用户名: 密码: 验证码:
钢筋混凝土框架节点抗震性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文进行了以下三方面的研究工作:
     ①进行了8组共16个矩形柱中间层中节点和4个圆柱节点组合体的低周反复加载试验。通过对节点区水平箍筋以及贯穿节点梁、柱纵筋在不同受力阶段应变的精细量测,对节点的传力机理以及影响抗震性能的因素进行了分析研究;对不同剪压比条件下轴压比对节点抗震性能的影响规律进行了分析研究;对不同受力阶段梁筋的粘结退化规律以及节点区的剪切变形进行了分析研究;对节点的静力抗剪与建立在能力设计思路上的抗震抗剪问题进行了深入研究,提出了建立在新思路基础上的节点抗震性能控制准则和控制条件。
     ②根据本文建立的考虑轴压比和位移循环次数影响的梁筋平均粘结应力退化模型和考虑软化效应、约束效应的核心区混凝土应力应变关系,通过在试验中得出的节点核心区混凝土、箍筋、节点正面、背面柱筋在反复荷载下的受力特点,利用斜压场理论模拟节点核心区在反复受力过程中的受力状态。通过本文编制的程序JAP对本文试件和收集到的数据较完整的国内外试件进行了电算分析,电算结果与试验结果符合程度较好。进一步利用JAP程序预测了不同剪压比,不同配筋特征值及不同轴压比条件下节点区的延性变化规律。
     ③对收集到的顶层中节点、中间层端节点以及顶层端节点的国内外试验结果进行了整理分析。明确了这三类节点的主要传力机构。根据不同部位节点之间存在的受力差异,对三类节点在整个受力过程中的传力机理进行了分析研究。此外重点对不同条件下中间层端节点梁筋带90°弯折锚固端的试验结果、顶层中节点采取不同柱筋构造方案的试验结果以及梁柱负弯矩筋采取不同搭接方案的顶层端节点的试验结果的延性和耗能性进行了对比分析。在充分听取国内专家意见的基础上提出了梁柱纵筋在节点部位有抗震要求的锚固和搭接方案。
     本论文得出了以下有创新意义的成果:
     ①节点中箍筋的受力方向箍肢(对圆形箍筋为沿受力方向部位)与垂直受力方向箍肢(圆形箍筋为沿垂直受力方向部位)的作用不完全相同。沿受力方向箍肢(或部位)既作为桁架机构的拉杆参与抗剪又对斜压杆受压后沿受力平面侧向膨胀的水平分量起约束作用;垂直受力方向箍肢(或部位)原则上仅对斜压杆沿垂直受力方向侧向膨胀起约束作用。以上结果确认了节点中存在三种传力机构,即桁架机构、斜压杆机构和约束机构。前两个机构直接传递节点剪力,后一个机构则通过约束节点核心区混凝土的侧向膨胀提高节点的延性和耗能能力。
     ②通过对梁柱组合体柱脱离体的平衡条件,首次明确了贯穿节点梁筋粘结应力和梁端受压混凝土的压力以相同的比例传入柱端以平衡柱端剪力,从而对节点区的传力机理
    
     重庆大学博士学位论文
    结出了完整的和具有说服力的解释。本文研究表明,在不同受力阶段,传人节点区的水平
    作用剪力由流架机构和斜压杆机构承担的比例是不同的,约束机构发挥的作用也有所不
    同。当贯穿节点的梁筋未出现明显的粘结退化之前,节点作用剪力主要通过街架机构传
    递,斜压杆机构传递的剪力和约束机构发挥的作用较小;当梁筋全面出现粘结退化以后,
    行架机构传递的剪力明显降低,作用剪力主要由斜压杆机构传递。核心区混凝土双向交
    叉斜裂缝充分发育后,斜压杆倾向膨胀不断增大,约束机构逐步发挥出最大作用。
     ③本文首次分清了构件的静力抗剪与框架结构根据能力设计思路确定的构件抗震
    抗剪具有不同的前提条件和不同的控制目标。即静力抗剪仅要求构件的承载能力高于作
    用剪力,是以承载能力作为控制目标的;抗震抗剪则是构件在承载能力不低于作用剪力
    的前提下,要求在反复作用的情况下,构件在达到一定的延性和变形能力之前维持其承
    载能力不出现明显退化。指出了目前进行抗震抗剪试验和确定构件抗震抗剪控制条件中
    存在的不正确概念。在此基础上,本文提出了以延性控制准则为基础的节点抗震抗剪控
    制公式。同时根据本文较系统的轴压比对比试验结果,指出了目前世界各国规范中节点
    抗剪承载力公式中的轴压比不分条件始终起有利作用的不合理性,在本文建议的公式中
    反映了在高剪压比的条件下轴压比对节点延性不利的特点。
This paper includes three parts of research:
    (1)Cyclic loading tests of sixteen interior joints with rectangualr columns and four joint subassemblages with circular columns. Based on measurement of strains of both horizontal stirrups in the joint core and longitudinal reinforcement passing througth the joint, in different stages,transfer mechanism and factors affacting seismic behavior of the joint, were analysed. Under different shear compression ration, effect of axial force ratio on seismic behawior of the joint was also evaluated, static shear and seismic shear of the joint based on capacity design were investigated. On this basis,new governing criteria and conditions of seismic behavior of the joint were put forward.
    (2)Based on deterioration model of owerage bond stress of beam reinforcement accounting for effect of axial compression ration and number of displacement loops,and stress-strain relationship of the concrete in the joint core accounting for effects of both softening and confinement, the modified compression field theory was employed to simulate behavior of the joint core under loading reversals. Analysis by means of the program JAP on the tested specimens in this paper and those obtained from other researchers produced consistent results. Predictions were made on the ductility of the joint core when shear compression ratio,reinforcement contant and axial force ratio were different.
    (3)Experimental results of interior joints on the top story, exterior joints in the intermediate stories,and knee joints are collected and summerized. Force transfer mechanisms of the three categories of joints were identified and analysed. Besides,compariative analysis was carried out on ductility and energy comsumption of the interior joints on the top story with 90?bent hooks,exterior joints in the intermediate stories with different detailing of longintudinal reinforcement in the columns,and the knee joints with different lap splices in the beam and the column under negative moments. Seismic anchorage and lap splices schemes were presented for the longitudinal rebars in the joint core.
    The creative results are as follows:
    (1)Behavior of the stirrup legs in the loading direction in the joint core (along the loading direction for circular stirrups)is different from that perpendicular to the loading direction. The stirrup legs in the loading direction acts as the tension chords in the truss model to resist shear,in the meantime,they confine the compressed diagonal strut from lateral expam-sion. For the stirrup legs perpendicular to the loading direction, they usually confine the strut from lateral expansion. The findings above confirm that there exsists three transfer mecha-
    
    
    
    
    nisms in the joint,that is,the truss mechanism,the diagonal strut mechanism,and the confinement mechanism. The first two mechanisms transfer joint shear,while the third inecha-nism provide ductility and energy dissipation capacity by confining the joint core concrete from lateral expansion.
    (2)From the equilibrium conditions of the isolated segment from a beam-column sub-assemblage, it is clarified for the first time that the bond stress along the beam rebars passing through the joint transfers into the column end to balance shear at this column end at the same ratio as that of the compression force in the compressed concrete at beam ends. In the way, a convincing expression is prsented to force transfer mechanism in the joint core. The findings shew that in different stages,the horizontal forces transfered into the joint are by the truss and the diagonal strut mechanisms are different. Behavior of the confinement mechamsm is also different. Before obvious bond deterioration of the beam rebars passing through the joint core occurs,the shear is mainly transfered by the truss mechansim. When the bond deterioration occurs comprehensively, the shear transfered by the truss mechamism is reduced significantly,the majority of the shear is transfered by the diagonal strut. At the time when reversed diagonal cracks develop fully, later
引文
[1] 丁.鲍雷,M.J.N.普里斯特利著,戴瑞同等译,钢筋混凝土和砌体结构的抗震设计,中国建筑工业出版社,1999年6月
    [2] T. Paulay,R. Park,and M. J. N. Priesttey,Reinfoced Concrete Beam—Column Joints under Seismic Actions,ACI Journal,Proceeding Vol. 75,No. 11 ,Nov. 1978,P. 585~593
    [3] 白绍良,杨媛,杨红,韦锋,王珍,从各国设计规范对比看我国钢筋混凝土建筑结构抗震能力设计措施的有效性(一),重庆大学土木工程学院,2001.9
    [4] K. Kitayama,S. Otani and H. Aoyama,Development of Design Criteria for R. C Interior Beam-Col-umn Joints, Design of Deam-Column Joints for Seismic Resistance, SP-123, ACI, Detroit, 1991,P. 145~165
    [5] 傅剑平,游渊,白绍良,钢筋混凝土抗震框架节点传力机构分析,重庆建筑大学学报,1996(6),P.42~52
    [6] Thomas Paulay,Equilibrium Criteria for Reinforced Concrete Beam-Column Joints,ACI Structural Journal, Nov-Dec, 1989,P. 635~643
    [7] Roberto T. Leon, Shear Strength and Hysteretic Behavior of Interior Beam-Column Joints,ACI Structural Journal, Jan-Feb. 1990,P. 3~11
    [8] A.G. Tsonos,Effect of Vertical Hoops on the Behavior of Reinforced Concrete Beam-to-Column Connections, European Earthquake Engineering, Feb. 2000,P. 13~26
    [9] 粘结锚固专题组,钢筋混凝土粘结锚固的研究及设计建议,建筑结构学报,1986(4)
    [10] F.J. Vecchio and M. P. Collins, Compression Response of Cracked Reinforced Concrete, ASCE Journal of Structural Engineering, Journal of Structural Engineering, Vol. 119, No. 12, Dec. 1993, P. 3590~3610
    [11] Frank J. Vecchio,Towards Cyclic Load Modeling of Reinforced Concrete,ACI Structural, March-April 1999,P. 193~202
    [12] Frank J. Vecchio and Mitchael P. Collins,The Modified Compression-Field Theory for Reinforced Concrete Elements Subjected to Shear,ACI Journal,March-April 1986,P. 219~231
    [13] Salim Razvi and Murat Saatcioglu, Confinement Model for High-Strength Concrete,Journal of Structural Engineering, March 1999, P. 281~289
    [14] J.B. Mander, M.J.N. Priestley,and R. Park,Theoretical Stress-Strain Model for Confined Concrete, ASCE,Journal of Structural Engineering,Journal of Structural Engineering, Vol. 114, No. 8,Aug. 1988,P. 1804~1849
    [15] Shrinivas B. Bhide and Mitchael P. Collins,Influence of Axial Tension on the Shear Capacity of Reinforced Concrete Mombers, ACI Structural Journal,September-October 1989, P. 570~581
    [16] N.J. Stevens,S. M. Uzumeri,and M. P. Collins,Reinforced Concrete Subjected to Reversed Cyclic Shear-Experiments and Constitutive Model, ACI Structural Journal, March-April 1991, P. 552~561
    [17] Thomas T. C. Hsu, Nonlinear Analysis of Concrete Membrane Elements,ACI Structural Journal,
    
    September-October 1991 ,P. 552~561
    [18] T. Paulay and R. Park, Joints in Reinforced Concrete Frames Designed for Earthquake Resistance, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand, June 1984
    [19] O. Joh, Y. Goto and T. Shibata, Behavior of Beam-Column Joints with Eccentricity Design of Deam-Joints for Seismic Resistance, SP- 123, ACI, Detroit, 1991, P. 359~378
    [20] S. Sugano, T. Nugashima, H. Kimura and A. Ichikawa, Behavior of Beam-Column Joints Using High-Strength Materials, Design of Beam-Column Joints for Seismic Resistance, SP-123, ACI, Detroit, 1991 ,P. 359~377
    [22] N. Hiroshi and K. Kohichiro, Correlation of Bond and Shear in RC Beam-Column Connections Subjected to Seismic Force,Proc. of 9'th WCEE,August 2~9,1998,Jokyo-Kyoto,Japan,Vol. Ⅳ
    [23] 反复循环荷载作用下钢筋混凝土框架梁柱节点核心区抗剪强度的试验研究,二机部第二设计院,北京市建筑设计院研究所,1981.10
    [24] S. Fujii and S. Morita,Comparision between Interior and Exterior RC Beam-Column Joints Behavior, Design of Beam-Column Joints for Seismic Resistance, SP-123, ACI, Detroit, 1991, P. 187 223
    [25] D.F. Meinheit and J. O. Jirsa,Shear Strengh of RC Beam-Column Connections,Journal of the Structural Division ,ASCE,Vol. 107 ,ST11,Nov. 1981 ,P. 2227~2244
    [26] O. Joh,Y. Goto and T. Shibata,Influence of Transverse Joint and Beam Reinforced and Relocation of Plastic Hign Region on Beam-Column Joints Stiffness Deterioration,Design of Beam-Column Joint for Seismic Resistance,SP-123,ACI,Detroit, 1991,P. 187~224
    [27] 赵成文等,反复荷载下高强混凝土框架内节点抗震性能试验研究,全国钢筋混凝土结构标准技术委员会节点与连结学组,云南昆明,1993.12
    [28] A.J. Durrani and K. J. Wight,Behavior of Interior Beam-to-Column Connections under Earthquake Type Loading, ACI, Journal, Proceedings V. 82, No. 3, May-June, 1985, P. 343-350
    [29] R.T. Leon,Shear Strength and Hysterestic Behavior of Interior Beam-Column Joints,ACI Structural Journal,V. 87,No. 1 ,Jan.-Feb.,1990,P. 3-11
    [30] N.W. Hanson, Seismic Resistance of Concrete Frames with Grade 60 Reinforcement,Journal of the Structural Divison, ASCE, Vol. 97, No. ST6 ,June, 1971, P. 1685-1700
    [31] 城攻·后藤康明·柴田拓二·梁塑性发生域制御骨组复元力特性改善,第8回工学年次讲演会论文集,1986年,P.629~632
    [32] Masaru Teraoka, Kazfiya Hayashi and Satoshi Sasaki, Behavior of Interior Beam-and-Column Subassemblages in an RC Frame,Journal of Fujita Technical Research Institute, No. 9,1998,P. 9423[21] 陈永春等,反复荷载下钢筋混凝土平面框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究,中国建筑科学研究院结构所,1993.11
    [33] 戴瑞同,关于新西兰规范中有关节点设计的两个问题的讨论,全国第九届混凝土结构节点与连接学术会议论文集,1991年6月,成都,P.150~158
    [34] 吕西林,郭子雄,王亚勇,RC框架梁柱组合体抗震性能试验研究,建筑结构学报,Vol.22,No.1,
    
    Feb.2001,P.2~7
    [35] 杨红,基于细化杆模型的钢筋混凝土抗震框架非线性动力反应规律研究,重庆建筑大学博士学位论文,2000年7月
    [36] P.C. Cheung, T. Paulay and R. Park, Mechanism of Slab Contributions in Beam-Column Subassemblages, Design of Beam-Column Joints for Seismic Resistance, SP123, ACI,Detroit, 1991,P.259~290
    [37] CW.French,J.F.Moehle,白绍良译,楼面板对梁—板—柱接头区的效应,梁柱节点抗震设计,SP—123,ACl,1991
    [38] X. Qi,The Behavior of a RC Slab-Beam-Column Sub-assemblage Under Lateral Load Reversals,CE299 Report,Structural Engineering, Mechanics and Materials, Departement of Civil Engineering,University of California at Berkeley, 1986
    [39] S.J. Pantazopoulou and J. P. Moehle, Truso Model for 3-D Behavior of RC Exterior Connections, Journal of Structural Engineering, ASCE, Vol. 116, No. 2, Feb. 1990, P. 298~315
    [40] AIJ, Design Guide for Earthquake Resistant Reinforced Concrete Buildings Based Ultimate Strength Concept, 1990
    [41] ACI-ASCE Committee 352, Recommendations for Design of Beam-Column Joints in Monolithic Reinforced Concrete Structures, 1991
    [42] Building Code Requirements for sturcture Concrete (318-99)and Commentary (ACl318-99 and ACl318R-99) [S]. Farmington Hills, Michigan 48333-9094: American Concrete Institute.
    [43] Standard Association of New Zealand, New Zealand Standard Code of Practice for the Desing of Concrete Structures, NZS37101, 1982
    [44] Standard Association of New Zealand, New Zealand Standard Code of Proctice for the Design of Concrete Structures, NZS3101, 1995
    [45] 欧洲规范2,混凝土结构设计,陈定外译,中国建筑科学研究院结构所,1995年8月
    [46] 欧洲规范8,建筑结构抗震设计规定,程绍革,王迪民,巩正光译,中国建筑科学研究院抗震所,1997年5月
    [47] 白绍良,对新西兰、欧共体、美国、日本和中国规范钢筋混凝土结构抗震条文的初步对比分析,重庆建筑大学,2000年5月
    [48] 中华人民共和国国家标准,混凝土结构设计规范(GBJ10—89),1989年
    [49] 中华人民共和国国家标准,混凝土结构设计规范(GB50010—2002),2002年
    [50] A. Boroojerdi and G. W. Freech,T-Beam Effect in Reinfroced Concrete Structures Subjected to Lateral Load, Struc. Engry. Report No. 87-04, Dept. of Civ. and Min. Engrg. University of Min- nesota, 1987, P. 300
    [51] 中华人民共和国国家标准,房屋建筑抗震设计规范(GB50011—2001)2001年
    [52] G. W. French and A. Boro ojerd, Contribution of R/C Floor Slabs in Resisting Lateral Loads, J. Struc. Engrg., ASCE, 115(1), 1-18,1989
    [53] A. Durrani and J. K. Wight, Earthquake Resistance of Connections Including Slabs, Struc. J., ACl, 1984(5), P. 400~406
    [54] George G. Penelis and Andreas J. Kappos, Earthquake-resistant Concrete Structures, E & FN
    
    SPON An Imprint of Chapman & Hall
    [55] 游渊,傅剑平,白绍良,汤华,对抗震混凝土框架节点抗剪承载力计算公式的重新识别,重庆建筑大学学报,1997年2月,P.14~25
    [56] Kazuo SUIUKI,Jian CAI et al, Mechomical Behaivor of Beam-circular Column Joints with Devices for Development of Beam Reinforcing Bars,Review of the 41st General Meeting,Technical Secsion, Held in Tokyo, May 1987, P. 374~377
    [57] 薛伟辰、刘文如.钢筋混凝土框架圆柱节点抗震抗剪强度的试验研究,哈尔滨建筑工程学院学报,Vol.26 No.1 Feb.1993,P.47~53
    [58] 牛秀艳、刘文如、丁晓欣,圆柱边节点核心区极限抗剪强度计算,哈尔滨建筑大学学报,Vol.32,No.2,Apr.1999,P.26~28
    [59] J. Kowalsky,N. Priestly,Improved Analytical Model for shear strength of Cicular Reinforced Concrete Columns in Seismic Regions ACI structural Jcurnal May-June,2000,P. 381~393
    [60] 贺志坚,钢筋混凝土框架顶层中节点的抗震性能及非线性有限元分析,西安冶金建筑学院硕士研究生论文,1989.5
    [61] 吴庆云,钢筋混凝土框架顶层中节点抗震性能试验研究,重庆建筑工程学院硕士学位论文,1993.5
    [62] 黄文彬,钢筋混凝土框架中塑性铰位于柱顶的顶层中节点的抗震性能试验研究,重庆建筑大学硕士学位论文,1994.7
    [63] 焦心亮,张连德,卫云亭,钢筋混凝土框架顶层中节点的非线性有限元分析,建筑结构学报,1995年10月,第5期,P.40~46
    [64] 白绍良,张德珊,傅剑平,游渊等,钢筋混凝土框架顶层中间节点抗震性能试验研究,混凝土结构设计规范第五批科研课题论文,V—5分项报告,1996年10月
    [65] 藤井荣,后藤定已,森田司郎,近藤吾郎.外端柱·梁接合部折曲定着关研究,日本建筑学会大会学术讲演概集,1983.9,P.1821~1824
    [66] 金田和浩,近藤吾郎,藤井荣,森田司郎.外端柱·梁接合部断破坏定着破坏相关,第6回学年次讲演会论文集,1984,P.665~668
    [67] Shigeru Hakuto,Robert Park,and Hitoshi Tanaka Seismic Load Tests on Interior and Exterior Beam-Column Joints with Substandard Reinforcing Details, ACI Structural Journal, January-February 2000,P. 11~25
    [68] T. Kaku and H. Asakusa,Ductillty Estimation of Exterior Beam-Column Subassemblages in Reinforced Corcrete Frams,Design of Beam-Column Joints for Seismic Resistance,SP-123 ACI, Detroit, 1991 ,P. 167~185
    [69] 唐九如等.钢纤维混凝土框架节点抗震性能及设计方法研究,东南大学、北京有色冶金建筑学院,1993年11月
    [70] N.W. Hanson,and Harold W. Conner, Seismic Resistance of Reinforced Concrete Beam-Column Joints, Journal of the Structural Division, ASCE, Vol. 93, No. ST5, Oct. 1967, P. 533~560
    [71] 白绍良,傅剑平,游渊等.钢筋混凝土框架中间层端节点的受力性能试验研究,混凝土结构设计规范第五批科研课题论文,V—5分项报告,重庆建筑大学,1996年10月
    [72] E. L,Kemp and P. R.,Maukherjee,Inelastic Behavior of Concrete Knee Joints,The Consulting
    
    Engineer,Oct. 1968,P. 44~48
    [73] Ingvar H. E. Nilson and Anders Losberg,Reinforced Concrete Corners and Joints Subjected to Bending Moment, Journa of the Structural Derision, ASCE, June, 1976.
    [74] Morgan Johansson, Reinforced Detailting in Concrete Frame Corners ACI Structural Journal, Jan./Feb. 2001.
    [75] 框架顶层端节点专题组(白绍良、朱锡均、傅剑平、罗元辉等),钢筋混凝土框架顶层端节点的静力及抗震性能研究,《混凝土结构研究报告选集》,中国建筑工业出版社出版,1994年6月,P.184~216
    [76] L.M. Megget,The Seismic Behaviour of Small Reinforced Concrete Beam-Column Knee Joints, The University of Auckland ,January 1998
    [77] Bill Angelakos,The Behaviour of Reinforced Concrete Knee Joints under Earthquake Loads,Department of Civil Engineering ,in the University of Toronto, 1999
    [78] 陈永春、高红旗、马颖军、陈渝,双向反复荷载下钢筋混凝土空间框架梁柱节点受剪承载力及梁筋粘结锚固性能的试验研究,钢筋混凝土梁柱节点的破坏机制和抗震设计方法的研究报告之二,中国建筑科学研究院结构所,1993。11
    [79] P.C. Cheung, T. Paulay and R. Park, Interior and Exterior Reinforced Concrete Beam-Column Joints of a Prototype Two-Way Frame with Floor Slab Designed for Earthquake Resistance, Rept. No. 89-2, Dept. of Civ. Engrn., University of Canterbury, Christchurch, N. Z., 1989, P. 80.
    [80] K. Kitayama,S. Otani,Behavior of Reinforced Concrete Beam-Column-Slab Subassemblages Subjected to Bi-Directional Load Reversals, Proc. Ninth World Conf. on Eqke. Engrg., Tokyo-Kyoto Japan, Paper No. SF-10,Vol. Ⅷ, Ⅷ 586, 1988
    [81] O. Job, Y. Goto and T. Shibata,Behavior of Three-Dimensional Reinforced Concrete Beam-Column Subassemblages with Slabs,Proc. of Ninth World Conference on Earthquake Engineering, August2-9,1988,Tokyo-Kyoto,Japan(Vol. Ⅷ) ,P. 587-592.
    [82] 王峥,轴压比对钢筋混凝土框架节点抗震性能影响的试验研究,[硕士学位论文],重庆建筑大学,1997.12
    [83] 陈滔,钢筋混凝土框架中间层中节点的抗震性能试验研究及受力机理分析,[硕士学位论文],重庆建筑大学,1999.6
    [84] 林东,高剪压比下钢筋混凝土框架中间层中节点抗震性能试验研究,[硕士学位论文],重庆建筑大学,2000.5
    [85] 苏磊,钢筋混凝土框架圆柱中节点抗震性能试验研究,[硕士学位论文],重庆建筑大学,2000.11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700