用户名: 密码: 验证码:
郯庐断裂带中南段岩浆活动与深部过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
郯庐断裂带自中生代以来经历了晚侏罗世末至早白垩世的走滑运动、晚白垩世至早第
    三纪的伸展运动及新第三纪以来的挤压逆冲活动(徐嘉炜,1992)。该断裂带在演化的不
    同阶段都伴随着岩浆活动,但不同阶段岩浆活动的规模、形成的火山岩和侵入岩的岩性、
    岩石化学、地球化学等方面的特征有所不同。这不仅与岩浆的来源有关,而且与断裂带的
    演化和深部过程密不可分。
     郯庐断裂带中南段走滑糜棱岩类岩石中获得了~(40)Ar/~(39)Ar年龄为120~132Ma,这些年
    龄值代表了郯庐断裂带韧性左旋走滑变形的冷却年龄,表明郯庐断裂带的大规模左行平移
    发生在早白垩世。张八岭隆起带北段沿郯庐断裂带侵入形成的瓦屋刘、瓦屋薛岩体中的黑
    云母~(40)Ar/~(39)Ar坪年龄分别为127.87±0.46Ma(瓦屋刘岩体)和120.00±0.50Ma(瓦屋薛
    岩体);同时肥东龙山的火山岩及沂水道托火山岩的K-Ar全岩年龄分别为119.2±2.3Ma
    和114.8±1.0Ma,皆属于早白垩世,指示了岩浆的侵入和喷发时间为早白垩世,而不是过
    去认为的晚侏罗世。岩体和火山岩的同位素年龄与郯庐断裂带走滑糜棱岩的变形时代一
    致,显示为断裂带走滑运动后期诱发的岩浆活动,而非裂谷活动的产物。这进一步表明合
    肥盆地东缘的郯庐断裂带大规模平移发生在早白垩世。
     郯庐断裂带中南段中生代出现了一套以中酸性为主的岩浆岩。该套岩石以富钾、富碱
    为特征,属于高钾钙碱性岩系和钾玄岩系列。稀土元素具有轻稀土富集、重稀土亏损的特
    征,且曲线的斜率和形态一致,指示岩浆来自类似的岩浆源。微量元素表现为富大离子亲
    石元素,尤其是强不相容元素,K的异常特征参数明显大于1,而Nb的异常参数小于1,
    则表明原始岩浆既受到过富钾地幔的作用又有壳源物质的参与。Sr、Nd同位素组成显示岩
    浆来源于壳幔过渡带。断裂带内出现幔源的捕掳体及肥东龙山火山岩中玄武岩和山东高桥
    地区粗面玄武岩的存在,显示了幔源的信息。以上这些特征表明岩浆源区既有壳源物质,
    又有幔源物质的贡献,并且主要为部分熔融成因。研究表明,断裂带内岩浆活动明显受断
    裂带控制,走滑晚期的岩浆活动起源于壳幔底侵、壳幔相互作用下的壳幔过渡带。这期岩
    浆活动与伊泽奈奇板块斜向俯冲、中国东部遭受区域性压剪的背景下出现的软流圈开始上
    涌有关。在此背景下中国东部发生了岩石圈减薄,同时又出现了一系北东—北北东向左行
    平移断裂系,从而诱发了大规模的岩浆活动。该期岩浆的喷发和侵位同时也反映了断裂带
    在早白垩世走滑运动中已深切至壳幔边界。
     郯庐断裂带的伸展活动发生于晚自垩世至早第三纪,广泛控制形成了大型断陷盆地,
    形成了一套老第三纪亚碱性系列的拉斑玄武岩。玄武岩的稀土元素具有轻稀土富集、重稀
    土亏损的特征,且曲线的斜率和形态一致,指示岩浆来自性质相近的岩浆源。Sr、Nd同位
    
    
    素组成显示岩浆来源于宫架型地慢.微量元汞特征表明岩浆源区经历过不同程度的部分烙
    融和地幄交代作用.彻庐断裂带中南段老第三纪玄武岩喷发与中国东部同期一系列伸展盆
    地形成的动力系背景一致,是太平洋板块向西正面高角度佑冲下、中国东部岩石圈上拱中
    出现的巨型伸层构造.正是在软流团上涌、岩石因拆沉、减薄的背景下,断裂带向下切人
    了上地幄的上部,出现了卸庐断裂带第一次玄武岩喷发.
     翊庐断裂带中南段新第三纪以来的玄武岩存在以下特点:随着玄武岩时代由老到新,
    玄武岩岩性从碱性玄武岩(中新世)一强碱性玄武岩(更新世),碱性逐渐增强,指示玄
    武岩的岩浆来源深度逐渐变深;轻、重稀土元素分离程度及不相夸元素宫集程度也逐渐增
    强;Sr、Nd同位素比越来过亏损.通过对新第三纪至第四纪玄武岩中变形与未变形慢源包
    体的研究,发现嘟庐陨裂带中南段在新生代时其下也存在上地幄剪切带.显然,朔庐断裂
    带新生代时己全面切人上地@,且新第三纪以来可能切穿上地幄.同时发现,地幄剪切变
    形强的包体地馒交代现象显著,地幄交代作用强的包体中地鳗剪切变形也强,可见地鳗交
    代与地幄剪切紧密伴生,相互促进,最终诱发地馒的部分烙融,从而形成了大规模的玄武
    岩喷发。研究表明瑚庐断裂带玄武岩岩浆未源深度从老第三纪到更新世逐渐变深,断裂带
    切割深度相应加大,部分烙融程度相应降低.在综合研究的基础上,提出了郊庐断裂带中
    南段新生代玄武岩的形成经历了地惧交代、地幄剪切及部分熔融这些重要的深部过程。断
    裂带新第三纪以来玄武岩喷发出现在总体受压背景下,其区域动力学机制为西太平洋弧后
    扩张及印度板块与欧亚板块的陆·陆碰拘,从而在中国东部出现了近东西向的区域挤压,其·
    中的玄武岩喷发可能发生在多次受压间歇的应力松弛期。一
The Tan-Lu fault zone experienced the strike-slip movement from the latest late Jurassic to the early Cretaceous, the extensional movement from the late Cretaceous to Paleogene, and post-Eogene compressive activities since Mesozoic. Three stages of Meso-Cenozoic evolution in the Tan-Lu fault zone were all associated with magmatic activities. The scale of magmatic activities, lithology, petrochemistry and geochemistry of igneous rocks are different in three stages. These features are not only relative to the origin of magma, but also to the evolution and deep processes of the fault zone.
     This paper obtained 40ArI39Ar ages for the strike-slip mylonites from the middle-southern segment of the Tan-Lu fault zone with varying l2OMa to 132Ma. These ages represent the cooling age of the ductile left-lateral strike-slip deformation on the Tan-Lu fault zone. Evidence above indicates that the Tan-Lu large-scale left-lateral wrench occurred in the early Cretaceous. 40Ar/39Ar ages of the Wawuliu and Wawuxue rock mass for biotite along the Tan-Lu fault zone intrusion in the northern segment of the Zhangbaling uplift zone are 127.87 ?0.46Ma and 120.00 ?0.5OMa respectively. K-Ar whole-rock ages for volcanic rocks from the Longshan抯 area, Feidong and the Daotuo抯 area, Yishui are 119.2 ?.3Ma and 114.8?1.OMa respectively, belonging to the early Cretaceous not the late Jurassic. Their isotopic ages coincide with the deformed time of the strike-slip mylonites in the Tan-Lu fault zone, and reflect that the strike-slip movement of the Tan-Lu fault zone induced the early Cretaceous magmatic activities, not
    the results of the riftogenesis. It is further proved that the large-scale wrench movement of the Tan-Lu fault zone took place mainly in the early Cretaceous.
     Mesozoic igneous rocks in the middle-southern segment of the Tan-Lu fault zone appeared a set of intermediates rocks characterized by rich in alkali, potassium, belonging to high-K calc-alkaline series and shshonitic series, and notably rich in highly incompatible lithophile element, such as Rb, Th, Ba, LREE. The Tan-Lu fault zone controls the area抯 magmatic activities. K~ values are more than 1, Nb~ values are less than 1. It is suggested that the mother magma not only included mantle-derived information but also the crust-derived information. Investigation results including isotope and the mantle-derived xenoliths show that these magmatic activities during the later of the strike-slip stage originated from the transitional zone
    
    
    ? ?
    
    
    
    (1U
    
    
    
    between the crust and mantle, and also demonstrate that the fault zone had cut into the boundary of the crust and mantle. Just under this setting of oblique subduction of the Izanagi Plate, the eastern China continent suffered from regional compression and shearing. Therefore, the eastern China continent experienced lithospheric thinning and a series of NE-NNE sinistral strike-slip fault system, caused a large-scale magmatic activities.
     The extensional activities, along the Tan-Lu fault zone occurred in the late Cretaceous to Paleogene, resulting in development of a series of extensional basins along the fault zone and a set of Paleogene subalicalic theoletite with higher LREE. Sr, Nd isotopes suggest magmas origin from the enriched-mantle. Rare element features show the mother magma area experienced the partial melting and the mantle metasomatisni. Paleogene magma eruptions from the middle-southern segment of the Tan-Lu fault zone have the same geodynamic setting as a lot of other contemporaneous basins in East China. They were all developed under lithosphere arching in East China due to high-angle, westward, perpendicular subduction of the Pacific Plate. Under this settings of asthenosphere upwelling and lithosphere delamination and thinning, led to the first basalt eruption in the Tan-Lu fault zone.
     With becoming more and more young of the post-Eogene basalt from the middle-southern segment of the Tan-Lu fault zone, their alkali, the fractional degree of LREE/I-IREE and incompatible element enrichme
引文
[1]安徽省地质矿产局.1987.安徽省区域地质志.北京:地质出版社.
    [2]陈道公.1992.郯庐断裂带中南段新生代玄武岩地球化学.见:刘若新主编,中国新生代火山岩年代学与地球化学.北京:地震出版社.171~200.
    [3]陈道公,彭子成,1985.山东新生代火山岩K—Ar年龄和Ph—Sr同位素特征.地球化学.(4):93~303.
    [4]陈道公,彭子成.1986.山东临朐玄武岩的Nd、Sr、Pb同位素体系.科学通报.1:45~48.
    [5]陈道公,彭子成.1988.皖苏若干新生代火山岩的钾氩年龄和铅锶同位素特征.岩石学报.4(2):3~12.
    [6]陈道公,杨杰东,王银喜,1990.苏皖鲁某些新生代火山岩的钕同位素组成及意义.科学通报.12:925~927.
    [7]陈沪生,张永鸿,徐师文等著.1999.下扬子及邻区岩石圈结构构造特征与油气资源评价.北京:地质出版社.158~164.
    [8]陈全茂,李忠飞.1998.辽河盆地东部凹陷构造及含油气性分析.北京:地质出版社.141~148.
    [9]陈义贤.1985.辽河裂谷盆地断裂演化序次和油气藏形成模式.石油学报.6(2):1~11.
    [10]池际尚,路凤香,刘永顺等著.1996.中国原生金刚石成矿地质条件研究.武汉:中国地质大学出版社.9~50.
    [11]从柏林,张儒瑗.1983.华北断块区新生代玄武岩系及其形成的大地构造环境.地质论评.29(1):40~48
    [12]邓晋福,鄂莫岚,路凤香.1980.中国东部某些地区碱性玄武岩中包体的温度、压力的计算.地质论评.26(2):112~120.
    [13]邓晋福,赵海玲,莫宣学等.1996.中国大陆根一柱构造——大陆动力学得钥匙.北京:地质出版社.
    [14]窦立荣,宋建国,王瑜.1996.郯庐断裂带北段形成的年代学及其意义.地质论评.42(6):508~512.
    [15]鄂莫岚,赵大升.1987.中国东部新生代玄武岩及深源岩石包体.北京:科学出版社.
    [16]樊祺诚,刘若新.1990.上地幔尖晶石-石榴石复合橄榄岩与相转变研究.见:中国矿物岩石地球化学协会,地幔矿物岩石地球化学专业委员会编.中国上地幔特征与动力学论文集.北京:地震出版社.72~82.
    [17]樊祺诚,刘若新,1992.中国东部新生代玄武岩稀土元素地球化学.见:刘若新主编,中国新生代火山岩年代学与地球化学.北京:地震出版社.339~365.
    
    
    [18]方仲景,丁梦林,向宏发等.1986.郯庐断裂带的基本特征.科学通报.(1)52~55.
    [19]葛宁洁,周导之.1993.安徽肥东群变质岩系定年.安徽地质.3(3):22~25.
    [20]国家地震局地质研究所.1987.郯庐断裂.北京:地震出版社.83~141.
    [21]国家地震局中国地震区划图编委会.1991.中国及邻区地震震源机制图及说明书.北京:地震出版社.
    [22]何永年,林传勇.1981.中国东部新生代玄武岩中二辉橄榄岩团块的结构和组构.地震地质.3(1):41~50.
    [23]金隆裕.1983.郯(城)—庐(江)裂谷中段及其两侧新生代火山岩钾—氩年龄值.山东地质情报.(4):41~43.
    [24]金隆裕.1994.沂沭裂谷及其邻区下白垩世火山熔岩地球化学特征.山东地质.10(1):40~51.
    [25]金淑燕,潘顺安.1998.女山玄武岩中尖晶石—石榴石二辉檄榄岩包体及其岩石物理意义.地球科学—中国地质大学学报.23(5):475~479.
    [26]金振民,Green Ⅱ H W,R.orch R S.1993.幔潭包体和中国东部现代弧后地热标志.中国科学(B辑).23(4),410~416.
    [27]金振民,高山.1996.底侵作用(underplating)及其壳—幔演化动力学意义.地质科技情报.15 (2):1~7.
    [28]劳秋元.1984.郯庐断裂带前古生代,古生代的形成演化.《构造地质论丛》.地质出版社.3期:80~93.
    [29]李家灵,高维明,孙竹友.1984.沂沭裂谷消亡与华北裂谷新生的构造应力场.构造地质论丛,(3):318~327.
    [30]李开善.1987.郯庐断裂带构造应力场初步探讨.中国地质科学院562综合大队集刊,第6号,127~137.
    [31]李曙光,刘德良,陈移之等.1993.中国中部篮片岩的形成时代.地质科学.28(1):21~27.
    [32]李武显,周新民.1999.中国东南部晚中生代俯冲带探索.高校地质学报.5(2):164~169.
    [33]李学明,李彬贤,张巽等.1985.安徽管店岩体的同位素地质年龄和郯庐断裂带的动力学变质作用.中国科学技术大学学报.12月(增刊),JCUST(85037):254~261.
    [34]梁鸿德等.1992.辽河断陷火山岩地质年龄及地层时代.石油学报,13(2).
    [35]林传勇,何水年,史兰斌.1990.(?)梭岩型幔源包体及其地质意义.国际大陆岩石圈构造演化与动力学讨论会论文集.北京:科学出版社.165~172.
    [36]林传勇,史兰斌,何永年,陈孝德.1994.中国东部幔源包体的变形特征及其上地幔流变学意义.见:钱祥麟主编,伸展构造研究.北京:地质出版社,87~98.
    
    
    [37]林传勇,徐义刚,张小鸥,史兰斌,陈孝德.1996.中国东部上地幔岩石变形特征、流体的作用及软流层(体)初步探讨.见:杜乐天主编,地幔流体与软流层(体)地球化学(杜乐天主编).北京:地质出版社.312~340.
    [38]刘丛强,解广轰,增田彰正.1995.中国东部新生代玄武岩的地球化学——Ⅰ.主元素和微量元素组成:岩石成因及源区特征.地球化学.24(1):1~18.
    [39]刘茂强,杨丙中,邓俊国等.1993.伊通—舒兰地堑地质构造特征及其演化.北京:地质出版社.
    [40]刘若新,樊祺诚,林卓然.1996.地幔流体及幔源岩石地球化学.见:杜乐天主编,地幔流体与软流层(体)地球化学.北京:地质出版社.26~54.
    [41]刘若新,杨美娥,胥怀济,郭金弟,王文瑚.1981.华北地区新生代碱性玄武岩中超镁铁质捕虏体的初步研究.地震地质.3(3):1~16.
    [42]卢华复,俞鸿年,丁幼文等.1984.试论郯庐断裂带中段新构造期构造应力场的演化.构造地质论丛(三).北京:地质出版社.107~115.
    [43]卢造勋,夏怀宽.1992.内蒙古东乌珠穆沁旗至辽宁东海地学断面.北京:地震出版社.
    [44]陆克政,戴俊生.1994.胶莱盆地的形成和演化.东营:石油大学出版社.109~111.
    [45]陆克政,漆家福,戴俊生,杨桥,童亨茂.1997.渤海湾新生代含油气盆地构造模式.北京:地质出版社.68~69.
    [46]卢造勋,夏怀宽.1992.内蒙古东乌珠穆沁旗至辽宁东海地学断面.北京:地震出版社.
    [47]马杏垣,刘昌铨,刘国栋.1991.江苏响水至内蒙古满都拉地学断面.北京:地质出版社.
    [48]牛漫兰,朱光,宋传中,王道轩,2000.郯庐断裂带火山活动与深部地质过程新认识.地质科技情报.19(3):21~26.
    [49]牛漫兰,朱光,宋传中.2001.郯庐断裂带中生代火山活动与深部过程.合肥工业大学学报.24(2):147~153.
    [50]欧林果,朱光,宋传中.1998.郯庐断裂带庐江-桐城段的两次平移.安徽地质.8(4):34~36.
    [51]彭松柏.1992.中国东部上地幔岩石组构与稀土配分之间的关系.地质科技情报.11(3):37~43
    [52]强祖基,叶士忠.1985.1668年山东莒县—郯城8 1/2级大震区的活动断裂特征.地震地质.7(2):19~26.
    [53]邱家骧,王人镜,李昌年等.1991.五大连池—二克山富钾火山岩.武汉:中国地质大学出版社.85~95.
    [54]邱检生,王德滋,任启江,陈克荣,曾家湖.1993.郯庐断裂及其邻区中生代地幔交代作用与钾质岩浆成因.亚洲的增生.北京:地震出版社,139~142.
    [55]邱检生,王德滋,周金城,曾家湖.1996.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因.地球科学—中国地质大学学报,21(5):546~552.
    
    
    [56]曲以秀,臧尧令.1985.山东高桥地区粗面玄武岩系矿物及微量元素研究.矿物岩石.5(4):14~26.
    [57]任建业,陆永潮,李思田等.1999,伊舒地堑构造演化的沉积充填响应.地质科学.34(2):196-203.
    [58]任有保,于有兰.1996.沂水北部沂沭断裂带构造透镜体特征.山东地质.12(1):76~83.
    [59]商玉强,文琼英,张宝政.1992.沂沭断裂带内部王氏组的沉积环境及构造意义.山东地质.8(1):30~41.
    [60]山东省地质矿产局.1991.山东省区域地质志.北京:地质出版社.
    [61]石永红,余小俭,江来利,吴维平.1998.大别山金鸡寨花岗岩体演说化学特征及侵位机制初步探讨.安徽地质.8(3):16~24,44.
    [62]宋子新,钱祥麟.1996.花岗岩成因机制研究综述.地质科技情报.15(3):19~25.
    [63]苏良友.1983.安徽合肥盆地石油地质特征探讨,安徽石油地质勘探.7:23-33.
    [64]苏尚国,周旬若,顾德林.1999.山东沂水郯庐断裂带中段中生代火山岩特征及演化.地质论评.45(增刊):565~571.
    [65]孙荣圭,崔广振,李茂松.1984.安徽境内郯庐断裂带的构造史.构造地质论丛.3期:152~159.
    [66]孙武城,徐杰,杨主恩,张先康.1992.上海奉贤至内蒙古阿拉菩左旗地学断面.北京:地震出版社.
    [67]汤有标,姚大全.1990.郯庐断裂带赤山段晚更新世以来的活动性.中国地震,6(2):63~69.
    [68]汤有标,姚大全.1990.郯庐断裂带南段新活动性的初步研究.地震研究.13(2),155~165.
    [69]万天丰.1992.山东省构造演化与应力场.山东地质.8(2):70~101.
    [70]王德滋,任启江,邱检生,陈克荣,徐兆文,曾家湖.1996.中国东部橄榄安粗岩省的火山岩特征及其成矿作用.地质学报.70(1):23~34.
    [71]王方正,金隆裕,徐耀荣.1987.山东临朐山旺新生代玄武岩中超镁铁岩包体的研究.地球科学——武汉地质学院学报.12(3):249~255.
    [72]王璞珺,杜小弟,王俊,王东玻.1995.松辽盆地白垩系年代地层研究及地层时代划分.地质学报,69(4):312-380. 、
    [73]王锡亮.1991.山东燕山晚期岩浆岩的岩石组合与某些岩石化学特征.山东地质.7(2):89~95.
    [74]王锡亮.1992.论山东地区燕山期地壳运动及其岩浆岩的形成时代.山东地质情报.(3):1~6.
    [75]王小凤,李中坚,陈柏林等.1998.郯庐走滑断裂系的形成演化及其地质意义.见:郑亚东等主编.第30届国际地质大会论文集.北京:地质出版社.14: 176~196.
    [76]王小凤,李中坚,陈柏林等.2000.却庐断裂带.北京:地质出版社.320~321.
    
    
    [77]武殿英.1985.吉林伊通新生代玄武岩中上地幔包体的研究.吉林地质.(1):1~14.
    [78]吴福元.1998.壳—幔物质交换的岩浆岩石学研究.地学前缘.5(3):95~103.
    [79]吴福元,孙德有.1999.中国东部中生代岩浆作用与岩石圈减薄.长春科技大学学报.29(4):313~317.
    [80]吴利仁.1985.中国东部中生代花岗岩类.岩石学报.1(1):1~10.
    [81]吴利仁,齐进英,王听渡,张秀棋,徐永生.1982.中国东部中生代火山岩.56(3):223~234.
    [82]夏林圻,夏祖春,徐学义.1994.女山更新世碧玄岩岩浆的起源和演化.岩石学报.10(3):223~235.
    [83]夏林圻,夏祖春,徐学义.1996.地幔橄榄岩捕虏体中的流体包裹体、岩浆包裹体和玻璃.见:杜乐天主编,地幔流体与软流层(体)地球化学.北京:地质出版社.230~271.
    [84]解广轰,王俊文.1992.汉诺坝玄武岩及其超镁铁岩捕掳体的地球化学.见:刘若新主编,中国新生代火山岩年代学与地球化学.北京;地震出版社.149~170.
    [85]刑凤鸣,徐祥著.1999.安徽扬子岩浆岩带与成矿.安徽人民出版社.
    [86]徐嘉炜.1964.郯城-庐江深断裂带的平移运动.华东地质.5期:18~31.
    [87]徐嘉炜.1978.试论郯-庐断裂带的平移及其地质找矿意义.地质矿产研究.第5期,1~30.
    [88]徐嘉炜.1984,郯城-庐江平移断裂系统.构造地质论丛.(3):18-32.
    [89]徐嘉炜,马国锋.1992.郯庐断裂带研究的十年回顾.地质论评.38(4):316~324.
    [90]徐嘉炜,朱光,吕培基等.1995.郯庐断裂带平移年代学研究的进展.安徽地质.5(1):1~12.
    [91]徐嘉炜,朱光,马国锋,1993.东亚大陆边缘演化的若干认识.亚洲的增生.地震出版社.25~30.
    [92]许浚远.1997.依舒地堑新生代构造演化.地球科学.22(4):406~410.
    [93]许志琴.1984.郯庐裂谷系概述.构造地质论丛.(3):39~46.
    [94]徐义刚,林传勇,史兰斌,J-C,C.Mercier J.V.Ross.1995.中国东部上地幔地温线及其地质意义.25(8):874~881.
    [95]徐义刚,M.A.Menzies, 林传勇,R.W.Hinton.1997.吉林伊通幔源包体的微量元素组成及其成因岩石学意义.岩石学报.13(1):14~25.
    [96]徐志刚,盛继福,孙善平.1999.关于“橄榄安粗岩系列(组合)”特征及某些问题的讨论.地质论评.45卷(增刊):43~62.
    [97]严俊尹,马前贵.1992.渤海海缄的郯庐扭断裂及含油气盆地的发育.地球科学.17(1):31~37.
    [98]杨美娥,王文瑚.1985.江苏六合方山新生代碱性玄武岩中幔源橄榄岩的显微构造研究.地震地质.7(4):71~80.
    [99]张宝政,刘玉海.1982.佳木斯—伊通断裂带的基本特征及其与郯庐断裂带的关系.长春地质学院学报.1期:29~39.
    
    
    [100]张家声.1983.沂沭断裂带中段基底韧性变形带.地震地质.5(2):11~24.
    [101]张家声.1992.郯庐剪切带的性质和意义.地球科学.17(4):363~471.
    [102]张小鸥.1995.地堑上地幔剪切带.地震地质.17(2):167~176.
    [103]支霞臣.1989.汉诺坝含超镁铁质岩包体的碱性玄武岩微量元素地球化学.地球化学.(2):149~157.
    [104]支霞臣,陈道公,杨晶.1995.皖东上第三系玄武岩的地球化学特征和成因.地质学报.69(2):156~167.
    [105]支霞臣,冯家麟.1992.汉诺坝玄武岩的地球化学.见:刘若新主编,中国新生代火山岩年代学与地球化学.北京:地震出版社.114~148.
    [106]周建波,胡克,申宁华等.1999.郯庐断裂中段石场-中楼拉分盆地的确定.地质科学.34(1):18~28.
    [107]周进高,赵宗举,邓红婴.1999.合肥盆地构造演化及含油气性分析.地质学报.73(1):15~24.
    [108]周泰禧,陈江峰,季学明,彭子成.1992.安徽中生代中酸性火山岩的时代归属,安徽地质科技.(2):28~29.
    [109]周泰禧,陈江峰,张巽,李学明.1995.北淮阳花岗岩—正长岩带地球化学特征及其大地构造意义.地质论评.41(2):144~151.
    [110]周泰禧,李学明,张巽,韦刚健,潘国明,陈江峰.1995.北淮阳富碱侵入岩带Pb同位素研究.中国科学技术大学学报,25(4):467~473.
    [111]周新民,于津海,徐夕生.1992.女山玄武岩中麻粒岩捕掳体的发现与意义.科学通报.(3):1198~1201.
    [112]朱光,刘国生,李双应等.2000.下扬子地区盆地的“四层楼”结构及其动力学机制.合肥工业大学学报.23(1):47~52.
    [113]朱光,刘国生,王道轩等.2000.郯庐断裂带的脉动式伸展活动.高校地质学报.6(3):396~404.
    [114]朱光,宋传中,王道轩等.2001.郯庐断裂带走滑时代的~(40)Ar/~(30)Ar年代学研究及其构造意义.中国科学(D辑).31(3):250~255.
    [115]朱光,徐嘉炜.1998.郯庐断裂带的平移幅度、平移时代及其构造模式.见陈械川等主编:《第30界国际地质大会论文集》.北京:地质出版社.第14卷(构造地质学,地质力学):167~175.
    [116]朱光,徐嘉炜.1999.郯庐断裂带与大别-胶南造山带的构造关系.见马宗晋等主编:《构造地质学-岩石圈动力学研究进展》.北京:地震出版社.164~170.
    [117]朱光,徐嘉炜,刘国生等.1998.下扬子地区沿江前陆盆地形成的构造控制.地质论评.44(2):120~129.
    
    
    [118]朱光,徐嘉炜,刘国生等.1999.下扬子地区前陆变形构造格局及其动力学机制.中国区域地质.18(1):73~79.
    [119]朱光,徐嘉炜,孙世群,1995,郯庐断裂带平移时代的同位素年龄证据.地质论评.41(5):452~456.
    [120]朱光,徐嘉炜,W.R.Fitches,C.J.N.Fletcher.1994.胶北蓬莱群的同位素年龄及其区域大地构造意义.地质学报.68(2):158~172.
    [121]Alle'gre, C. J. 1978. Trace element in igneous petrology. Amsterdam: Elsevier, 1-12.
    [122]Arndt, N. T., Goldstein, S.L.1989. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics. 161: 201-212.
    [123]Bird P.1987. Initiation of intracontincntat sudbuction in the Himalayia. J Geophys Res. 83: 4975-4987.
    [124]Bird P.1979. Continental delamination and the Colorado Plateau. J. Geophys Res. 84: 7561-7571.
    [125]Blusztaju J.and Hart S. R. 1989. Sr, Nd, and Pb isotopic character of Teritary basalts from southwest Poland, Geochim. Cosmochim. Acta, 53, 2689-2696.
    [126]Bonin, B. 1990. From orogenic to anorogetic settings :evolution of granitoid suites after a major orogenesis. Geol J. 25: 261-270.
    [127]Bowen, N. L.1922.The reaction principle in petrogenesis. Journal of Geology. 30:177-198.
    [128]Botynton, W. V.,1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P.(ed.),Rare earth element geochemistry. Elsevier. 63-114.
    [129]Chapman D.S., Pollack H.N.1977. Regional geotherms and lithospheric thickness. Geology. 5: 265-268.
    [130]Chen C Y. and Frey F A. 1983. Origin of Hawaii tholeiite and alkali basalt. Nature. 302, 785~789
    [131]Collins, W. J. 1994. Upper-and middle-crustal reponse to Delamination: an example from the Lachlan fold belt,eastern Australia. Geology. 22: 143-146.
    [132]Collins, W.J., Vernon, R. H. 1994. A rift-drift-delamination model of continental evolution: Paleozoic tectonic development of eastern Australia. Tectonphysics. 235: 249-275.
    [133]Condie K C. 1976. Plate Tectonics and Crustal Evolution. Pergman Oxford. 297
    [134]Davies G. F. 1992. Mantle convection. J. Geol. 100: 151-206.
    [135]Dawson J. B. 1984. Contrasting types of upper mantle metasomatism? in J.komprobst, ed., kimberlites I:The mantle and crust-mantle relationships: Amsterdam, Elsevier. 289~294
    [136]Debon, F. and Le Fort, p.,1982. A chemical-mineralogical classification of common plutonic rocks and associations trans. R. Soc. Edinb, Earth Sciences, 73 135-149.
    
    
    [137] Dewey, J. F. 1988. Extensional collapse of orogens. Tectonics. 7:1123-1140.
    [138] De Yoreo J. J., Lux D. R., Guidotti C. V. 1989. The role of crustal amatexis and magma migration in the thermal evolution of region of thickened continental crust In: Daly J. S., Cliff R. A., Yardley B. W. D. eds. Evolution of Metamorphic Belts. Geol. Soc. London, Spec. Publ. 43:187-202.
    [139] Downes H. 1990. Shear zones structures and micro-structures in mantle peridotites form the Voltri massif, Ligurian Alps, NW Italy. Geologic en Mijnbouw. 69: 3-17.
    [140] Downes H.1990. Shear zones in the upper mantle-relation between geochemical enrichment and deformation in mantle peridotite, 18:374-377.
    [141] Downes H. and Dupuy C. 1987. Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth Planet.Sci. Lett., 82:121-135
    [142] Eby , G. N. 1990. The A-type granitoids: A review of their occurrence and chemial characteristics and speculations on their petrogenesis. Lithos. 26:115-134.
    [143] Engebretson, D.C.,Cox,A & Gordon, R.G. 1985. Relative motions between oceanic and continental plates in the Pacific basin. Special Paper 206. The Geological Society of America. 1-59.
    [144] Faure G.1986. Principles of isotope geology (2nd ed.). John Wi ley & Sons. 217-237.
    [145] Fenner, C. N. 1929. The crystallization of basalts. American Journal of Science. Ser. 5. 18 (105) : 225-253.
    [146] Finnerty A A., Boyd F R. 1987. Thermobarometry for garnet peridotites, basis for the determination of thermal and compositional structure of the upper mantle. In: Nixon P H ed. Mantle Xenoliths. New York: John wiley&Sons. 381-402.
    [147] Glazner, A. F. 1991. Plutonism,oblique subduction.and continental growth: An example from the Mesozoic of California. Geology. 19: 784-786.
    [148] Griffin W L., O'Reilly S Y. 1987. Is the continental Mono the crust-mantle boundary. Geology. 15: 241-244.
    [149] Hart S R. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature. 309:753-757.
    [150] Harte B. 1983. Mantle peridotite and processes-the kimberlite sample, in C. J. Hawkesworth and M. J. Norry, eds., Coontinental basalts and mantle xenoliths: Nantwich, Shiva. 46-91
    [151] Hong, J P and Miyata, T. 1999. Strike-slip origin of Cretaceous Mazhan Basin, Tan-Lu fault zone, Shandong, east China. The Island Arc. 8:80-91.
    [152] Huppert H. E., Sparks R. S. J. 1988. The generation of granitic magmas by Intrusion of basalt into continental crust J. Petrol. 29: 599-624.
    [153] Hutton, D. H. W. and R. J. Reavy. 1992. Strike-slip tectonics and granite petrogenesis. Tectonics. 11(5) :
    
    960-967.
    [154] Hyndman, D. W. and D. A. Foster. 1987. The role of tonalities and mafic dykes in the generation of the Idaho Batholith. J. Geol. 96:31-46.
    [155] Irvine T. N. and Baragar W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Can. F. Earth Sci. 8:523-548.
    [156] Irvine, T. N., Baragar, W. R. 1971. A guide to the chemical classification of the commen volcanic rocks. Canadian J. of Earth Sciences. 8:523-548.
    [157] Joplin, G. A. 1971, A petrography of Australian igneous rocks. Sydney: Angus and Robertson. (3rd edition, 1st edition 1964) .
    [158] Kay, R.W. and Hubbard N. J. 1978. Trace elements in ocean ridge basalts. Earth Planet. Sci. Lett. , 38: 95-116.
    [159] Kay, R. W., Kay, S. M. 1991. Creation and destruction of lower continental crust. Geol Rundsch. 80: 259-278.
    [160] Kay, R. W., Kay, S. M., Arculus, R. J. 1992. Magma genesis and crustal processing. In: Fountain D. M., Arculus R., Kay, R. W. eds. Continental Lower Crust. Amsterdam, London, New york, Tokyo: Elsevier Science Publisher. 423-445.
    [161] Kay, R, W., Kay, S. M. 1993. Delamination and Delamination magmatism. Tectonophysics. 219: 177-189.
    [162] Kuno H. 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bull. Volcanol. 29: 195-222.
    [163] Le Breton N., Thompson A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol., 99: 226-237.
    [164] Le Maitre R. W., Bateman P., Dudek A., Keller J., Lameyre Le Bas M. J., Sabine P. A., Schmid R., Sorensen H., Streckeisen A., Woolley A. R. and Zanettin B. 1989. A classification of igneous rocks and glossary of terms. Blackwell, Oxford.
    [165] MacDonald G. A. and Katsura T. 1964. Chemical composition of Hqwaiian lavas. J. Petrol, 5: 83-133.
    [166] MacDonald, G. A. 1968. Composition and origin of Hawaiian lavas. In: Coats R R, Hay R L, Anderson C A. eds. Studies in volcanology. A memoir in honor of Howel Williams. 477-520.
    [167] Mengel, K., Kern, H. 1992. Evolution of the petrological and seismic Moho-implications for the continental crust-mantle boumdary. Terra Nova. 4:109-116.
    [168] Mercier, J-C.C. Carter, N.L. 1975. Pyroxene geotherms. J. Geophy. Res. Vol. 80: 3349-3362.
    [169] Mercier J-C C, Nicolas A. 1975. Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths
    
    from basalts. Journal of Petrology, 16(2) :454-487.
    [170] Middlemost, E. A. K. 1994. Naming materials in the mgama/igneous rock system. Earth-Sci Rev. 37:215-224.
    [171] Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science. 274:321-315.
    [172] Morrison, G. W. 1980. Characteristics and tectonic setting of the shoshonite rock association. Lithos. 13: 97-108.
    [173] Nelson, K. D. 1991. A unified view of craton evolution motivated by recent deep seismic reflection and refraction results. Geophys J Inter. 105:25-35.
    [174] Olson P. 1987. Plume formation in the D" layer and the roughness of the core-mantle boundary. Nature. 327:409-413.
    [175] O'Reilly S Y, Griffin W L. 1985. A xenolith derived geotherm for Southeastern Australia and its geophysical implications. Tectonophys. 111: 41-63.
    [176] Pearce, J. et al., 1984. Trace element distribution diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25(4) :956-983.
    [177] Peccerillo. A., Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 58:63-81.
    [178] Pedersen X, Ro H. E. 1992. Finite duration extension and decompression melting. Earth Planet. Sci. Lett. 113:15-22.
    [179] Peng Z. C., Zartman R.E., Futa K. and Chen O. G. 1986. Pb-Sr-and Nd-isotopic compositions and chemical characteristics, Chem. Geol. 59(1) : 3-33.
    [180] Pitcher, W. S., 1983. Granite: Typology, geological environment and melting relationships, In Aetherton, M. P. and Gribble, C. D. (eds.). Migmatites, melting and metamorphism, Nantwich: Shiva Publications. 277-287.
    [181] Sacks, P. E.. Secor, D. J. Jr. 1990. Delamination in collisional orogens. Geology. 18:999-1002.
    [182] Song Y. Fery F A. Zhi X. 1990. Isotopic characteristics of Hannuoba batalts, eastern China: Implications for their petrogenesis and the composition of subcontinental mantle. Chem. Geol. 88:35-52.
    [183] Speer J A., Mcsween H Y Jr. Gate A E. 1994. Generation, segregation, ascent, and emplacement of Alleghanian plutons in the Southern Appalachians. J. Geol. 102: 249-267.
    [184] Sun S S. 1982, Chemical compositions and origin of earth's primitire mantle, Geochim. Cosmochim. Acta. v.46:179-192.
    
    
    [185] Sun S S. et al. 1979. Geochemical characteristics of mid-ocean ridge basalts. Earth Planet. Sci. Lett., 44, 119-138.
    [186] Sun S S. et al. 1980. Lead Isotope study of young volcanic rocks from mid-ocean ridge, ocean island and island arcs, Phil. Trans. R. Soc.London. 297:409-445.
    [187] Thompson, A. B. 1990. Heat, fluids, and metling in the granulite facies. In: Vielzeuf D. Vidal Ph. Eds. Granulites and crustal Evolution. Netherlands: Kluwer Academic Publishers. 37-57.
    [188] Tomkeieff, S. I. Et al. 1983. Dictionary of petrology. New York: John Wiley & Sons. 521.
    [189] Tu K., Flower M. F. J., Xie G., Carlson R. W., Wang J. and Zhang M. 1989. Lead isotopic data for Cenozoic basalts from eastern China: Evidence for cratonic and circumcratonic mantle domains. 28th I.G.C. Washington, D. C, UAS, Abstracts 3,260-261.
    [190] Von Blanckenburg R, Davies J. H. 1995. Slab breakoff: a mode for syncollisional magmatism and tectonics in the Alps. Tectonics. 14:120-131.
    [191] Wedepohl, K. H. 1991. Chemical composition and fractionation of the continental crust. Geol Rundsch. 80:207-223.
    [192] Xu, J. W. 1993. Basic characteristics and tectonic evolution of the Tancheng-Lujiang fault zone. In The Tancheng-lujiang Wrench Fault System (ed. By Xu, J. W), John Wiley & Sons Ltd. 17-50.
    [193] Xu, J W(ed.). 1993. The Tangcheng-Lujiang Wrench Fault System. Chichester(UK): John Wiley & Sons Ltd. 1-74.
    [194] Xu. J.W., Tong, W. X., Zhu, G., Lin, S. F. and Ma, G. F. 1990. The Meso-Cenozoic geodynamic evolution of the east Asian continental margin. Proceedings of the first Conference on Asian Marine Geology. Marine Press. 113-138.
    [195] Xu J W.,Zhu G.1994. Tectonic models of the Tan-Lu fault zone, eastern China. International Geology Review.36:771-784.
    [196] Xu Y G., John V. Ross.et al. 1993. The upper mantle beneath the continental rift of Tanlu, Eastern china: evidence for the intra-lithospheric shear zones. Tectonophysics. 225: 337-360.
    [197] Yin A, Nie S Y. 1993. An indendation model for the North and South China collision and the development of the Tan-Lu and Honam fault system, eastern Asia. Tectonics. 12(4) :801-813.
    [198] Zindler A. Hart S R. 1986. Chemical geodynamics. Ann. Rew. Earth Planet. Sci. 14: 493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700