用户名: 密码: 验证码:
藏南白垩系沉积地质与上白垩统海相红层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特提斯洋的形成与演化一直是地学界长期讨论的焦点,尤其是印度与欧亚板块碰撞之前的白垩纪东特提斯洋更是科学家们努力追寻的目标,而揭开东特提斯神秘面纱的记录就保存在现今世界屋脊的特提斯喜马拉雅地区。白垩纪是地质历史中的一个极其特殊的时期,其全球性海平面变化、全球性分布的富有机质的黑色页岩、全球性的碳酸盐台地的沉没以及全球性火山作用和与之有关的极端温室气候、碳旋回等地学现象一直是近几十年来地学界关注的热点。本文围绕着以上两个热点,选择特提斯喜马拉雅白垩系为研究对象,对藏南白垩系沉积地质以及上白垩统海相红层两个科学问题进行深入而全面的研究。
     长期以来,西藏特提斯喜马拉雅白垩系地层格架没有达成共识,对于沉积环境和沉积相研究更是重视不够,而且,地层划分多是基于藏南白垩系本身研究所提出的,对境外特提斯喜马拉雅地区白垩系缺乏系统的对比和分析。本文根据实际资料和前人成果,重新厘定研究区白垩系地层系统。特提斯喜马拉雅南带自下而上地层系统为:古错组(? Berriasian早期~?Aptian)、岗巴东山组(?—Aptian)、察且拉组(Albian期)、冷青热组(Cenomanian期~Turonian早期)、岗巴村口组(Turonian~Santonian期)、宗山组(Campanian~Maastrichtian)和遮普惹山坡组(Maastrichtian中晚期~Danian期):特提斯喜马拉雅北带加不拉组包括整个早白垩世和晚白垩世早期,最晚可达Coniacian期,其中黑层段构成了整个下白垩统,底界应低于Valanginian阶,顶界可到上白垩统Cenomanian底部,白层段相当于Cenomanian至Turonian,而硅质岩段时代大致为Coniacian期。床得组为Santonian-Campanian期,宗卓组时代可跨整个晚白垩世,并穿时到古新世。
     岩石学研究表明,特提斯喜马拉雅南带白垩系岩石类型有泥质岩、陆源碎屑砂岩、碳酸盐岩以及碳酸盐岩与陆源碎屑砂岩混积岩等四大类:北带江孜白垩系岩石有碳酸盐岩、泥质岩、硅质岩和碎屑岩类;羊湖地区床得组红层岩石类型可划分为四大类:碳酸盐岩、泥质岩、硅质岩和碎屑岩类。南带白垩系沉积相分为陆源碎屑陆棚相、碳酸盐与陆源碎屑混积的陆棚相、碳酸盐陆棚相、生物礁相、(半)远洋相、大陆斜坡相等六大类;北带江孜地区为斜坡—远洋相带,并见火山沉积建造,主体环境位于斜坡带以下的半远洋和远洋地带,并划分上斜坡、下斜坡、(半)远洋和海相火山沉积相四种类型。
     根据岩石学、沉积相及其演化特征,本文将西藏特提斯喜马拉雅白垩纪沉积历史划分为六个阶段:A侏罗纪末期—白垩纪早期(Tithonian~Berriasian)石英砂岩沉积;B早
    
    白圣世旧e巾asian-APtian)火山岩屑沉积。C中白要世(Abian-Coniacia n)黑色页岩 A
    沉积;D晚白要世早期(S。山巾—~*一p—I二 )深水红色沉积:E晚白圣世晚期
     (*一p咖。晚期-*删d*M。早期)碳酸盐沉积和滑塌沉积:r白晋纪末期-古新世早
    期(Maastrichtian晚期~Danian早期)混积沉积和滑塌沉积。
     在对藏南白圣纪沉积地质详细研究基础上,本文对尼泊尔喜马拉雅和LhadAn喜马拉雅
    白圣系进行了对比。结果发现,从白要系底部石英砂岩开始到火山碎屑岩出现,喜马拉雅
    东部地区比西部地区要早 15—20Ma。SPih页岩在 Zanskar地区结束历史比藏南地区晚将近
    15Ma,而石英砂岩结束的历史藏南地区要比 Zanskar地区晚 18Ma;在藏南地区早白碧世
    火山岩屑砂岩时代大致为?Be巾asian~Albian早期,延续时间超过30Ma;而在Thakkhola
    地区时代为Hauterivian晚期-Albian早期,延续时间约20Ma,在Zanskar地区火山岩屑砂
    岩仅仅出现在Albian期,延续时间小于10Ma。对比研究还发现,火山岩屑砂岩结束的时
    间均在Albian中晚期,随后整个特提斯喜马拉雅地区Albian晚期出现典型暗色-黑色泥质
    岩并以含海绿石和磷酸盐层为特征,代表着最大海泛面时期;晚白要世藏南陆棚相地区相
    对于 Zanskar地区细碎屑沉积更发育,在 Zanskar地区则直接过渡到 Chikkim组/Fain La组
    远洋灰岩。Carnnanian-Maastrichtian期Zanskar地区大体与藏南相当,整体为一个海平面 炳
    下降的过程。特提斯喜马拉雅斜坡相对比研究表明,从构造属性来看,Lamnyuru-Karamba
    构造带和江孜地区分别为活动的受火山作用影响的斜坡环境和稳定的斜坡环境,并一致性
    地出现稳定的晚白翌世红色远洋灰岩、红色页岩,但江孜地区晚白要世出现滑塌堆积,而
    Zanskar地区地层缺失,发生构造侵位。
     基于以上研究,本文初步恢复了特提斯喜马拉雅沉积一构造演化历史。诛罗纪末-白坚
    纪初印度大陆的北缘同时期存在大陆向上挠曲,导致陆源碎屑输入量的快速增加,石英砂
    岩广泛存在:早白圣世火山岩屑砂岩对应着的印度大陆北缘地层侵蚀加深,使得较深部的
    深成火山岩暴露并遭受侵蚀;石英砂岩和早白要世岩屑砂岩所代表的印度大陆剥露时间在
    空间上的“东早西晚”,说明构造运动首先是从特提斯喜马拉雅的东部开始(大印度(Great
    India)与澳大利亚的彻底分离),然后逐渐波及西部的,东西时间差为15—20Ma;由于地
    壳均衡作用,大陆分离后原先地壳挠曲转变为地壳下
Studies of the evolution and changes in the Tethys Ocean occurring during past 200 Ma may provide a model for future oceanic evolution and a key to the knowledge of our planet's global behavior (Cadet, 1996).
    Particularly the Cretaceous time period is a time of major changes in the Earth Systems demonstrated by major plate tectonic processes, as is the dispersal of Pangea supercontinent, plaeoclimate and paleoceanography changes. Such changes are revealed for example by worldwide distribution of organic-rich black shales, occurrence of oceanic anoxic events, periods of carbonate platforms drowning, high oceanic production, and brief periods of an extreme hot climate. Causes of many such changes are poorly understood. Therefore studies of the Cretaceous strata in southern Tibet contribute to the understanding of above processes and particularly to the global carbon cycling.
    We may ask: what happened during Cretaceous in eastern Tethys? This question can only be answered from the stratigraphical records in Tethys Himalaya. That is the reason why 1 select the Cretaceous in Tibetan Tethys Himalayas as my thesis topic.
    Based on field studies by the author and research by previous workers the Cretaceous stratigraphy in southern Tibet is refined. The Cretaceous in the southern subzone of Tibetan Himalaya consists upward of Gucuo Formation (? early Berriasian ~?Aptian), Gangbadongshan Fm. (? -Aptian), Chaquiela Fm. (Albian), Lengqingre Fm. (Cenomanian -early Turanian), Gangbachunkou Fm. (Turanian -Santonian), Zongshan Fm. (Campanian -Maastrichtian), and Zhepure Shanpo Fm. (middle-late Maastrichtian ~Danian). In the northern subzone of Tibetan Himalaya, the Gyabula Fm. can be extended from pre-Valanginian to Coniacian. The Chuangde Fm. is of Santonian ~ Campanian according to studies of planktonic foraminifera and nannofossils, while the overlying Zongzhuo Fm. is of latest Cretaceous through Paleocene age.
    Study of sediment composition and sedimentary microfacies of Cretaceous sedimentary sequences in Tibetan Himalayas allow to separate six stages in their development: 1) latest
    
    
    
    Jurassic to earliest Cretaceous (Tithonian ~Berriasian) widespread deposition of quartz arenitic sandstone; 2) Early Cretaceous (Berriasian ~Aptian) occurrence of volcanic sandstones; 3) Middle Cretaceous (Albian ~ Coniacian) black shales deposition; 4) early Late Cretaceous deposition of oceanic red beds (Santonian ~ Campanian) on a continental slope, while shale was deposited on a shelf; 5) late Late Cretaceous (late Campanian -Maastrichtian) carbonate-rich sediments were deposited on a shelf and olistoliths on the slope; 6) latest Cretaceous to earliest Tertiary (late Maastrichtian ~ early Danian) deposition of mixed carbonate and elastics on the shelf and olistoliths on continental slope.
    The sedimentary geology study of the Cretaceous in the southern Tibet allows correlation with the Cretaceous strata both in Nepal Himalaya and Lhadkh Himalaya. Results show that the Spiti shale in Zanskar terminated 15Ma later than that in southern Tibet, while the lowermost Cretaceous quartz sandstone in Zanskar appeared 18Ma later than that in southern Tibet. The age of volcanic sandstone in southern Tibet is very poorly time constraint and their deposition occurred somewhere within Berriasian -early Albian. In Thakkhola, the Chukh Group volcanic sandstone are of late Hauterivian -early Albian age (duration about 20Ma), while in Zanskar, the volcanic sandstones facies only appeared in Albian (duration of less than lOMa). Therefore, it can be concluded that the onsets of both quartz sandstone and volcanic sandstone occurred earlier in eastern Tethys Himalayas (southern Tibet) than in western Tethys Himalayas (Lhadkh). It implies that during early Cretaceous major geotectonic activity occurred earlier on the eastern side of the India continental plate than at its western part, perhaps 15~20 Ma earlier in east This is interpreted to be the result of separation of Australia from Greater India.
    The continental doming preceding the break-up of Gond
引文
1. Algeo T.J., Bemer R. A., Maynard J.B., Scheckler S.E., 1995. Late Devonian oceanic anoxic events and biotic crises: 'rooted' in the evolution of vascular land plants?. GSA Today 5: 64-66.
    2. Arthur M. A.. 1979. Sedimentologic and geochemical studies of Cretaceous and Paleogene sedimentary rocks and some global paleoceanogarphic trends and events [Ph.D. dissertation], Princeton University, 171pp.
    3. Arthur M.A., Dean W.E., Claypool G.E., 1985. Anomalous 13C enrichment in modern marine organic carbon. Nature, 315:216-218.
    4. Arthur M.A., Dean W.E., Pratt L.M., 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature, 335: 714-717.
    5. Arthur M.A.. Fischer A.G., 1977. Upper Cretaceous-Paleocene magnetic stratigraphy at Gubbio, Italy I. Lithostratigraphy and sedimentology. Geological Society of American Bulletin. 88: 367-371.
    6. Arthur M.A., Roggenthen W.M., 1976. Primary bedding rhythms in pelagic calcareous sediments. Abstract. SEPM and AAPG annual meeting, New Orleans.
    7. Arthur M.A., Sageman B.B, 1994. Marine black shales: depositional mechanisms and environments of ancient deposits. Annu. Rev. Earth planet. Sci., 22: 499-551.
    8. Auden J.B., 1935. Transverses in the Himalaya. Rec. Geol. Survey of India. XIX: 123-167.
    9. Bai S.L., Bai Z.Q., Ma X.P., et al., 1994. Devonian events and biostratigraphy of South China. Beijing: Peking University Press.
    10. Bak K.., 1995. Stratygrafia I paleoekologia osadow ogniwa margli z Macelowej I ogniwa margli z Pustelni w polskiej czesci pienninskiego pasa skalkowego. PhD Thesis, Institute of Geological Sciences, Jagiellonian University, Krakow, 147 pp. (In Polish).
    11. Bak K., 2000. Biostratigraphy of deep-water agglutinated foraminifera in Scaglia Rossa-type deposits of the Pientny Klippen Belt, Carpathians, Poland. In: Hart M.B., Kaminski M.A., Smart C.W., eds. Proceedings of the Fifth Inemational Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication, 7: 15-41.
    12. Bak, K., Planktonic foraminiferal biostratigraphy, Upper Cretaceous red pelagic deposits, Pieniny Klippen Belt, Carpathians. Studia Geologica Polonica, vol.111, no. 13, pp.7-92,1998.
    13. Baksi A.K., Barman T.R., Paul D.K., Farrar E., 1987. Widespread Early Cretaceous flood basalt volcanism in eastern India: geological data from the Rajmahal-Bengal-Sylhet Traps. Chemical Geology. 63: 133-141.
    14. Barnes C.R., 1999. Paleoceanography and paleoclimatology: an Earth system perspective, Chemical Geology. 161: 17-35
    15. Ban-era E., and Johnson C.C., 1999. Evolution of the Cretaceous Ocean-Climate System. Boulder, Colorado, Geological Society of America Special Paper 332, 445p.
    16. Barron E.J., 1983. A warm equable Cretaceous: the nature of the problem. Earth-Sci. Rev., 19: 305-338
    17. Barron E.J., 1987. Global Cretaceous paleogeography-International Geological Correlation Program Project 191. Palaeogeogr. Palaeoclimatol. Palaeoecol., 59: 207-216.
    
    
    18. Barren E.J., Peterson W.H., 1990. Mid-Cretaceous ocean circulation: results from model sensitivity studies. Paleoceanography, 5: 319-337.
    19. Barren E.J., Peterson W.H., Thompson S., and Pollard D., 1993. Past climate and the role of ocean heat transport: model simulations for the Cretaceous. Paleogeography, 8: 785-798.
    20. Barron E.J., Washington W.M., 1984. The role of geographic variables in explaining palaeoclimates: results from Cretaceous climate model sensitivity studies. J. Geophys. Res., 89: 1267-1279
    21. Bassoullet J.P., Mouterde R., 1977. Les formations sedimentaires Mesozoi(?)ques du domain Tibetain de 1 'Himalaya du Nepal. Ecologie et geologic de 1'Himalaya. Coll. Int. C.N.R. S. 268, 53-60.
    22. Belford D.J., 1958. Stratigraphy and micropalaeontology of the Upper Cretaceous of Western Australian. Geol. Rundsch., 47: 629-647.
    23. Bender M.L, Heggie, D.T., 1984. Fate of organic carbon reaching the deep sea floor: a status report. Geochimica et cosmochimica Acta, 48:977-986.
    24. Berger W.H., 1979. Impact of deep-sea drilling on Paleoceanography. In: Talwani M, Hay W., and Ryan W.B.F., eds. Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment. American Geophysical Union, 297-314.
    25. Berggren W., 1972. A Cenozoic time-scale-some implications for regional geology and paleobiogergraphy. Lethaia, 5: 195-215.
    26. Berner R. A., 1981. A new geochemical classification of sedimentary environments. J. Sediment. Petrol., 51: 359-365.
    27. Bemer R.A., 1991. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci., 291: 339-376.
    28. Berner R.A., 1994. "GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time". Am. J. Sci., 294:56-91.
    29. Bemer R. A., 1999. Atmospheric oxygen over Phanerozoic time, Proceeding of National American Science, 96: 10955-10957
    30. Berner R.A., Canfield D.E., 1989. A model for atmospheric oxygen over Phanerozoic time. Am J. Sci., 289: 333-361.
    31. Bemer R. A., Kothavala Z., 2001. Geocarb III: a revised model of atmospheric cO2 over phanerozoic time. American Journal of Science, 301:182-204.
    32. Bemer R.A., Raiswell R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 12: 365-368
    33. Birkenmajor K., 1977. Jurassic and Cretaceous lithostratigraphic units of the Pieniny Klippen Belt, Carpathians, Poland. Studia Geologica Polonica, 45: 1-159.
    34. Bodenhausen J.W.A., De Booy T, Egeler C.G., Nijhuis H.J., 1964. On the geology of central west Nepal-a preliminary note. Rep. 22nd Int. Geol. Congr. Delhi, XI, pp. 101-122.
    35. Bolli H.M., 1959. Planktonic foraminifera from the Cretaceous of Trinidad, B.W.I.. Bull. Amer. Pal., 39: 257-277.
    36. Bordet P., Colchen M., Le Fort P., Mouterde R., Remy M., 1967. Donnees nouvelles sur la geologie de la Thakkhola (Himalaya du Nepal). Bull. Soc. Geol. France 7/9: 883-896.
    37. Bratton J.F., Berry W.B.N., Morrow J.R., 1999. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol., 154: 275-292.
    38. Breck W.G., 1974. Redox levels in the sea. In: Goldberg E.D., eds. Marine Chemistry, The Sea, 5, Wiley Inerscience, New York. 153-179.
    
    
    39. Broecker W. S.. Peng, T. K, 1982. Tracers in the sea. New York, Eldigo Press, 690p.
    40. Broecker W.S., 1997. Will our ride into the greenhouse future be a smooth one? GSA Today. 7: 1-6.
    41. Brooks J., Cornford C., Archer R., 1987. The role of hydrocarbon source rocks in petroleum exploration. In: Brooks J., Fleet A.J., eds. Marine petroleum source rocks Geological Society, London, Special Publication 26, p. 17-46.
    42. Burke W.H., Denison R.E., Hetherington E.A., Koepnick R.B., Nelson H.F., Otto J.B., 1982, Variation of seawater 87Sr/86Sr through Phanerozoic time, Geology, 10: 516-519
    43. Bystricka H., Gasparikova V, Kohler E., Kysela J., Salaj J., 1983. Excursion guide to the XVIII Europen Colloquium of Micropaleontology. Konferencie, Symposia, Semin, Bratislava. 61-70.
    44. Caldeira K., 1991. The mid-Cretaceous superplume, carbon dioxide, and global wanning: Geophysical Research Letters, 18: 987-990.
    45. Caldeira K., Rampino M.R., 1991. The mid-Cretaceous supper plume, carbon dioxide and global warming, Geophys. Res. Lett, 18: 987-990.
    46. Callender E. J., Bowser, C. J., 1980. Manganese and copper geochemistry of interstitial fluids form manganese nodule rich pelagic sediments of the northeastern equatorial Pacific Ocean. American Journal of Science, 280:1063-1093.
    47. Caron M., 1985. Cretaceous planktonic foraminifera. In: Belli H.M., Saunders J.B., Perch-Nielsen K., eds., Plankton Stratigraphy. Cambridge University Press, London, 17-86.
    48. Cerling T.E., et ah, 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389. 153-158.
    49. Clarke L.J., and Jenkyns H.C., 1999. New oxygen isotope evidence for long-term Cretaceous climatic change in the Southern Hemisphere. Geology. 27: 699-702.
    50. Colley S., Wilson T.R.S., and Higgs N.G, 1984. Post-depositional migration of elements during diagenesis in brown clay and turbidity sequences in the North East Atlantic. Geochim. Cosmochim. Acta, 48: 1223-1235.
    51. Danelian T., Robertson A.H.F., 1997. Radiolarian evidence for the stratigraphy and palaeo-oceanography of the deep-water passive margin of the Indian Plate (Karamba Formation, Indus suture zone, Ladakh Himalaya). Marine Micropaleontology. 30: 171-195.
    52. de Graciansky P.C., Brosse E., Deroo G., Herbin J.P., Lontadert L., Muller C., Sigal J., Schaaf A., 1987. Organic-rich sediments and palaeoenvironmental reconstructions of the Cretaceous North Atlantic. In: Brooks J., Fleet A.J., eds. Marine petroleum source rocks Geological Society, London, Special Publication 26, 317-344.
    53. Demaison G.J., Moore G.T., 1980. Anoxic environments and oil source bed genesis. AAPG Bulletin, 64: 1179-1209.
    54. Dercourt J., Ricou L.E., Vrielynck B., eds., 1993, Atlas Tethys paleoenvironmental maps, Gauthier-Villars, Paris, 307pp. 14maps
    55. Douglass R.G., 1969. Upper Cretaceous planktonic foraminifera in northern California. Part I. Systematic. Micropaleontology, 15:151-209.
    56. Dourille H., 1916. Le Cretace et 1'Eocene du Tibet central. Palaenot. Indica, N.S., 5: 1-52. Calcutta.
    57. Durr S.B., Gibling M.R., 1994. Early Cretaceous volcaniclastic and quartzose sandstones from north central Nepal: composition, sedimentology and geotectonic significance. Geol Rundsch, 83: 62-75.
    58. Egger J., Kollmann H.A., Sanders D., Summesberger H., Wagreich M., 2000. Field trip C-Cretaceous of
    
    eastern Austria. 6th International Cretaceous Symposium, August 27-September 4, 2000, Vienna. Austria. 56pp.
    59. Ekdale A.A., Bromley R.G., 2001. Bioerosional innovation for living in carbonate hardgrounds in the Early Ordovician of Sweden. Lethaia, 34: 1-12.
    60. Eren M., and Kadir S., 1999. Colour orgin of Upper Cretaceous pelagic red sediments within the Eastern Pontides, northeast Turkey. Int. J. Earth Sci., 88: 593-595.
    61. Exon N.F., Borella P.E., Ito M., 1992. Sedimentology of marine Cretaceous sequences in the central Exmouth Plateau (northwest Australian). In: von Rad U., Haq. B.U., et al., eds. Proceedings of the Ocean Dring Program, Scientific Results, vol. 122. pp. 233-257.
    62. Farrimond P., Eglinton G., Brassell S.C., et al., 1990. The Cenomanian-Turonian anoxic event in Europe: an organic geochemical study. Mar. Petrol. Geol., 7: 75-89.
    63. Faupl P., and Wagreich M., 1992. Cretaceous flysch and pelagic sequences of the Eastern Alps: correlations. heavy minerals, and palaeogeographic implications. Cretaceous Research. 13: 387-403.
    64. Faupl P., Pober E., Wagreich W., 1987. Facies development of the Upper Gosau Group of the eastern parts of the Northern Calcareous Alps during the Cretaceous and Paleogene. In: Flugl H.W., Faupl P., eds. Geodynamics of the Eastern Alps. Deuticke, Wien, pp. 142-155.
    65. Fisher A.G., 1984. The two phanerozoic supercycles. In: Berggren W.A. and van Couvering J.A., Catastrophes and earth history. Princeton University Press. 129-149.
    66. Fisher AG., 1986. Climatic rhythms recorded in strata. Ann. Rev. Earth Planet. Sci., 14: 351-376.
    67. Flugel E., 1972. Mikrofaziella Untersuchungen in der Alpinen Trias. Methoden und Probleme. Mitt. Ges. Geol.-u. Bergbaustud., 21: 9-64. Innsbruck.
    68. Franke W., Paul J., 1980. Pelagic redbeds in the Devonian of Germany-deposition and digenesis. Sedimentary Geology, 25: 231-256.
    69. Freeman K.H., and Hays J.M., 1992. Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels. Glob. Biogeochem. Cycles, 6: 185-198.
    70. Fuchs G., 1967. Zum Bau des Himalaya: Osterreichische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Denkschriften. 113: 1-211.
    71. Gaetani M., Garzanti E., 1991. Multicyclic history of the northern India continental margin (northwestern Himalaya). AAPG Bulletin. 75: 1427-1446.
    72. Gansser A., 1964. Geology of the Himalayas. Interscience Publication John Wiley and Sons. New York.
    73. Garrels R.M., Mackenzie F.T., 1977. Evolution of sedimentary rocks. New York, W.W. Norton & Co., 397pp.
    74. Garrets R.M., Perry E.A., 1974. Cycling of carbon, sulfur and oxygen through geological tome, In Goldberg E D. The sea. New York: Wiley, 5: 303-316.
    75. Garzanti E., 1991. Stratigraphy of the Early Cretaceous Giumal Group (Zanskar Range, northern India). Rivista Italiana di Paleontologia e Stratigrafia, 97: 485-509.
    76. Garzanti E., 1993a, Sedimentary evolution and drowning of a passive margin shelf (Giumal Group; Zanskar Tethys Himalaya, India): palaeoenvironmental changes during final break-up of Gondwanaland. In Himalayan Tectonices, (Edited by Treloar P. J., and Searle M.P.), Geological Society of London Special Publication, 74, pp. 277-298.
    77. Garzanti E., 1993b. Himalayan ironstones, "superplumes," and the breakup of Gondwana. Geology, 21: 105-108.
    
    
    78. Garzanti E., 1999. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin. Journal of Asian Earth Sciences, 17: 805-827.
    79. Garzanti E., Angiolini L., Brunton H., Sciunnach D, Balini M., 1998b. The Bashkirian "Fenestella shales" and the Moscovian "Chaetetid shales" of the Tethys Himalaya (South Tibet, Nepal and India). Journal of Asian Earth Sciences, 16: 119-141.
    80. Garzanti E., Haas R., Jadoul F., 1989. Ironstones in the Mesozoic passive margin sequence of the Tethys Himalaya (Zanskar, northern India); sedimentology and metamorphism. Geological Society Special Publications 46, pp.229-244.
    81. Garzanti E., Nicora A., Rettori R., 1998a. Permo-Triassic boundary and Lower to Middle Triassic in South Tibet. Journal of Asian Earth Sciences, 16: 143-157.
    82. Garzanti E., Pagni Frette M., 1991. The stratigraphic succession of the Thakkhola region (central Nepal)-comparisons with the northwestern Tethys Himalaya. Riv. It. Paleont. Strat, 96: 3-26.
    83. Gibling M.R., Gradstein F.M., Kristiansen I.L., Nagy J., Sarti M., Wiedmann J., 1994. Early Cretaceous strata of the Nepal Himalayas: conjugate margins and rift volcanism during Gondwanan breakup. Journal of Geological Society, London. 151:269-290.
    84. Glasby G.P., 1984. Manganese in the marine environment. Oceanography and marine biology an annual review, 22:169-194.
    85. Glasby G.P., 1991. Mineralogy, geochemistry, and origin of Pacific red clays: a review. New Zealand Journal of Geology and Geophysics, 34: 167-176.
    86. Glusko V.V., Kruglov S.,S., et al., eds. 1971. Geologiceskoje Stroenie i Gorjuiie Iskopaemyje Ukrainskich Karpat. Trudy Ukrainskoj Neft. Geol. Razved Inst., 25: 1-389. (In Russian).
    87. Gorur N., 1991. Aptian-Albian palaeogeography of Neo-Tethysn domain. Palaeogeography, Palaeoclimatology, Palaeoecology, 87: 267-288.
    88. Gorur, N; Tuysuz, O; Aykol, A; Sakinc, M; Yigitbas, E; Akkok, R, 1993. Cretaceous red pelagic carbonates of northern Turkey; their place in the opening history of the Black Sea. Eclogae Geologicae Helvetiae, 86: 819-838
    89. Gradstein F.M., Agterberg F.P., Ogg J.G., Hardenbol J., van Veen P., Thierry J., and Huang Z., 1994, A Mesozoic time scale: Journal of Geophysical Research, 99, p. 24051-24074.
    90. Gradstein F.M., Gibling M.R., Jansa L.F., Kaminski M.A., Ogg J.G., Sarti M., Thurow J.W., von Rad U.. Westermann G. E. G., and Wiedmann J., 1989. Mesozoic stratigraphy of Thakkhola, central Nepal. Centre for marine geology, Dalhousie Univ., Halifax, Nova Scotia, Spec. Rep., 1: 114pp.
    91. Gradstein F.M., von Rad U., 1991. Stratigraphic evolution of Mesozoic continental margin and oceanic sequences; Northwest Australia and northern Himalayas. Marine Geology, 102: 131-173.
    92. Gradstein F. M., von Rad U., Gibling M.R., Jansa, L.F., Kaminski M.A., Kristiansen I.L., Ogg J.G., Roehl U., Sarti M., Thurow J.W., Westermann G.E.G., and Wiedmann J., 1992. Stratigraphy and depositional history of the Mesozoic continental margin of central Nepal: Geologisches Jahrbuch, Reihe B: Regionale Geologic Ausland, v. 77, p. 1-141.
    93. Hagen T, 1968. Report on the geological survey of Nepal, vol 2 Geology of the Thakkhola. Zurich, Memoires de la soc. Helvetique des sci. naturelles, 185pp.
    94. Hallam, A., 1989. The case for sea-level change as a dominant causal factor in mass extinctions of marine invertebrates. Philos. Trans. R. Soc. London, Ser. B 325, 437-455.
    95. Haq B.U., Hardenbol J., Vail P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science
    
    235, 1156-1167.
    96. Haq B.U., von Rad U., O'Connell S., 1990. Proc. OOP, Init. Repts., 122. College Station, TX (Ocean Drilling Program).
    97. Harries P.J., Kauffman E.G., Hansen T.A., 1996. Models for biotic survival following mass extinction. In: Hart M.B., eds. Biotic recovery from mass extinction events, Geological Society Special Publication 102, pp. 41-60.
    98. Hart M.B., eds., 1996. Biotic recovery from mass extinction events. Geological Society Special Publication 102.
    99. Haupt B.J., Seidov D., 2001. Warm deep-water ocean conveyor during Cretaceous time. Geology, 29: 295-298.
    100. Hay W.W., 1995. Paleoceanography of marine organic-carbon-rich sediments. In: Hue A.Y., eds., Paleogeography, Paleoclimate and Source Rocks, AAPG Studies in Geology 40; pp. 21-59.
    101. Hay W.W., DeConto R.M., 1999. Comparison of modem and late Cretaceous meridional energy transport and oceanology. In: Barrera E., and Johnson C.C., Evolution of the Cretaceous Ocean-Climate System. Boulder, Colorado, Geological Society of America Special Paper 332, 283-300.
    102. Hay W.W., Deconto R.M., Wold C.N., Wilson K.M., Voigt S., Schulz M., Wold A.R.. Dullo W.C., Ronov A.B., Balukhovsky A.N., Soding E., 1999. Alternative global Cretaceous paleogeography. In: Barrera E., and Johnson C.C., Evolution of the Cretaceous Ocean-Climate System. Boulder, Colorado, Geological Society of America Special Paper 332, 1-47.
    103. Hayden H.H., 1912. The geology of Spiti. Mem. Geol. Surv. India. 36: 1-144.
    104. Helby R., Morgan R., Partridge A.D., 1987. A palynological zonation of the Australian Mesozoic. In: Jell P. A., eds. Studies in Australian Mesozoic Palynology. Mem. Assoc. Australas. Palaeontol., 4: 1-94.
    105. Heron A.M., 1922. Geological results of the Mount Everest reconnaissance expedition. Records of the Geological Survey of India. 54: 215-234.
    106. House M.R., 1985. Correlation of mid-Paleozoic ammonite evolutionary events with global sedimentary perturbations. Nature, 313: 17-22.
    107. Hsu K.J., 1976. Paleoceanography of the Mesozoic Alpine Tethys. Geol. Soc. Am. Special Paper 170.
    108. Hu Xiumian, Wang Chengshan, Li Xianghui. 2001. The Cenomanian-Turonian anoxic event in the southern Tibet: A study of organic geochemistry. Chinese Journal of Geochemistry, 20(4) : 289-295.
    109. Huang Zehui, Boyd R., O'Connell S., 1992. Upper Cretaceous cyclic sediments from Hole 762C, Exmouth Plateau, Northwest Australian. In: von Rad U., Haq. B.U., et al., eds. Proceedings of the Ocean Dring Program, Scientific Results, vol. 122. pp. 259-277.
    110. Huber, B. T., Hodell, D. A., and Hamilton, C. P., 1995, Middle-Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for mini-mal equator-to-pole thermal gradients: Geological Society of America Bulletin, v. 107,p. 1164-1191.
    111. IOPD Initial Scientific Plan 2003-2013, 2001. Earth, Ocean, and life, download from www.iodp.org.
    112. Irving E., North F.K., Couillard R., 1974. Oil, climate and tectonics. Can. J. Earth Sci., 11: 1-17.
    113. Isozaki Y, 1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276: 235-238.
    114. Jadoul E, Berra F., Garzanti E., 1998. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet). Journal of Asian Earth Sciences, 16: 173-194.
    115. Jansa L.F., 2000. Metamorphosis of Cretaceous Tethys; Causes and consequences. 6th International
    
    Cretaceous Symposium, Abstracts, University of Vienna, Austria, p. 54
    116. Jansa L.F., Enos P., Tucholke B.E., Gradstein F.M., Sheridan R.E., 1979. Mesozoic-Cenozoic sedimentary formations of the North American Basin, western Norm Atlantic. In: Talwani M., Hay W., Ryan W.B.F., eds. Maurice Ewing series 3-Deep drilling results in the Atlantic Ocean continental margins and paleoenvironment. Amer. Geophys. Union Washington D.C.
    117. Jenkyns H.C., 1980a. Cretaceous anoxic events: from continents to oceans. J. Geol. Soc. London, 137: 171-188.
    118. Jenkyns H.C., 1980b. Tethys: past and present Proc. Geol. Ass., 91: 107-118.
    119. Jenkyns H.C., Gale A.S., Corfield R.M., 1994 Carbon and oxygen isotope stratigraphy of the English Chalk and Italian Scaglia and its paleoclimatic significance. Geological Magazine, 131: 1-34.
    120. Joachimski M.M., Buggisch W., 1993. Anoxic events in the late Frasnian-causes of the Frasnian-Famennian faunal crisis?. Geology, 21: 675-678.
    121. Johnsson M.J., Reynolds R.C., 1986. Clay mineralogy of shale-limestone rhythmites in the Scaglia Rossa (Turanian-Eocene), Italian Appennines. J. Sed. Petro., 56: 501-509.
    122. Jones C.E., Jenkyns H.C., 2001. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the Jurassic and Cretaceous. Am. J. Sci.,301: 112-149.
    123. Kaiho K., 1991. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol., 83: 65-85.
    124. Kaiho K., 1992. A low extinction rate of intermediate-water benthic foraminifera at the Cretaceous/Tertiary boundary. Mar. Micropaleontol., 18: 229-259.
    125. Kaiho K., 1994a. Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modem ocean. Geology, 22: 719-722.
    126. Kaiho K., 1994b. Planktonic and benthic foraminiferal extinction events during the last 100 m.y.. Palaeogeogr. Palaeoclimatol. Palaeoecol., 111:45-71.
    127. Kaiho K., 1999. Effect of organic carbon flux and dissolved oxygen on the benthic foraminiferal oxygen index (BFOI). Marine Micropaleontology, 37:67-76.
    128. Kaiho K., Kajiwara Y., Tazaki K., Ueshima M., Takeda N., Kawahata H., Arinobu T., Ishiwatari R., Hirai A., Lamolda A., 1999. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery. Palaeoceanography, 14: 511-524.
    129. Kaiho K., Saito S.. 1994. Oceanic crust production and climate during the past 100 Myr. Terra Nova, 6: 376-384.
    130. Kajiwara Y, Kaiho K., 1992. Oceanic anoxic at the Cretaceous/tertiary boundary supported by the sulfur isotope record. Palaeogeogr. Palaeoclimatol. Palaeoecol., 99: 151-162.
    131. Kaneko Y, 1997. Two-step exhumation model of the Himalayan metamorphic belt, central Nepal. The Journal of the Geological Society of Japan, 103:203-226.
    132. Kimura H., Watanabe, Y, 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology; 29: 995-998.
    133. Klemme H.D., Ulmishek G.F., 1991. Effect petroleum rocks of the world: stratigraphic distribution and controlling depositional factors. AAPG Bull., 75:667-689.
    134. Kolodny Y, and Raab M., 1988. Oxygen isotopes in phosphatic fish remain from Israel. Palaeogeogr., Palaeoclimatol., Palaeoecol., 64: 59-67.
    
    
    135. Kostka A., 1993. The age and microfauna of the Maruszyna Succession (Upper Cretaceous-Palaeogene), Pieniny Klippen Belt, Carpathians, Poland. Stadia Geologica Polonica, 102: 7-134.
    136. Krenmayr H.G., 1996. Hemipelagic and turbiditic mudstone facies associations in the Upper Cretaceous Gosau Group of the Northern Calcareous Alps (Austria). Sedimentary Geology, 101: 149-172.
    137. Kuhnt W., et al., 1986. Oceanic anoxic conditions around the Cenomanian/Turonian Boundary and the response of the biota. Mitt. Geol.-Palaont. Inst. Univ. Hamburg SCOPE/UNEP, 60: 205-246.
    138. Kuypers M.M.M., Pancost R.D., Sinninghe Damste J.S., 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times. Nature, 399: 342-345.
    139. Lajoie J., Chagnon A., 1973. Origin of red beds in a Cambrian flysch sequence, Canadian Appalachian, Quebec. Sedimentology, 20: 91-103.
    140. Lancelot Y.. Hathaway J.C., Hollister C.D., 1972. Lithology of sediments from the western North Atlantic. Leg 11, DSDP. In: Hollister C.D., Ewing J.I., eds. Initial Reports of the DSDP 11. Washington. 901-950.
    141. Larson R. L., 1991a. Geological consequences of superplumes. Geology, 19: 963-966.
    142. Larson R. L., 1991b. Latest pulse of the Earth: Evidence for a mid-Cretaceous superplume. Geology, 19: 547-550.
    143. Le Fort P., 1975. Himalaya: the collided range: Present knowledge of the continental arc. American Journal of Science. 275 A: 1-44.
    144. Levitus S., 1982. Climatological atlas of the world ocean. Washington D.C., U.S. Government Printing Office, National Oceanic and Atmospheric Administration Professional Paper, 13, 163p.
    145. Li Y.H., 1982. Interelement relationship in abyssal Pacific ferromanganese nodules and associated pelagic sediments. Geochemicaet cosmochimica Acta, 46: 1053-1060.
    146. Liu G., and Einsele G., 1996. Various types of olistostromes in a closing ocean basin, Tethyan Himalaya (Cretaceous. Tibet). Sedimentary Geology, 104: 203-226.
    147. Liu G., Einsele G., 1994. Sedimentary history of the Tethyan basin in the Tibetan Himalayas. Geol. Rundsch., 83:32-61,
    148. Liu Guanghua, 1992. Permian to Eocene sediments and Indian passive margin evolution in the Tibetan Himalayas. Tuebinger Geowissenschaft liche Arbeiten. Reihe A. Nummer 13, 268pp.
    149. Liu Y.G., Miah M.R.U., Schmitt R.A., 1988. Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim. Cosmochim. Acta. 52: 1361-1371.
    150. Lyle M., 1983. The brown-green color transition in marine sediments: A marker of the Fe(iii)-Fe(ii) redox boundary. Limnology and oceanography, 28: 1026-1033.
    151. McArthur J.M., Burnett J., Hancock J.M., 1992. Strontium isotopes at K/ T boundary: discussion. Nature. 355: 28.
    152. Michalik J., et al., 2000. Field trip B-Excursion into the westernmost central Carpathians (Slovakia). 6th International Cretaceous Symposium, August 27-September 4, 2000, Vienna, Austria. 39pp.
    153. Morford J.L., Emerson S., 1999. The geochemistry of redox sensitive trace metals in sediments. Geochim. Cosmochim. Acta., 63: 1735-1750.
    154. Morford Russell A.D., Emerson S., 2001. Trace metal evidence for changes in the redox environment associated with the transition from terrigenous clay to diatomaceous sediment, Saanich Inlet, BC. Marine Geology, 174:355-369.
    155. Muller P.J, Hartmann M., Suess E., 1988. The chemical environment of pelagic sediments. In: Halbach P., Friedrich G., von Stackelberg U., eds., The manganese nodule belt of the Pacific Ocean geological
    
    environment, nodule formation, and mining aspects. Stuttgart. Ferdinand Enke Verlag. pp. 70-90.
    156. Murray J.W., Balistieri L.S., Paul B., 1984. The oxidation state of manganese in marine sediments and ferromanganese nodules. Geochimica et Cosmochimica Acta, 48: 1237-1247.
    157. Murray R.W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90:213-232.
    158. Nagy J., Gradstein P.M., Gibling M., Thomas F.C., 1995. Foraminiferal stratigraphy and paleoenvironments of Late Jurassic to Early Cretaceous deposits in Thakkhola, Nepal. Micropaleont., 41: 143-170.
    159. Neumayr M., 1887. Erdgeschichte, 2, Verlag des bibliographischen Instituts, Leipzig, 880pp.
    160. Ogg J.G., Gradstein F.M., Dumoulin J.A., Sarti M., Bown P., 1992. Sedimentary history of the Tethyan margins of Eastern Gondwana during the Mesozoic. In: Synthesis of results from scientific drilling in the Indian Ocean. Geophysical Monograph 70, pp.203-224.
    161. Okada H., Thierstein H., 1979. Calcareous nannoplankton-Leg 43, DSDP. In: Tucholke B.E., Vogt P.R., et al., eds. Initial Reports of the DSDP 43.
    162. Palmer M.R., Edmond J.M., 1989. The strontium isotopic budget of the modern ocean. Earth Planet. Sci. Lett., 92:11-26.
    163. Palmer M.R., Elderfield H., 1985. Sr isotope composition of sea water over the past 75 Ma. Nature, 314:526-528.
    164. Patriat P.J., Segoufin R., Schlich R., Goslin J., Auzenfde J.M.. Beuzart P., Bonnin J., Olivet J.L., 1982. Les mouvements relatifs de l'Inde, de l'Afrique et de 1'Eurasie. Bulletin de la Societe Geologique de France, 24: 363-373.
    165. Patzelt A, Li H, Wang J, et al., 1996. Palaeomagnetism of Cretaceous to Tertiary sediments from southern Tibet: evidence for the extent of the northern margin of Indian prior to the collision with Eurasia. Tectonophysics, 259: 259-284.
    166. Perch-Nielsen K., 1985. Mesozoic calcareous nannofossils. In Bolli H.M., Sauders J.B., and Perch-Nielsen K., eds., Plankton stratigraphy. New York, Cambridge University Press, pp. 329-426.
    167. Piper D. Z., 1988. The metal oxide fraction of pelagic sediment in the equatorial North Pacific Ocean: a source of metals in ferromanganese nodules. Geochimica et cosmochimica Acta, 52:2127-2145.
    168. Piper D.Z., 1974. Rare earth elements in the sedimentary cycle: a summary. Chem. Geol., 285-304.
    169. Piper D.Z., 1994. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chemical Geology, 114:95-114.
    170. Potter P.E., Maynard J.B., Pryor W.A., 1980. Sedimentology of shale. Springer, New York, 303pp.
    171. Premoli Silva I., Erba E., Salvini G., Locatelli C, Verga D., 1999. Biotic changes in Cretaceous oceanic anoxic events of the Tethys. Journal of Foraminiferal Research, 29: 352-370.
    172. Premoli Silva I., Garzanti E., Gaetani M., 1991. Stratigraphy of the Chikkim and Fatu La formations in the Zangla and Zumlung units (Zanskar Range, India) with comparisons to the Thakkhola region (central Nepal); Mid-Cretaceous evolution of the Indian passive margin. Rivista Italiana di Paleontologia e Stratigrafia,97:511-564.
    173. Premoli Silva I., Silter W.V., 1994. Cretaceous planktonic foraminiferal biostratigraphy and evolutionary trends from the Bottacione section, Gubbio, Italy. Paleont. Italica, 82, 89pp.
    174. Racki, G., 1998. Frasnian-Famennian biotic crisis: undervalued tectonic control?. Palaeogeogr..
    
    Palaeoclimatol., Palaeoecol. 141: 177-198.
    175. Raiswell R, Buckley F, Berner R A, et al., 1988. Degree of pyritization of iron as a palaeoenvironmental indicator of bottom-water oxygenation. J. Sediment. Petrol., 58: 812-819.
    176. Raup D.M., Sepkoski J.J. Jr., 1982. Mass extinctions in the marine fossil record. Science. 215: 1501-1503.
    177. Regione del Veneto Giunta Reginale, Le cave della Lessinia (la pietra di Prun), 2000, Venezia, Italy.
    178. Rhoads D.C., Morse J.W., 1971. Evolutionary and ecological significance of oxygen-deficient marine basins. Lethaia, 4: 413-428.
    179. Ricou L.E., 1987. The Tethyan oceanic gates: a tectonic approach to major sedimentary changes within Tethys. Geodinamica Acta, 1: 225-232.
    180. Ricou L.E., 1995. The plate tectonic history of the past Tethys Ocean. In: Nairn A.E.M., Ricou L.E.. Vrielynck B., Dercourt J., eds., The Ocean Basins and Margins. Plenum Press, New York and London, p. 3-70.
    181. Robaszynski R, Caron M. 1995. Foraminiferes planctoniques du Cretace: commentaire de la zonation Eruope-Mediterranee. Bulletin de la Societe Geologique de France, 166: 681-692.
    182. Robaszynski F., Caron M., Amedro F., Dupuis C., Hardenbol J., Gonzalez Donoso J.M., Linares D., Gartner S., 1994. Le Cenomanien de la region de Kalaat Senan (Tunisie centrale): litho-biostratigraphie et interpretation sequentieile. Rev. Paleobiol., Geneve. 12: 351-505.
    183. Robertson A., and Sharp I., 1998. Mesozoic deep-water slope/rise sedimentation and volcanism along the North-Indian passive margin: evidence from the Karamba Complex, Indus suture zone (Western Ladakh Himalaya). Journal of Asian Earth Sciences. 16: 195-215.
    184. Robertson A.H.F., Degnan P.J., 1993. Sedimentology and tectonic implications of the Lamayuru Complex: Deep-water facies of the Indian passive margin, Indus suture zone, Ladakh Himalaya. In: Treloar P.J., Searle M.P., eds., Himalayan tectonics. Geological Society Special Publication 74, pp. 299-321.
    185. Salaj J., Gasparikova V, 1983. Turonian and Coniacian microbiostratigraphy of the Tethys region on the basis of Foraminifera and nannofossils. Zitteliana, 10: 595-607.
    186. Samalley P.C., Higgins A.C., Howarth R.J., Nicholson H., Jones C.E., 1994. Seawater Sr isotope variations through time: A procedure for constructing a reference curve to date and correlate marine sedimentary rocks. Geology, 22: 431-434.
    187. Sarti M., 1990. Excursion Guidebook on Continental Passive Margin Geology Messozoic, Southern Alps, Italy. Brenzone, October 11-14, 1990.
    188. Sarti M., Gradstein F.M., Gibling M.R., Jansa L.F., Kaminski M.A., Ogg J.G., Thurow J.W., von Rad U., Westermann G.E.G., 1991. Eastern Tethys; evidence for Gondwana drift from ocean drilling results and Himalaya's studies. Memorie della Societa Geologica Italiana, 44: 107-118. 1991.
    189. Savrda C.E., Bottjer D.J., 1986. Trace-fossil model for reconstruction of paleo-oxygenation of bottom waters. Geology, 14: 3-6.
    190. Sawlan J.J., Murray J.W., 1983. Trace metal remobnilization in the interstitial waters of red clay and hemipelagic marine sediments. Earth and planetary science letters, 64: 213-230.
    191. Scheibner E., and Scheibnerova V., 1958. Kysucke a sneznicke vrstvy-nove cleny kriedy pieninskej serie v kysuckom vyvine. Geologicky Sbornik, 9: 178-181.
    192. Schlanger S.O., Arthur M.A., Jenkyns H.C., Scholle P. A., 1987. The Cenomanian-Turonian oceanic anoxic event, I. stratigraphy and distribution of organic carbon-rich beds and the marine δ 13C excursion.
    
    In: (eds Brooks J., Fleet A.J., eds., Marine petroleum source rocks. Geological Society Special Publication 26, pp. 371-399.
    193. Schlanger S.O., Jenkyns H.C., 1976. Cretaceous oceanic anoxic events: cause and consequence. Geol. Mijnbown, 55: 179-184.
    194. Schrag D.P.. DePaolo D.J., Richter F.M., 1995. Reconstructing past sea surface temperatures: correcting for diagensis of bulk marine carbonate. Geochimica et Cosmochimica Acta. 59: 2265-2278.
    195. Scotese C.R., 1991. Jurassic and Cretaceous plate tectonic reconstruction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 87: 493-501.
    196. Sengor A.M.C., 1987. Tectonics of the Tethysides: Orogenic collage development in a collisional setting. Ann. Rev. Earth Planet. Sci.. 15: 213-244.
    197. Sigal J., 1977. Essai de zonation du Cretace mefivrttsneen a I'aide des foraminifers planctoniques. Geol. Mediterr, 4: 99-108.
    198. Sinton. C.W., and Duncan R.A., 1997. Potential links between ocean plateau volcanism and global ocean anoxia at the Cenomanian-Turonian boundary. Economic Geology, 92: 836-842.
    199. Skornyakova N.S., 1965. Dispersed iron and manganese in Pacific Ocean sediments. International Geology Review, 7: 2161-2174.
    200. Sliter W.V., 1989. Biostratigraphic zonation for Cretaceous planktonic foraminifera examined in thin section. J. Foram. Res., 19: 1-19.
    201. Spicer R. A., 1989. Physiological characteristics of land plants in relation to environment through time. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80: 321-329.
    202. Spicer R.A., Corfield R.M., 1992. A review of terrestrial and marine climates in the Cretaceous with implications for modeling the greenhouse Earth. Geological Magazine, 129: 169-180.
    203. Spicer R. A., Parrish J.T., 1990. Late Cretaceous-early Tertiary palaeoclimates of northern high latitudes: a quantitative view. Journal of the Geological Society London, 147: 329-341.
    204. Stoll H. M., Schrag D.P., 2000. High-resolution stable isotope records from the Upper Cretaceous rocks of Italy and Spain: Glacial episodes in a greenhouse planet?. GSA Bulletin, 112: 308-319.
    205. Stow D.A. V., Wexel F.C., Savelli D., Rainey S.C.R., Angell G., 1984. Depositional model for calcilutites: Scaglia Rossa limestones, Umbro-Marchean Appennines. In Stow D.A.V., Piper D.J.W., eds. Fine-grained sediments; deep-water processed and fades. Geological Society Special Publications. 15, pp. 223-240.
    206. Street-Perrott F. A., et al., 1997. Impact of lower atmospheric carbon dioxide on tropical mountain ecosystems. Science, 278: 1422-1426.
    207. Stur D., I860. Bericht uber die geologische Ubersichts-Aufhahme d. Wassergebietes der Waag und Meutra. Jahrbuch der Geologischen Reichsanstalt, 11: 17-149.
    208. Suess E., 1893. Are great ocean depths permanent? Natural Science, 2:180-187.
    209. Takola E., 1998. Climate change during the last 150 million years: reconstruction from a carbon cycle model. Earth and Planetary Science Letters, 160: 695-707.
    210. ten Haven H.L., de Leeuw J.W., Rullkotter J., et al., 1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature, 330: 641-643.
    211. Thompson E.I., and Schmitz B., 1997. Barium and the late Paleocene δ 13C maximum: Evidence of increased marine surface productivity. Proeoceanography, 12: 239-254.
    212. Thomson J., Carpenter M.S.N., Colley S., Wilson T.R.S., Elderfield H., Kennedy H., 1984. Accumulation rates in Northwest Atlantic pelagic sediments. Geochimica et Cosmochimica Acta, 48: 1935-1984.
    
    
    213. Thomson J., Colley S., Higgs N.C., Hydes D.J., Wilson T.R.S., Sorensen J., 1987. Geochemical oxidation trends in NE Atlantic distal turbidites and their effects in the sedimentary record. In: Weaver P.P.E., and Thomson J., eds. Geology and geochemistry of abssal plains. Geol. Soc. London Spec. Pub. 31, pp. 167-177.
    214. Tissot B., 1979. Effects on prolific petroleum source rocks and major coal deposits caused by sea-level changes. Nature, 277: 463-465.
    215. Tur N., 1996. Planktonic foraminifera recovery from the Cenomanian-Turanian mass extinction event, northern Caucasus. In: Hart M.B., eds. Biotic recovery from Mass Extinction events. Geological Society Special Publication No. 102. pp. 259-264.
    216. Tyson R.V. 1987. The genesis and palynofacies characteristics of marine petroleum source rocks. In: (eds Brooks J., Fleet A.J., eds., Marine petroleum source rocks. Geological Society Special Publication 26, pp. 47-68.
    217. Vallier T.L., 1974. Volcanogenic sediments and their relation to landmass volcanism and sea floor-continent movements, western Indian Ocean, Leg 25, Init. Rep. DSDP, 25, pp. 515-542.
    218. van Andel T. J. H., et al., 1977, Depositional history of the South Atlantic Ocean during the last 125 million years, J. Geol., 85: 651-698
    219. vod Rad U., Exon N.F., Boyd R., Haq B.U., 1992. Mesozoic paleoenvironment of the rifted margin off N.W. Australia (ODP legs 122/123) . In: Duncan R.A., Rea D.K., Kidd R.B., von Rad U., Weissel J. K., eds. Synthesis of results from scientific drilling in the Indian Ocean, Am. Geoph. Union, Monogr., 70, pp. 157-184.
    220. Wagreich M., 1998. Lithostratigraphie, Fazies und Sequenzstratigraphie der Gosau Gruppe von Bad Ischl und Strobl am Wolfgangsee (Oberturon-Maastricht, Nordliche kqlkalpen, Osterreich). Jahrb. Geol. B.A., 141:209-234.
    221. Wagreich M., Faupl P., 1994. Palaeogeography and geodynamic evolution of the Gosau Group of the Northern Calcarous Alps (Late Cretaceous, Eastern Alps, Austria). Palaeogeography, Palaeoclimatology, Palaeoecology. 110: 235-254.
    222. Walliser O.H., 1996. Global events and events stratigraphy in the Phanerozoic. Berlin Heidelberg: Springer-verlag, pp. 242-252.
    223. Wan X., Lamolda M. A., Wang C, 1997. Upper Cenomanian-Lower Turonian foraminiferal assemblages from southern Tibet: the responses of the biota to oceanic environmental change. Journal of the Geological Society of the Philippines, 52:183-197.
    224. Wan Xiaoqiao, 1991. Albian-Campanian (Cretaceous) planktic foraminiferal stratigraphy in southern Xizang (Tibet). In: Yang Zunyi, eds., Stratigraphy and Paleontology of China 1: 165-181. Geological Publishing House, Beijing.
    225. Wang C.S., Hu X.M., Jansa L., Wan X.Q., Tao R, 2001. The Cenomanian-Turonian oceanic anoxic event in southern Tibet. Cretaceous Research, 22: 481-490.
    226. Wang Chengshan, Xia Daixiang, et ah, 1996. Field Trip Guide: T121/T387 Geology between the Indus-Yarlung Zangbo Suture Zone and the Himalaya Mountains (Xizang), China. Beijing: Geological Publishing House. 72 p.
    227. Wezel F. C., 1979. The Scaglia Rossa Formation of Central Italy: results and problems emerging from a regional study. Ateneo Parmense, Acta Nat., 15: 243-259.
    228. Wignall P.B., 1994. Black Shales. Oxford Monographs on Geology and Geophysics 30, Clarendon Press,
    
    Oxford.
    229. Wignall P.B., Twitchett R.J., 1996. Oceanic anoxia and the end Permian mass extinction. Science. 272:1155~1158.
    230. Willems H., 1993, Sedimentary history of the Tibetan Tethys Himalaya continental shelf in South Tibet (Gamba, Tingri) during Upper Cretaceous and Lower Tertiary (Xizang Autonomous Region, PR China), Berichte, Fachbereich Genwissenschaften, Universitat Bremen, 38: 49~183.
    231. Willems H., Wan X., Yin J., Dongdui L., Liu G., Durr S., and Grafe K.U., 1995. The Mesozoic development of the N-Indian passive margin and of the Xigaze Forearc Basin in southern Tibet, China. Berichte, Fach. Geo. Un. Bremen, 64:1-113.
    232. Willems H., Zhang B., 1993a. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Gamba (South Tibet, PR China). Ber FB Goewiss Univ Bremen, 38: 3~27.
    233. Willems H., Zhang B., 1993b. Cretaceous and Lower Tertiary sediments of the Tibetan Tethys Himalaya in the area of Tingri (South Tibet, PR China) . Bet FB Goewiss Univ Bremen, 38: 28~47.
    234. Willems H., Zhou Z., Zhang B., and Gr(?)fe K.U., 1996. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China). Geol. Rundsch, 85: 723~754.
    235. Wilson J.L., 1975. Carbonate facies in geologic history. 471pp. Berlin-Heidelberg-New York
    236. Wilson T.R.S., Thomson J,, Colley S., Hydes D.J., Higgs N.C., Sorensen J., 1985. Early organic diagenesis; the significance of progressive subsurface oxidation fronts in pelagic sediments. Geochim. Cosmochim Acta. 49:811~822.
    237. Wiseman J.F., 1979. Neocomaian eustatic changes: biostratigraphic evidence from the Camarvon Basin.APEA J., 19: 67~73.
    238. Wolfe, J.A., 1990. Paleobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary. Nature, 343: 153~156.
    239. Zhou Z., Willems H., Zhang B., 1997. Marine Cretaceous-Paleogene biofacies and ichnofacies in southern Tibet, China and their sedimentary significance. Marine Micropaleontology, 32: 3~29.
    240.彼得斯 K.E.,莫尔多万 J.M.,(姜乃煌等译).1995.生物标记化合物指南——古代沉积物和石油中的分子化石的解释.北京:石油工业出版社.
    241.布尔格 J.P.,马特 Ph.,布鲁内尔 M.,安德里约J.,陈国铭.李光岑,李廷栋,肖序常.西藏雅鲁藏布江缝合线以南晚白垩世含外来岩块复理石沉积之前形变期的存在及其意义.见:李光岑,麦尔西叶 J.L.,主编.中法合作喜马拉雅地质考察 1980.北京:地质出版社,341~347.
    242.陈国铭,李光岑,曲景川,1984.西藏南部混杂堆积及其地质意义.见:喜马拉雅地质文集编辑委员会,喜马拉雅地质Ⅱ:中法合作喜马拉雅地质考察1981年成果.北京:地质出版社.19~25.
    243.陈智梁,1994.特提斯地质一百年.特提斯地质,18:1-22.
    244.陈智梁,1996.寻觅失踪的特提斯海,海洋世界,1~3.
    245.傅家谟,盛国英,许家友等,1991.应用生物标志化合物参数判识古沉积环境.地球化学,1:1~12.
    246.苟宗海,1996.西藏白垩纪特提斯海的固着蛤类(RUDISTS).特提斯地质,20:150~159.
    247.郝诒纯,万晓樵,1985.西藏定日地区的海相白垩、第三系.青藏高原地质文集(17).北京:地质出版社,227-232.
    248.胡修棉,1999.特提斯喜马拉雅晚白垩世富氧问题探讨[硕士学位论文].成都:成都理工学院,pp.51.
    249.胡修棉,黄永健,2002.与“南永2井珊瑚礁‘红色与黑色沉积夹层’的成因及环境意义初探”商榷.科学通报,2002,47(4):318~319.
    250.胡修棉,王成善.1999.100Ma以来若干重大地质事件与全球气候变化.大自然探索,18(1):53~58.
    
    
    251.胡修棉,王成善,李祥辉.2001a.大洋缺氧事件的碳稳定同位素响应.成都理工学院学报,28(1):1~6
    252.胡修棉,王成善,李祥辉.2001b.藏南海相白垩纪碳酸盐碳稳定同位素演化与古海洋溶解氧事件.自然科学进展,11:721~728.
    253.胡修棉,王成善,李祥辉等,2000.西藏南部Cenomanian-Turonian缺氧事件:有机地球化学研究.地球化学,29(5):417~425.
    254.胡修棉,王成善.2001.古海洋溶解氧研究方法综述.地球科学进展,16(1):65~71.
    255.黄思静,石和,刘洁,沈立成,2001.锶同位素地层学研究进展.地球科学进展,16:194~200.
    256.金性春,周祖翼,汪品先,1995.大洋钻探与中国地球科学.上海:同济大学,349pp.
    257.肯尼特,1989.(同济大学海洋地质系译).海洋地质学.北京:海洋出版社.
    258.赖才根等,1982.中国的奥陶系.北京::地质出版社.1~297.
    259.李红生,2000.藏南古近纪放射虫的发现——一个迟到的发现报告.见:《第三届全国地层会议论文集》编委会编,第三届全国地层会议论文集,北京:地质出版社,pp.354~358.
    260.李祥辉,王成善,胡修棉,2000.深海相中的砂质碎屑流沉积--以西藏特提斯喜马拉雅侏罗-白垩系为例.矿物岩石,20(1):45~51.
    261.李祥辉,王成善,万晓樵,陶然,1999.西藏江孜县床得剖面侏罗-白垩纪的地层层系及地层系统考证.地层学杂志,4:303~309.
    262.蔺新望,1998.西藏江孜地区上白垩统宗卓组沉积混杂堆积基本特征及构造意义.岩相古地理,18(3):28~33.
    263.刘本培,金秋琦,1996.地史学教程.北京:地质出版社.277pp.
    264.刘桂芳,1988.西藏聂拉木古措晚侏罗世至早白垩世菊石群.西藏古生物论文集.北京:地质出版社pp.1~65.
    265.刘岫峰主编,1991.沉积岩实验室研究方法.北京:地质出版社.
    266.卢衍豪,1975.华中及西南奥陶纪三叶虫动物群.中国古生物志,新乙种,第11号:1~463.
    267.马福臣和林海,2000.地球科学“十五”优先资助领域,地球科学进展,15(5):499~502
    268.马宗晋,杜品仁,卢苗安,2001.地球的多圈层相互作用.地学前缘,8:3~8.
    269.穆恩之,尹集祥,文世宣,王义刚,章炳高,1973.中国西藏南部珠穆朗玛峰地区的地层.中国科学,16(1):59~71.
    270.宁波海洋学校编.1986.海洋学.北京:海洋出版社,
    271.彭勇民,李金高,姚鹏.2000.藏南江孜盆地晚侏罗世至早白垩世重力流沉积.古地理学报,2(3):37~44.
    272.任纽,1965.地层地质学(南京大学地质系译).北京:中国工业出版社.
    273.戎嘉余,方宗杰,陈旭,陈金华,廖卫华,孙东立,詹仁斌,沈建伟,童金南,1996.生物复苏——大缺灭后生物演化历史的第一幕.古生物学报,35(3):259~271.
    274.史晓颖,2000.藏南珠峰地区下白垩统发现海底扇沉积.现代地质.14(2):140.
    275.陶然,1990.西藏南部中白垩世古海洋学研究[硕士学位论文],成都:成都地质学院.
    276.陶然,曾允孚,王成善,1995.西藏南部中白垩世旋回地层学.沉积学报,13(1):18~26.
    277.同济大学海洋地质系.古海洋学概论.上海:同济大学出版社,1989.
    278.万晓樵,1985.西藏岗巴地区白垩纪地层及有孔虫动物群.青藏高原地质文集(16),北京:地质出版社,203~228.
    279.万晓樵,1987.西藏白垩纪浮游有孔虫化石带,青藏高原地质文集(18).北京:地质出版社.116~121.
    280.万晓樵,阴家润,1996.西藏岗巴白垩纪中期微体生物群与古海洋事件.微体古生物学报,13(1):43-56.
    
    
    281.万晓樵,赵文金,李国彪.2000.对西藏岗巴上白垩统的新认识.现代地质.14:281~285.
    282.汪品先,2000.深海研究和新世纪的地球科学.见:路甬祥主编,百年科技回顾与展望—中外著名学者学术报告,上海:上海教育出版社,pp.181~211.
    283.汪啸风,陈旭,陈孝红等,1996.中国地层典 奥陶系.北京:地质出版社.1~126.
    284.汪云亮.1990.深海沉积系元素成因的地球化学原理.岩相古地理,(2):46~56
    285.王成善,胡修棉,李祥辉,1999a.古海洋溶解氧与缺氧和富氧事件.海洋地质与第四纪地质,19:39~47.
    286.王成善,胡修棉,万晓樵,陶然,1999b.西藏南部中白垩世Cenomanian-Turonian缺氧事件研究.自然杂志,(4):244~245.
    287.王成善,李祥辉,2002.再论印度与欧亚板块碰撞的启动时间.地质学报,76,待刊.
    288.王成善,李祥辉,万晓樵,陶然,2000.西藏南部江孜地区白垩系的厘定.地质学报,74(1):97~107.
    289.王成善,夏代祥,周详,陈建平.1999c.雅鲁藏布江缝合带——喜马拉雅山地质.北京:地质出版社.1999.pp160.
    290.王明星,1991.大气化学.北京:气象出版社,416pp.
    291.王乃文,1983.中国白垩纪特提斯地层学问题.青藏高原地质文集(3).pp.148~180.
    292.王乃文,刘桂芳,陈国铭,1983.西藏羊卓雍错区域地质研究.青藏高原地质文集(3).pp.1~20.
    293.王义刚,1980.喜马拉雅地区(我国境内)地层研究的新认识.地层学杂志,4(1):55~59.
    294.王义刚.孙东立,何国雄,1984.西藏地层—特提斯喜马拉雅南部分区.北京:科学出版社,87~100.
    295.王义刚,王玉净,吴浩若,1976.西藏南部加不拉组问题的讨论及隆子地区下侏罗统的发现.地质科学,2:150~156.
    296.王义刚,张明亮.1974.珠穆朗玛峰地区的地层—侏罗系.见:珠穆朗玛峰地区科学考察报告(1966-1968)--地质.北京:科学出版社,124~147.
    297.文世宣.1974.珠穆朗玛峰地区的地层—白垩系.见:珠穆朗玛峰地区科学考察报告(1966-1968)--地质.北京:科学出版社,148~183.
    298.文世宣,章炳高,王义刚等,1980.Sedimentary development and formation of stratigraphic region in Xizang.In:Proceedings of the Symposium on Qinghai Xizang(Tibet)Plateau.119~130.北京:科学出版社.
    299.吴丰昌,万国江,蔡玉蓉,1996.沉积物-水界面的生物地球化学作用.地球科学进展.11:191~197.
    300.吴浩若,1984.西藏地层—特提斯喜马拉雅北部分区.北京:科学出版社,115~119.
    301.吴浩若,1987.西藏南部江孜地区晚白垩世晚期及早第三纪地层?.地层学杂志,11(2):147~149.
    302.吴浩若,李红生.1982.藏南宗卓组滑塌堆积中的放射虫化石.古生物学报,21:64~71.
    303.吴浩若,王东安,1981.西藏南部江孜地区的混杂堆积.沉积岩石学研究北京:科学出版社.
    304.吴浩若,王东安,王连城,1977.西藏南部拉孜-江孜-带的白垩系.地质科学,3:250~261.
    305.吴明清,欧阳自远,宋云华,蓝琇,杨学长,毛雪瑛,柴之芳.1992.塔里木盆地西缘古海洋氧化还原条件的变化——介壳化石的稀土元素铈异常证据.中国科学(B辑),22(2):206-215.
    306.西藏地质矿产局,1993.西藏自治区区域地质志.北京:地质出版社,200.
    307.西藏地质矿产局,1994.中华人民共和国区域地质调查报告1:20万浪卡子,泽当幅.
    308.西藏地质矿产局,1997.西藏自治区岩石地层.武汉:中国地质大学出版社,183~184.
    309.西藏地质矿产局,1998.中华人民共和国区域地质调查报告1:5万然巴等四幅.
    310.西藏区调队,1979.中华人民共和国区域地质调查报告1:100万(拉萨幅H-46).北京:地质出版社.
    
    
    311.西藏区调队,1983.中华人民共和国区域地质调查报告1:100万(日喀则幅H-45,亚东幅G45).北京:地质出版社.
    312.肖序常,李廷栋,2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社.
    313.肖序常,李廷栋.李光岑,常承法,袁学城,1988.喜马拉雅岩石圈构造演化:总论.北京:地质出版社,pp.69~88.
    314.徐钰林,茅绍智,1992.西藏南部白垩纪-早第三纪钙质超微化石及其形成环境.微体古生物学报。9(4):331~347.
    315.徐钰林,万晓樵,苟宗海,张启华,1990.西藏侏罗纪,白垩纪,第三纪地层.武汉:中国地质大学出版社,pp147.
    316.颜文,汤贤赞,陈忠,等.2001.南永2井珊瑚礁‘红色与黑色沉积夹层’的成因及环境意义初探.科学通报,46(17):1476~1480.
    317.杨建民,王登红,毛景文,张作衡,张招崇,王志良,1999.硅质岩岩石化学研究方法及其在“镜铁山式”铁矿床中的应用.岩石矿物学杂志,18:108~120.
    318.杨遵仪,吴顺宝,1964.西藏南部晚侏罗世的若干箭石.古生物学报,12(2):187~216
    319.余光明,兰伯龙,林文球,王成善,1982.西藏岗巴晚白垩世厚壳蛤生物礁环境的特征.矿物岩石.2(3):39-43.
    320.余光明,兰伯龙,王成善,1984.西藏江孜地区白垩纪深海中的滑塌堆积和浊流沉积作用-青藏高原地质文集(15).北京:地质出版社,13~26.
    321.余光明,王成善,张哨楠,1989.西藏特提斯中生代沉积盆地特征及演化.中国科学(B辑),(9):982~990.
    322.余光明,张启华,苟宗海,兰伯龙,王成善,1984.西藏聂拉木地区侏罗系地层的划分和对比.青藏高原地质文集(15),:165~176
    323.余光明和王成善,1990.西藏特提斯沉积地质.地质专报(三.12).北京:地质出版社,pp.185.
    324.曾允孚,夏文杰,1986.沉积岩石学,北京:地质出版社.
    325.张文堂,1962.中国的奥陶系.北京:科学出版社.1~161
    326.张之孟,金蒙,1979.川西南乡城-得荣地区的两种混杂岩及其地质意义.地质科学.第三期.
    327.赵文金,2000.西藏南部晚白垩世至始新世的古海洋事件.博士学位论文.中国地质大学(北京)77pp.
    328.赵文金,万晓樵,2001.西藏南部岗巴地区晚白垩世Cenomanian-Turonian集群灭绝事件后有孔虫动物群的复苏.古生物学报.2001,40(2):189~194.
    329.周书欣,王建国,1992.贵州石阡地区宝塔灰岩的成因.石油实验地质,14:291~295.
    330.周志澄,Willems H.,章炳高,1998.西藏南部白垩系及下第三系的生物相及遗迹相.微体古生物学报,15:307~317.
    331.周志强,周志毅.袁文伟,1994.扬子区奥陶纪宝塔组的划分.地层学杂志,29:283~286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700