert Jeffrey, Robert E.Melchers, Bacteriological influence in the development of iron sulphide species in marine immersion environments. Corros. Sci., 2003,45(4):693-714
    198. A.A.NoVaKova, T.S.Gendler, N.D.Manyurova, R.A. Turishcheva. A Mossbauer spectroscopy study of the corrosion products formed at an iron surface in soil, Corros.Sci., 1997,39(9):1585-1594
    199. Z.Keresztes, I.Felhosi, E.Kalman, Role of redos properties of biofilms in corrosion processes. Electrochimica Acta, 2001,46:3841-3849
    200. U.Rammelt, G.Reinhard, THE INFLUENCE OF SURFACE ROUGHNESS ON THE IMPEDANCE DATA FOR IRON ELECTRODES IN ACID SOLUTIONS, Corros. Sci., 1987,27(4):373-382
    201. K.Juttner, W.J.Lorenz, W.Paatsch. M.J.Kending, F.Mansfeld, Werkst. Korros., 36(1985)120;
    202. X.P.Guo, H.Imaizumi, K.Katoh, J.Katoh, J.Electroanal. Chem., 383(1995)
    203. A.K.Jouscher, Phys. Thin Films 11(1980): 22
    204. P.G.Bruce, A.R.West, D.P.Almond, Solid stat Ionics 7(1982) 57
    205. D.P.Almond, A.R.West, Solid stat Ionics 9&10(1983) 277
    
    
    206. 曹楚南,腐蚀电化学,北京:化学工业出版社,1991
    207. Eh-pH diagram for the Fe-S-H2Osystem,as adapted from Heimala, et al. ;S.Heimala, K.Pulkkinen, S.Jounela, M.Saari, Use of Electrochemistry to control the flotation of metal sulfides, in Electrochemistry in mineral and metal processing II,eds. P.E. Richardson, R.Woods, May 15-19, 1988,Atlanta, Georgia (Warrendale, PA:The Electrochemical Society,1988), 170
    208. ANDREW L. Neal, Somkiet Techkarnjanaruk, Alice Dohnalkova, David McCready, et al., iron sulfides and sulfur species produced at hematite surfaces in the presence of sulfate-reducing bacteria. Geochimica et Cosmochimica Acta, 2001, 65 (2):223-235
    209. Dos Santo Afonso, Stumm, W., reductive dissolution of iron (III) (hydr)oxides by hydrogen sulfide. Langmuir, 1992 8,1671-1675
    210. Davydov A., Chaung K.T., and Sanger A.R., (1998)Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. J. Phys. Chem. B. 102:4745-4752
    211. Herbert R.B., Benner S.G., Pratt A.R., and Blowes D.W., surface chemistry and morphplogy of poorly crystalline iron sulfides precipitated in media containing sulfate-reducing bacteria. Chem. Geol. 1998, 144,87-97
    212. H.Tributsch, J.A.Rojas-Chapana, C.C.Bartels, A.Ennaoui and W.Hofmann, Role of Transient iron sulfide films in microbial corrosion of steel. Corrosion, 1998, 54(3):216-227
    213. J.A.Rojas-Chapana, M.Giersig, H.Tributsch, Arxchiv. Microbiol. 163(1995): 352
    214. Thauer R.K., Jungermann K., Decker K., Energy conservation in chemtrophic anaerobic bacteria. Bacteriol. Rev., 1977, 41:100-180
    215. Pyzik A.J., Sommer S.E., sedimentary iron monosulfides: Kinetics and mechanism of formation. Geochimica et Cosmochimica Acta, 1981, 45 687-698
    216. Robert M, and Berthelin J., Role of biological and biochemical factors in soil mineral weathering. In interactions of soil minerals with natural organics and microbes (ed. P.M.Huang and M.Schnitzer). Soil Science Society of America, Madison, WI,(Special Publication No. 17), Chap. 12, :453-495.
    217. Wikjord,et al, CORROSION AND DEPOSITION DURING THE EXPOSURE OF CARBON STEEL TO HYDROGEN SULPHIDE-WATER SOLUTIONS, Corros. Sci, 1980,20(5): 651-671
    218. R.A.King, J.D.A.Miller, D.S.Wakerly, Br. Corros.J., (1973)8,41
    219. R.C.Newman, K.Rumash,B.J.Webster, the effect of ptr-corrosion on the corrosion rate of steel in neutral solutions containing sulphide: relevance to microbially influenced corrosion, Corros. Sci., 1992 ,33,(12):1877-1884
    220. R.C.Newman, B.J.Webster, R.G.Kelly, THE ELECTROCHEMISTRY OF SRB CORROSION AND RELATED INORGANIC PHENOMENA ,ISIJ Int. 1991,31(2):201-209
    221. S.Okabe, P.H.Nielsen, W.G. Characklis, Factors affecting microbial sulfate reduction by desulfovibrio desulfuricans in continuous culture: limiting nutrients and sulfide concentration, Biotech. Bioeng. 1992,40(6): 725-734
    222. 曹楚南,王光雍,我国材料自然环境腐蚀试验研究工作进展(一),腐蚀防护报,2002年12月15日,总第174期,第12期,京内资准字99-L0282
    
    
    223. Dos Santo Afonso...; A.Amirbahman, L.Sigg, U.V. Gunten, J.Colloid Interface Sci., 197:194:194;
    224. A.J.Szyprowski, sulphide corrosion of alloy steels in chloride solutions: potentiokinetic investigations. British Corrosion Journal, 1998, 33(2): 103-106
    225. NACE Standard RP0169, control of external corrosion on underground or submerged metallic piping systems. Houston, TX: NACE, 1969
    226. J.Horvarth, M.Novak. Corros. Sci., 4(1964): 159
    227. K.P.Fisher. cathodic protection in saline mud containing sulfate reducing bactera. MP, 20(1981):41-46
    228. F.Kajiyama, K.Okamura, Evaluating cathodic protection reliability on steel pipe in microbially active soils. Corrosion, 1999, 55(1):74-80
    229. Jung-Gu Kim, Yoog-Wook Kim, cathodic protection criteria of thermally insulated pipeline buried in soil. Corrosion Sci., 2001,43(11):2011-2021
    230. Horvath, Corr. Sci. Vol.4 p.159, 1964
    231. Morris, D.R., J.Electrochem.Soc.,127(6)1228(1980
    232. Shoesmith, D.W. et al., J.Electrochem.Soc.,127p1007 (1980)
    233. Song, Corrosion, Effect of ferrous ion oxidation on corrosion of active iron under an aerated solution layer, 2002,58 (2)145-155
    234. 侯保荣,西方笃,水流澈,春山志郎,阴极保护时碳钢的交流阻抗特性和最佳防蚀电位。海洋与湖沼,1993,24(3):272-278
    235. Jean Guezennec, Martine Therene, a study of the influence of cathodic protection on the growth of SRB and corrosion in marine sediments by electrochemical techniques. 256-265. Microbial corrosion, 1983
    236. J. Guezennec, Cathodic protection and microbially induced corrosion, International Biodeterioration & Biodegradation, 1994, 34 (3-4): 275-288
    237. J. Guezennec, N.J.E. Dowling, J. Bullen, and D.C. White, RELATIONSHIP BETWEEN BACTERIAL COLONIZATION AND CATHODIC CURRENT DENSITY ASSOCIATED WITH MILD STEEL SURFACES Biofouling , 1994,8(2): 133-46
    238. G.Gaberrt, A.Bennardo, M.Soprani. EIS measurements on buried pipelines cathodically protected.NACE, Corrosion/98,1998,618
    239. RP-01-76,Control of corrosion on steel, fixed offshore platforms associated with petroleum production, NACE standard
    240. R.P.M.Procter, Detrimental Effects of Cathodic Protection: Embrittlement and Cracking Phenomena, Cathodic Protection Theory and Practice, Eds. V.Ashworth & C.J.L.Booker, Publ Ellis Horwood (1986)
    241. M.J.Robinson, C.H.J.Parker & K.J.Seal, The Influence of Sulphate Reducing Bacteria on Hydrogen Absorption by Cathodically Protected Steel, Proc Conf. UK Corrosion '87, Brighton Metropole, 26-28 October 1987, 279-290.
    242. M.J.Robinson & P.J.Kilgallon, Hydrogen Embrittlement of Cathodically Protected HSLA steels in the Presence of Sulphate Reducing Bacteria, Corrosion, 1994,50(8): 626-635
    243. M.F.de Romero, Z.Duque, O.T.de Rincon, et al., Microbiological corrosion: hydrogen permeation and sulfate-reducing bacteria, Corrosion, 2002,58(5): 429 -435
    
    
    244. Fish K.P., Proc. 8th scand. Corr. Cong., Helsiniki, 1978,Vol.2, 157
    245. 中国科学院海洋研究所等,辽东湾海底土腐蚀性调查研究,1991,内部资料
    246. D.A.Jones, Principles and prevention of corrosion, second ed., Prentice-Hall, Englewood Cliffs, NJ,1996, 46
    247. M.Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE, Houston, 1974, 307-321
    248. F.E.Blount, Electrochemical principles of cathodic protection, proceedings of the University of Oklahoma Corrosion control course, NACE, Houston, 1972,1-7
    249. M.Schumecher, 1979. Park Ridge.,New Jersey,USA, 1-81
    250. 侯保荣 等著,海洋腐蚀与防护。北京:科学出版社,1997:7-28
    251. 朱相荣 等著, 海洋环境下金属的腐蚀与防护技术。北京:国防工业出版社,2000:121-123
    252. 宋诗哲,王光雍,王守炎,我国材料自然环境腐蚀数据处理研究进展。中国腐蚀与防护学报,2003,23(1):56-64
    253. 翁永基,李相怡,环境腐蚀科学研究中的模式识别方法。腐蚀科学与防护技术,1994,6(2):154-158
    254. 朱相荣,张启富。灰关联分析法探讨环境因素与海水腐蚀性的关系。中国腐蚀与防护学报,2000,20(1):29-34
    255. 戴明安,朱相荣等,人工神经网络预测海水腐蚀。腐蚀科学与防腐蚀工程技术新进展。 北京:化学工业出版社,1999,10:283-285
    256. SONG GL, GAO CN, LIN HC, A New Technique For Correlation Of Underground Corrosion. CORROSION,1995,51 (7) : 491-497
    257. 郭稚弧,邢政良,金名惠,孟厦兰,基于人工神经网络的金属土壤腐蚀预测方法。中国腐蚀与防护学报,1996,16(4):307-310
    258. 宋光铃,腐蚀电化学若干体系的数学模型研究(博士论文),中科院金属腐蚀与防护研究所,1993,190-235
    259. 宋光铃,曹楚南,林海潮,模糊聚类分析在土壤腐蚀评价中的应用。中国腐蚀与防护学报,1993,13(4):303-311
    260. 黄兴德等,模糊聚类应用于循环冷却水系统的水质诊断模式,2002,22(4):12-15
    261. Katano Y, Miyata K, Shimizu H, Isogai T, Predictive Model For Pit Growth On Underground Pipes. CORROSION, 2003,59 (2): 155-161
    262. Kasahora, K.Kajiyama, Proceeding of the ICMC, Toronto., K.Kajiyama and Y.Koyama, statistical analyses of field corrosion data for ductile cast iron pipes buried in sandy marine sediment. Corrosion, 1991,53 (2): 156-162
    263. 李祥云,季明棠,王恒歧等,南海珠江口东部海底沉积物腐蚀性研究,热带海洋,1997,16(3):90-97
    264. 马士德,黄彦良,侯保荣,段继周,钢在海底沉积物中的腐蚀研究 Ⅲ 海底沉积物腐蚀性的二元评价法,海洋科学集刊,1999,14:60-65

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700