用户名: 密码: 验证码:
云南巍山—永平铜金多金属矿化集中区成矿流体特征及流体地质填图研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
云南巍山-永平铜金多金属矿化集中区位于澜沧江大断裂与金沙江大断裂、哀牢山大断裂之间的昌都-思茅中间地块中部的兰坪盆地的南段,矿化集中区内目前已发现金、铜(钴)、锑、汞、铅、锌、铁等各种金属矿床(点)140处,其中达中型规模的矿床有4个。
     矿化集中区及扎村金矿、水泄铜钴矿、石岩村锑矿、笔架山锑矿等典型矿床流体包裹体的显微测温、气相成分、液相成分、稀土元素、重金属元素及δ~(13)C,δD,δ~(18)O稳定同位素的研究表明,云南巍山-永平地区铜金多金属矿化集中区存在两个成矿流体系统:紫金山背斜成矿流体系统与公郎弧成矿流体系统。这两个成矿流体系统分别对应着两个成矿带:紫金山-笔架山中低温金、锑、汞、砷成矿带与水泄-新民中高温铜、钴成矿带。
     紫金山背斜成矿流体系统包裹体类型主要为富液相包裹体(Ⅰa)、富H_2O相包裹体(Ⅱa)及少量富气相包裹体(Ⅰc);均一温度为130~280℃;盐度为0.1~18wt%NaCl。气相成分以H_2O,CO_2为主;液相成分中阴离子以Cl~-,F~-,SO_4~(2-)为主;阳离子以Na~+,K~+,Ca~(2+)为主,属NaCl-H_2O-CO_2体系。流体中成矿元素组合为As-Sb-Cu-Ni-U,总体上具较高的Sb,As含量;稳定同位素特征表明成矿溶液主要来自岩浆水与大气降水、沉积盆地地层水的混合。紫金山背斜成矿流体系统成矿压力大约为30~130MPa,相应的形成温度大约为228~255℃,成矿深度为1.05~6.67km。
     公郎弧成矿流体系统包裹体类型主要有富液相包裹体(Ⅰa)、富H_2O相包裹体(Ⅱa)、富CO_2包裹体(Ⅱb),和含子矿物的多相包裹体(Ⅲ);均一温度为190~340℃与370~410℃;盐度为22~26,30~35wt%NaCl。气相成分以H_2O,CO_2为主。液相成分中阴离子以Cl~-,SO_4~(2-)为主;阳离子以Ca~(2+),Na~+,K~+为主,属NaCl-H_2O-CO_2体系。流体中成矿元素组合为Cu-Co-As-Ni-Ag,总体上具较高的Cu,Co,As含量。稳定同位素特征表明成矿溶液主要来源于岩浆水,并受到大气降水及地层水的混合。公郎弧成矿流体系统成矿压力大约为100~225MPa,成矿温度为317~346℃,成矿深度约为3.51~7.89km。
     在盆地两侧挤压推覆构造应力及岩浆作用热力驱动下,紫金山背斜和公郎弧两大流体系统的流体在盆地中运动,当遇到氧化还原界面或遭受流体混合、相分离及断裂导致的减压沸腾时,因物理化学条件发生重大变化而导致成矿作用的发生。
     将成矿流体的特征及构造、地层、岩浆岩等成矿条件综合反映到图上便形成了流体地质图。本次研究得到的流体地质图,基本反映了本区成矿流体的性质与状态,反映了两个成矿流体系统的基本特征,圈定了两个成矿流体系统的流域范围及7个成矿流体浓集中心(紫金山、扎村、石岩村、笔架山、水泄、新民、拥翠),这些浓集中心与已知矿化点分布、化探异常及有利的地质条件基本吻合,成为该区进一步找矿预测的重要依据之一。流体地质填图试验表明,流体地质填图不失为找矿的一种有效手段。
The Weishan-Yongping copper-gold-polymetallic mineralization district in Yunnan is tectonically located in the southern part of Lanping basin in the middle part of Changdu-Simao block between Lanchangjiang fault and Jinshajiang-Ailaoshan fault. More than 140 deposits and occurrences of gold, copper (cobalt), stibium, mercury, lead, zinc, iron etc. have been found in the area studied, and there are 4 medium-sized deposits among them.
    Based on the studies of microthermometry, gas composition, liquid composition, rare earth elements, ore-forming elements and 13C, D, 18O of fluid inclusions from the mineralization district and the representative deposits, such as Zacun gold deposit, Shuixie copper-cobalt deposit, Shiyancun stibium deposit and Bijiashan stibium deposit, two metallogenic fluid systems have been distinguished,i. e. , Zijinshan metallogenic fluid system and Gonglang Metallogenic fluid system in Weishan-Yongping mineralization district. The two fluid systems respectively correspond to Zijinshan-Bijiashan middle-low temperature metallogenic belt of gold, stibium, mercury, arsenic and Shuixie-Xinmin middle-high temperature metallogenic belt of copper and cobalt.
    The main types of fluid inclusions for Zijinshan metallogenic fluid system are liquid-rich inclusions (I a),H2O-rich inclusions(II a) and subordinate vapor-rich inclusions ( I c). Their temperatures of total homogenization are in a range from 130 癈 to 280C. Their salinities are in a range from 0. 1 wt%NaCl to 18 wt%NaCl. The gas phase is mainly composed of H2O and CO2. The main anions in the liquid composition are Cl-, F-and SO42-, and the cations are Na+, K+ and Ca2+. It belongs to NaCl-H2O-CO2 system. The ore-forming element assemblage is As-Sb-Cu-Ni-U with high contents of As and Sb. The stable isotope data show the metallogenic fluid comes from the mixture of magmatic water with meteoric water and stratum water. The pressure of mineralization is in a range from 30 MPa to 130 MPa, the corresponding temperatures of mineralization are about 228-255 C, and the depths of mineralizatoin are about 1.05-6.67 km.
    The main types of fluid inclusions for Gonglang metallogenic fluid system are liquid-rich inclusions (I a),H2O-rich inclusions(II a), CO2-rich inclusions and daughter-mineral-bearing multiphase inclusions(III). The temperatures of total homogenization ranged from 190 C to 340 C, and from 370 C to 410 C. The salinities ranged from 22 wt%NaCl to 26 wt%NaCl, and from 30 wt%NaCl to 35 wt%NaCl. The main composition of gas are H2O and CO2. The main anions in the liquid composition are Cl- and S042-, and the cations
    
    
    
    are Ca2+, Na+ and K+. It belongs to NaCl-H2O-CO2 system. The ore-forming element assem-blage is Cu-Co-As-Ni-Ag with high content of Cu, Co and As. The stable isotope data show the metallogenic fluid comes mainly from the magmatic water mixed with some meteoric water and stratum water. The pressure of mineralization is in a range from 100 MPa to 225 MPa, the corresponding temperatures of mineralization are about 317-346C, and the depths of mineralization are about 3.51-7.89 km.
    The Zijinshan fluid system and the Gonglang fluid system were driven by the stress of extrusion nappe onto the basin and the thermal driving force of magmatism. When the fluids cycling in the basin encountered the boundary of reduction-oxidation or underwent fluid mixing, phase separating and fluid boiling caused by fault-induced pressure reducing, the physical chemistry condition abruptly changed and mineralization then took place.
    The fluid-geological map was made by combination of the characteristics of metallogenic fluids and the metallogenic conditions in terms of structural, stratigraphic and magmatic constraints. It shows the nature and state of metallogenic fluids and the basic characteristics of the two metallogenic fluid systems. The range of drainage area and seven concentration centers (Zijinshan, Zacun, Shiyancun, Bijiashan, Shuixie, Xinmin and Yongcui)of the two metallogenic fluid systems are delineated. The distribution of concentra
引文
陈福,朱笑青,1984.玄武岩古风化淋滤生成条带状铁硅建造的模拟实验.地球化学,(4):341~349
    陈福,朱笑青,1988.根据沉积矿物的共生组合恢复大气气分压值的演化.中国科学(B),(7):747~755
    陈福,龙洪波,董丽敏,2000.对矿物包裹体溶液性质的新认识——兼论含矿溶液是酸性溶液的地质证据.矿物学报,20(1):28~34
    陈毓川,t999.中国主要成矿区带矿产资源远景评价 464~495
    邓晋福,莫宣学,赵海玲等.1998.壳幔物质与深部过程.地学前缘,5(3):67~75
    邓晋福,莫宣学,赵海玲等.1999.岩石圈/软流圈系统的大灾变与巨型矿集区形成.见:裴荣富,翟裕生,张本
    仁主编.深部构造作用与成矿.北京:地质出版社.36~43
    范朝俊,秦宗俸,1988.巍山石岩村锑矿地质、地球化学特征及成矿机理.云南地质,7(1):45~55
    范宏瑞,谢奕汉,翟明国,2001.冀西北东坪金矿成矿流体研究.中国科学(D辑),31(7):537~544
    何明勤,宋焕斌,冉崇英等,云南兰坪金满铜矿床改造成因证据,地质与勘探,1998,34(2):13-15
    胡圣虹,陈爱芳,林守麟等,2000.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究.地球科学——中国地质大学学报,25(2):186~190
    华仁民,1994.成矿过程中由流体混合而导致金属沉淀的研究.地球科学进展,9(4):15~22
    华仁民,1995.试论层状铜矿床的三种主要成因模式,地质论评,41(2):112~120
    李雷,马远,1994.滇滇西金矿初步研究.有色金属矿产与勘查,3(6):328~334
    李华芹,刘家齐,魏林.热液矿床流体包裹体年代学研究及其地质应用.北京:地质出版社,1993.1~114
    李峰,黄敦义,甫为民,1994.永平水泄铜矿床地质特征及其成因.云南地质,12(4):341~349
    李峰,甫为民,李雷,1997.滇西红层铜矿区域成矿物质来源.云南地质,16(3):233~244
    李荫清,1994.吉林海沟金矿床成矿流体的地球化学特征.地质学报,68(1):48~61
    李兴振,刘文均,王义昭等,1999.西南三江地区特提斯构造演化与成矿(总论).北京:地质出版社,1~12,127~129
    林舸,范蔚茗,尹汉辉,1991.兰坪-勐腊幔-壳穿透构造的控盆控矿作用.科学通报,(14):1092~1094
    林舸,范蔚茗,尹汉辉,1991.中国滇西兰坪-思茅地洼盆地内中轴断裂带的初步研究.大地构造与成矿学,15(1):15~21
    刘家军,李朝阳,张乾等,2001.滇西金满铜矿床中木质结构及其成因意义.中国科学,31(2):89~95
    刘家军,李朝阳,潘家永等,2000a.兰坪-思矛盆地砂页岩中铜矿床同位素地球化学.矿床地质,19(3):223~234
    刘家军,李朝阳,潘家永等,2000b.兰坪-思茅盆地砂页岩中脉状铜矿床的特征及成因,地质找矿论丛,15(3):216~223
    刘建明,刘家军,顾雪祥,1997a.沉积盆地中的流体活动及期成矿作用.岩石矿物学杂志,16(4):341~352
    刘建明,刘家军,1997b.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448~456
    刘增乾等.1993.三江地区构造岩浆带的划分与矿产分布.地质出版社,23~51
    卢焕章,李秉伦,沈昆等,1990.包裹体地球化学.北京:地质出版社.1~5,102~115,151~165
    卢焕章,郭迪江,2000.流体包裹体研究的进展和方向.地质论评,46(4):385~392
    罗建宁,张正贵,陈明等.1992.三江特提斯沉积地质与成矿.地质出版社
    罗君烈,杨友华,赵准等,1994.滇西特提斯的演化及主要金属矿床成矿作用,地质出版社
    莫宣学,沈上越,徐启东等,2000.三江地区中段铜、金区域成矿岩石-地球化学研究.“九五”地矿部资源与环境科技攻关项目研究报告
    莫宣学等,1993.三江特提斯火山作用与成矿.北京:地质出版社
    莫宣学等,2001.西南三江中南段试验区铜、金等矿产快速甚勘查评价的综合示范研究
    徐启东,2000.三江中段新特堤斯阶段区域流体的性质与状态.岩石学报,16(4):639~648
    莫宣学.1993.三江特提斯火山作用与成矿.地质出版社,11~18
    沈昆,倪培,2001.鲁西南归来庄金矿成矿流体特征和演化。地质科学,36(1):1~13
    史清琴,1988.云南锑矿区域成矿条件及控矿因素.云南地质,7(2):145~159
    宋瑞祥,1997.中国矿产资源报告:1996,北京:地质出版社.86~99
    
    
    孙小明,Norman D I,孙凯,陈敬德,陈炳辉,2000.一种新的成矿流体示踪法——流体包裹体N2-Ar-He示踪体系.地质论评,46(1):99~104
    滕彦国,刘家铎,张成江等,2000.兰坪盆地深源流体成矿的地质-地球化学信息.地质找矿论丛,15(4):314~319
    王莉娟,1998.流体包裹体成分分析研究.地质论评,44(5):496~501
    王莉娟,岛奇英彦,王京彬,王玉往,2001.黄岗梁矽卡岩型铁锡矿床成矿流体及成矿作用.中国科学(D辑),31(7):553~562
    徐启东,莫宣学,2000.三江中段新特堤斯阶段区域流体的性质与状态.岩石学报,16(4):639~648
    薛玺会,熊家镛,胡英,无量山-营盘山变质带形成机制探讨,云南地质,1988,7(4):303-310
    杨国桢,范朝俊,1989.巍山-漾濞锑汞砷金多金属矿带包裹体研究.云南地质,8(1):58~64
    杨嘉文,李有本,余莉雯,1991.扎村金矿地质特征.云南地质,10(1):71~104
    杨金中,沈远超,刘铁兵等,2000.山东蓬家夼金矿床成矿流体地球化学特征.矿床地质,19(3):235~244
    杨国桢,范朝俊,1989.巍山-漾濞汞砷金多金属矿带包裹体研究.云南地质,8(1):58~64
    叶俊林,1987.地质学基础,北京:地质出版社
    云南省地质局第一区域地质测量大队,1979a.区域地质调查报告(1:200000永平幅,地质部分),1~90
    云南省地质局第一区域地质测量大队,1979b.区域地质调查报告(1:200000永平幅,矿产部分),1~90
    云南省地质局第一区域地质测量大队,1973a.区域地质调查报告(1:200000大理幅,地质部分),1~57
    云南省地质局第一区域地质测量大队,1973b.区域地质调查报告(1:200000大理幅,矿产部分),1~57
    云南省地质局第一区域地质测量大队,1980a.区域地质调查报告(1:200000保山幅,地质部分),1~97
    云南省地质局第一区域地质测量大队,1980b.区域地质调查报告(1:200000保山幅,矿产部分),1~97
    云南省地质局第一区域地质测量大队,1975a.区域地质调查报告(1:200000巍山幅,地质部分),1~103
    云南省地质局第一区域地质测量大队,1975b.区域地质调查报告(1:200000巍山幅,矿产部分),1~103
    云南省地质矿产局第三地质大队区调三分队,1987a.区域地质调查报告(1:50000大仓幅、蛇街幅,地质部分),1~105
    云南省地质矿产局第三地质大队区调三分队,1987b.区域地质调查报告(1:50000大仓幅、蛇街幅,矿产部分),1~105
    翟裕生,邓军,李晓波,1999.区域成矿学,北京:地质出版社.73~87.
    张文淮,陈紫英,流体包裹体地质学.武汉:中国地质大学出版社,1993.3~5;卢焕章,1997.成矿流体.北京:北京科学技术出版社.19~20,83~92,123~131
    赵准,1993.怒江-澜沧江-金沙江区域矿床成矿系列.云南地质,12(3):247~266
    朱和平,王莉娟,2001.四极质谱测定流体包裹体中的气相成分.中国科学(D辑),31(7):586~590
    Changkakoti A, Gray J, Krstic D et al., 1988. Determination of radiogenic isotopes (Rb/Sr, Sm/Nd and Pb/Pb) in fluid inclusion waters: An example from the Bluebell Pb-Zn deposit, British Columbia, Canada. Geochimica et Cosmochimica Acta, 52:961~967
    Barnes H L, 1997. Geochemistry of hydrothermal ore deposits. New York: John Wiley & Sons, Inc. 657~69 Frei R, 1995. Evolution of mineralizating fluid in the porphyry copper system of the Skouries deposit, northeast Chalkidiki(Greece):evidence from combined Rb-Sr and stable isotope data. Econ. Geol., 90:746~762
    Daniel OH, 1997. Environment of ore deposition in the Grede mining destrict, SanJuan Mountains. Colorado:Part V. Epithermal mineralization from fluid mixing in the OH vein.Econ. Geol., 92:29-44
    Fyfe W S, Price N N, Thompson A B, 1978. Fluid in the Earth' s crust. Elsevier scientific publishing company
    Graney J R, Kesler S E, 1995. Factors affecting gas analysis of inclusion fluid by quadrupole mass spectrometry. Geochimica et Cosmochiica Acta. 59(19):3977~3986
    Ghazi A M, Vanko D A, Roedder E et al., 1993. Determination of rare earth elements in fluid inclusions by inductively coupled plasma-mass spectrometry(ICP-MS). Geochim. Cosm. Acta, 57:4513~4516
    Ghazi A M, Vanko K A, Ruiz J, et al., 1994. Trace and rare element analysis in single fluid inclusions: an application of laser ablation ICP-MS. EQS, 75(44):695.
    Holland P T, Beaty D W, Sonw G G, 1988. Comparative elemental and oxygen isotope geochemistry of
    
    Jasperoid in the Northern Great Basin: Evidence for distinctive fluid evolution in gold-producing hydrothermal systems. Eco. Geol. , 83:1401-1434
    Hopf S, 1993. Behaviour of rare earth elements in geothermal systems of New Zealand. Journal of geochemical exploration, 47:333-357
    Irvine T N. 1989, A global convection framework: concepts of Symmetry, stratification and system in the Earth dynamic structure. Econ. Geol. Vol.84, pp. 2059-2114
    Kyser T K, 1987. Stable isotope geochemistry of low temperature fluids. MAC short course,13:451
    Michard A,1989. Rare earth element systematics in hydrothermal fluids. Geochimica et Cosmochimica Acta, 53:745-750
    Norman D I, Kyle P R, Baron C,1989. Analysis of trace elements including rare earth elements in fluid inclusion liquids. Economic Geology, 84:162-166
    Norman D I, Musgrave J A, 1994. N2-Ar-He compositions in fluid inclusions: indicators of fluid source. Geochinica et Cosmochimica Acta, 58(3) :1119-1131
    Norman D I, Sawkins F J. 1987. Analysis of gases in fluid inclusioins by mass spectrometer. Chem. Geol., 61:1-10
    Pettke T, Diamond L W, Frei R, 1995a. He, Ar,U-Pb and Rb-Sr isotope systematics of fluid inclusions in quartz and associated vein minerals and native gold from epigenetic late Alpine Au-veins in NW Italy. Schweitz. Minerl. Petrotr. Mitt., 75:308-309.
    Pettke T, Diamond L W, 1995b. Rb-Sr isotopic analysis of fluid inclusions in quartz: Evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochim. Cosmochim. Acta, 59 (19) : 4009-4027
    Pettke T, Diamond L W, 1997. Oligocene gold quartz veins at brusson, NW Alps:Sr isotopes trace the source of ore-bearing fluid to over 10 km depth. Economic geology, 92(4) : 389-406)
    Roedder, 1968a. Fluid inclusion research-Proceedings of COFFI.an annual summary of world literature: Vols.1-6(1968-1972) ;
    Roedder E, 1972. Composition of fluid inclusions. U.S. Geol. Survey Prof, paper
    Roedder E, 1984. Fluid inclusion. Reviews in mineralogy, Volume 12, 102-115,253-266
    Shepherd T J, Bottrell S H, Miller M F, 1991. Fluid inclusion volatiles as an exploration guide to black shale-hosted gold deposits, Dolgellau gold belt, North Wales, UK. J. Geochem. Explor., 42: 5-24.
    Shepherd T J, Chenery S R,1995. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study. Geochimica et Cosmochimica Acta, 59 (19) : 3997-4007
    Shepherd T J, Borttrell S H, Miller M F. 1991. Fluid inclusion volatiles as an exploration guide to black shale-hosted gold deposits, Dolgillau gold belt, North Wales, UK. J. Geochem. Explor., 42: 5-24
    Shepherd T J, Rankin AH and Alderton DHM, 1985. A practical guide to fluid inclusion studies. Blackie and Son Limited. 92-103
    Sherlock R L, Towett E L, smith B D, et al. ,1993. Distinguishing barren and auriferous veins at Sigma. Can. Jour. Earth Sci., 30:5-24
    Smith T J.Kesler S E, 1985. Relation of fluid inclusion geochemistry to wallrock alteration and 1ithogeqchemical zonation at the Hollinger-Mclntyre gold deposit, Timmins, Ontario, Canada. Can. Inst. Mim. Metall., 34: 35-94
    Sorby H C, 1858. On the microscopic structure of crystals, indicating the origin of minerals and rocks. Geol. Soc. London Quart. J., 14:453-500
    Sverjensky D A, Garven G, 1993. Tracing great fluid migrations. Nature, 356: 481-482
    Thomas P, Diamond L W. 1997. Oligocene gold quartz veins at Brusson, NW Apls:Sr isotopes trace the source of ore-bearing fluid to over a 10 km depth. Eco. Geol., 92 (4) : 389-406. )
    Valley J W et al. , Stable isotopes in high temperature geological processes. Reviews in mineralogy, 16:569
    Walse J, Netherway N,Hall G,1997. The third dimension of hydrothermal system, reduced fluids and
    
    giant Au deposits. Geonynamics & ore deposits, conference, 12-21
    Wang Lijuan, Wang Jingbin, Wang Yuwang and Mao Qian, 2001. Fluid-melt inclusions in fluorite of the Huanggangliang skarn iron-tin deposit and their significance to mineralization. Acta Geologica Sinica, 75 (2) : 204-211
    Xavier R P, Robert P F, 1999. Fluid evolution and chemical controls in the Fazenda Maria Preta (FMP) gold deposit. Rio Itapicuru Greenstone Beot.Bahia, Brazil. Chemical Geology, 154:133-154
    Yang K., Scott S D, 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature, 383 (3) : 420-423

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700