账户: 密码:
重力方法在地壳结构研究中的应用
详细信息    本馆镜像全文|  推荐本文 | 收藏本文 |   获取CNKI官网全文
摘要
在地壳结构研究中重力学方法是一种最古老的地球物理方法。重力方法的理论已经发展的很成熟了。但随着技术的进步,重力方法在地壳结构研究中仍然发挥着重要的作用。
    本文对于深部构造研究中的重力学方法进行了仔细的分析和研究。对于重力方法的几个重要内容:重力资料的数据处理和反演方法,均衡理论和应用,卫星重力资料在深部构造解释中的应用等几个方面展开了讨论。
    在本文中对众多的数据处理方法的假设条件和地球物理意义进行了分析。提出在重力数据处理中那些地球物理意义明确,假设条件合理,计算稳定的方法最具有实用性。在对重力反问题基本公式及其多解性的讨论的基础上,提出交互模拟方法和多种资料的综合反演方法是克服重力反问题多解性的重要途径。文中给出了可以用于三维模拟反演的线性变密度四面体重力异常计算公式。
    为了进行地震-重力综合解释和联合反演,文中首先给出与连续速度模型一致的密度参数化方法,推导出相应的重力异常计算公式,并应用于大别山造山带的地震-重力综合解释。结果表明,综合解释对于认识三维地震层析得到的上地壳高速体的地质意义是很有帮助的。
    在速度与密度一致的模型参数化的基础上,本文提出了用于密度反演的地震-重力联合反演算法。算法以地震层析方法为基础,用速度-密度关系公式把地震走时残差与密度扰动联系在一起。通过联立求解走时方程和位场方程,构成地震-重力联合反演算法。实验计算表明,在速度-密度关系已知的情况下,增加地震资料的约束,可以改善重力反演的效果。
    在新疆西北部地区的地壳结构研究中,结合航磁资料和地热资料,对重力资料进行了多种处理和反演。得到了关于研究区地壳结构的很多信息,包括大地构造分区,盆地基底性质,大型断裂带的分布与深部构造意义,岩浆活动性,Moho面和地壳磁性层底面深度等方面的重要信息。对新疆西部地学断面的重力与航磁资料的模拟解释,给出了地壳的密度模型和磁性模型,这些模型反映地壳深部的结构和性质。为地壳深部结构的地质地球物理综合解释提供了依据。
    在新疆西北部地区,均衡异常显示出天山和准噶尔南缘地区没有达到重力均衡状态,而且,重力均衡作用力的方向与地壳垂直运动的方向相反,说明挤压构造作用与均衡作用相比明显占优势。重力均衡异常显示出天山山脉的均衡状态沿山脉走向方向有很大差异,表明了天山深部物质的不均匀性。同时还显示出西准噶尔与准噶尔盆地在统一的挤压构造作用下,有不同的响应。
    根据对新疆及其周围地区的卫星重力资料的解释,提出天山及其周围地区处于地幔对流形成的挤压沉降构造环境。天山造山带快速隆起是南北向不对称挤压作用的结果,准噶尔盆地则在挤压作用下弯曲而发生沉降,形成南部坳陷区。卫星重力资料还显示出东,西天山深部构造上的差异。卫星重力资料的解释结果与已有的地震面波反演结果及地质资料是相容的。
    在腾冲火山区地壳结构的研究中,对人工地震测深资料和重力资料进行了综合解释和联合反演。人工地震测深资料的二维射线追踪解释给出了从中山至自治的南北向穿过火山区的二维速度模型。速度模型显示火山区上地壳内P波速度明显偏低,中、下地壳速度略低。在腾冲至固东之间下地壳内有P4反射面,与其它部位明显不同。速度模型还显示龙陵断裂南北两侧地壳速度结构有较大差异,表明分属不同构造单元。
    地震资料的三维层析成像给出了火山区上地壳内部的P波低速体的位置和立体图像。低速体埋深约为7km。低速体不在火山区和热海地热区的正下方。参考其他地热,大地电磁,天然地震资料的解释结果,推测低速体可能代表一个岩浆囊或局部熔融体。地震层析成像显示热海地热区位于地表低速区内。地表低速区可能有断裂通道与上地壳低速区相连。可以推测热海热田中的高温热泉和沸泉是深部热流体沿断裂通道上升,与地表热水混合后形成的。
    重力资料与地震资料的联合反演给出腾冲火山区中下地壳内有一南北向的低密度区。这个低密度区可能是中下地壳受热膨胀,密度降低形成的。火山区地表的张性构造与中下地壳的膨胀有关。
    综合分析地震,重力及地质资料,对腾冲火山区地壳构造和火山喷发机制提出如下认识:火山喷发是印度板块向东俯冲造成的。俯冲板块的重熔作用在腾冲以下的上地幔中形成岩浆积累,使中下地壳受热膨胀,密度降低,产生地表的重力低异常。中下地壳受热膨胀在地表形成张性构造,同时,也为地幔岩浆上升提供通道,形成火山喷发。
Gravity is one of the oldest geophysical methods. The theory of gravity methods has been fully developed. With the advancement of the technology, however, gravity methods are still playing an important role in the investigation of the crustal structure.
    In this thesis, the application of gravity methods for the investigation of deep structure is carefully analyzed and studied. The discussion is concentrated on such important aspects of gravity methods as: the processing and inverse methods of gravity data, the theory and application of the isostasy, and the application of the satellitic gravity data for the deep structure interpretation.
    For the large number of processing methods, their geophysical significances and the preconditions are analyzed. The conclusion of the analysis is that the processing methods with clear geophysical significance, reasonable precondition and mathematical stability are the most useful in the crustal structure study. Base on the discussion about potential-field inverse problem and its ambiguity, it is presented that the interactive modeling interpretation of the gravity data and integrative interpretation of multiple geophysical data are the important approaches to overcome the ambiguity of potential-field inverse problem. An analytical expression for the gravity field of tetrahedron with linearly varying density, which can be used in three-dimensional interactive modeling interpretation, is presented in this paper.
    To construct a seismic-gravity simultaneous inversion algorithm, a parameterization method for linearly varying density distribution is presented. This parameterization method is similar with that used in some three-dimensional seismic tomography algorithm. The analytical formal of gravity effect calculation for linearly varying density model is then deduced and used in the seismic-gravity integrative interpretation of the Dabie mountain area, The integrative interpretation shows that it is very helpful for understanding the geological significance of the high -velocity body, which was detected by the three-dimensional seismic tomography.
    Based upon the coincident parameterization of velocity and density, a new seismic-gravity simultaneous inversion algorithm for density distribution is presented in this thesis. The algorithm follows the seismic tomography, using the velocity-density relationship to establish the connection between the seismic travel-time residuals and the density disturbance. By solving the travel-time equations and potential-field equations simultaneously, I construct a seismic-gravity join inversion algorithm. The test with synthetic data shows that the solution of gravity inversion is improved with the constraints of seismic data, under the condition that the relationship between velocity and density is known.
    In the crustal structure investigation of northwestern Xinjiang area, Bouguer gravity data, along with aeromagnetic data and geothermal data, were processed and analyzed. The results reveal mach information about the crustal structure of research area, such as the tectonic framework, the properties of basin's basement, the positions and deep structural significance of large-scale fracture belts, the magma activity and the depth of Moho discontinuity and the lower interface of earth's magnetic layer. The two-dimensional interactive modeling of gravity and magnetic data gives us the density and magnetic models along the geoscience transection of western Xinjiang. These two models exhibit the structure and properties of the deep crust, and are helpful for the geological-geophysical integrative interpretation of the geoscience transection.
    In the northwestern Xinjiang area, the isostatic gravity anomalies show that the Tianshan mountains and the southern margin of Jumgger basin is not in a status of isostatic equilibrium. The directions of vertical movement of the crust and that of isostatic adjustment are opposite. It means that the compressive stress is mach stronger than that of the isostattic adjustment and is the predominant t
引文
Aki, K. and Lee, W.K., Determination of three-dimensional velocity anomalies under a seismic array using P arrival times from local earthquakes, 1, An homogenous initial model, J. Geophys. Res., 1976, 81, 4381-4399.
    Backus, G. E., and Gilbert, F., 1967, Numerical application of a formalism for geophysical inversion problems, Geophys. J. Roy. Astr. Soc., vol. 13, p. 247~276
    Backus, G. E., and Gilbert, F., 1968, The resolving power of gross earth data, Geophys. J. Roy. Astr. Soc., vol. 16, p. 57~68
    Baishali Roy and Ron M. Clowes, 2000, Seismic and potential field image of Guichon Creek batholith, British Columbia, Comada, to delineate structures hosting Porphyry copper deposits, Geophysics, vol. 65, No. 5, 1418~1434
    Banks R J and C J Swain. 1978. The isostatic compensation of East Africa. Proc. R. Soc. Lond. A. 364:331~352
    Barbosa V. C. F., and J. B. C. Silva, 1994, Generalized compact gravity inversion, Geophysics, vol. 59, No. 1, p. 57~68
    Birch F.1961, Composition of the Earth's mantle, Geophys. J.R. astro. Soc. 4,295~311
    Bo Holm Jacobson, 1987, A case for upward continuation as a standard separation for potential field maps, geophysics vol.52 no.8
    Bowin Carl. 1986. Depth estimates from ratios of gravity geoid and gradient anomalies. Geophysics 51(1):123~136
    Bowin, C., 1983, Depth of principal mass anomalies contributing to the earth's geoidal undulations and gravity anomalies, Marine Geodesy vol. 7, p. 61~100
    Bullen K. E. and Haddon, R.A., 1967, Derivation of an earth model from free earth oscillation data. Proc. Natl. Acad, Sci.58:864-852.
    Bullen K.E., 1963, The introduction to the theory of seismology, 3rd ed. Cambridge Univ. Press, Cambridge
    Bullen K.E.1975, The Earth's Density ,Halstead Press, Wiley, New York,
    Buntebarth, G.,1980,Geothermie, Springer-Verlag, Berlin, Heidelbarg, p.107
    Cady J. W.m 1989, Geologic implications of topogramic, gravity and aeromagnetic data in the northern Yukon Koyukuk province and its borderland, Alaska, J. Geophys. Res. Vol. 94, B11, p. 15821-15841
    Camadio, A. G., Montesinos, F. G., and Vieira, R., 1997, A three-dimensional gravity inversion applied to Sao Miguel Island (Azores), Journal Geophysical Research, vol. 102, No. B4, p. 7717~7730
    
    Cerveny, V. and Psencik, I., SEIS83-numerical modeling of seismic wavefield in 2-D laterally varying layered structures by the ray method, In: E.R. Engdahl (ed.), Documentation of Earthquake Algorithm, World Data Center (A) for Solid Earth Geophysics, Boulder, Colo., Rep. SE-35, 1984, 36-40.
    Christensen N I, Mooney W D, 1995. Seismic velocity structure and composition of the continental crust: A global view. Joural of Geophysical Research, 100(B6): 9761~9788
    Coblentz David D., Mike Sandiford , Randall M. Richardson. 1995. The origins of the intraplate stress field in continental Australia. Earth and Planetary Science Letters, 133:299~309
    DeGraff, J. E. Up, 1989, Gravity study of the boundary between the western transverse ranges and Santa Maria basin, California, J. G. R. vol. 84, B2, 1817~1825
    Dorman LeRoy M and Brian T T Lewis. 1970. Experimental isostasy 1. Theory of the determination of the earth's isostatic response to a concentrated load. Journal of Geophysical Research,75(17):3357~3365
    Ellis, A. J., and Mahon, W. A. J., 1977, Chemistry and geothermal system, Academic Press, New York, 392
    England P, and P. Molnar, 1997, The field of crustal velocity in Asia continental from quaternary rate of slip on faults, Geophys. J. Int.,130:551~582
    Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J.G.R. 90:12623~1232
    Frcncois Metivier and Gravdemer Yves, 1997, Mass transfer between eastern Tien shan and adjacent basins ( central Asia ): Constraints on regional teconics and topography, Geophysical Journal International, vol. 128, No. 1, 1~17
    Friaha et al, 1994, Factor analysis of ambiguity in geophysics, Geophysics, vol.59 No. 7, p. 1083~1097
    Giovanni Pari and Richard W. 1996, The free-air gravity constriaint on subcontinental mantle dynamics, J. G. R., vol. 101, No. B12, 28105~28132
    Glaznev Victor N., Alecksey B. Raevsky and Galina B. Skopenko, 1996, Three-dimensional density and thermal model of the Fennoscandian lithosphere, Tectonophysics, 258, p. 15~33
    Golizdra, G. Y. 1981, Calculation of the gravitational field of a polyhedron, Earth Physics,17, 625~628
    Golizdra, G. Y., 1980. Statement of the problem of comprehensive interpretation of gravity field and seismic observation. Invest Earth Phys., 16: 535~ 539
    Gotze H. J., and Bernd Lahmeyer, 1988, Application of three dimensional interactive modeling in gravity and magnetics, Geophysics vol. 53, no.8, p1096~1108
    Granger H., 1989, Apparent density mapping and 3D gravity inversion in the eastern Alpr, Geophysical prospecting, vol. 37, No. 3, p. 279~292
    Grauch V. J. S., 1993, Limitations on digital filtering of the DNAG magnetic data set for the conterminous U. S., Geophysics, vol. 58, No. 9, p.1281~1294
    Grogory N. Tsokas and Richard O. Hansen, 1997, Stud of the crustal thickness and subducting lithosphere in Greek from gravity data, J. G. R., vol. 102, No. B9, 20585~20598
    Hansen R. O. 1999, An analytical expression for the gravity field of a polyhedral body with linearly varying density, Geophysics, vol. 64, no. 1 75~77
    Hayford, J. F., 1909, The Figure of the Earth and isostasy from measurements in the United States, U.S. Coast Geod. Surv, Monogr, 178 p
    Hayford, J. F., 1910, Supplemental invertisgations in 1909 of the figure of the Earth and isostary, U.S. Coast Geod. Surv. Monogi, 80 pp.
    Heiskanen, W, A., 1938, Investigations on the gravity formula, Publ. Isost,, Inst. I. A. G. Helsinki
    Heiskanen, W, A., and Vening Meinesz, F. A., 1958, The earth and its gravity field, McGraw-Hill, New York, 470
    Ivan M, 1993, Line integrals of potential field data, Geophysical prospecting,vol. 42, No. 7, p. 735~743
    Jakosky, J. J., 1984, Exploration geophysics, 2nd, Trija Publishing Company, Newport Beach, CA
    Joao B.C. Silva, Walter E. Medeiros, and Valeria C. F. Barbosa, 2000, Potential field inversion: Choosing the appropriate technique to solve a geologic problem, Geophysics, vol 66, no. 2, 511~520
    Karner G. D. and Watts, L.,1982, On isostasy at Atlantic type continental margins, J. G. R., vol. 87, No. B4, p. 2923~2948
    Kaula William M. 1972. Global Gravity and Tectonics. in The nature of the solid earth, edited by Eugene C. Robertson. McGraw-Hill Inc. USA, 385~405
    Kaula, W. M., 1969, Atectonic classification of the main features of the earth's gravity field, J. G. R. vol. 74
    Kazunazi, Nowa, 1997, Inversion of gravity data to determine the terrain density distribution in southwest Japan, J.G.R. v102, b12, p27703~27719
    Kennelly P. J., 1989, Flexure and isostatic gravity of the Serra, Nevada, J. G. R, vol.84, B2, 1759~1764
    Kiel Zu, 1987, The use of seismic refraction and reflection data for gravity modeling of crustal structures, PhD. thesis submited to der Christian-Alberchts University, pp, 166
    Krishna, M. R., 1996, Isostatic response of the Central Indan Ridge ( Western Indian Ocean ) based on transfer function analysis of gravity and bathymetry data, Tectonophysics, vol. 257, No. 2`4, P. 137~148
    Lech, F. J. et al, 1981, Goddard earth models for oceanographic application (GEM10B and GEM10C), Marine Geodesy, vol. 5, No. 2, p. 145~187
    Lees J M, and Van Decar J C, 1991. Seismic tomography constrained by Bouguer gravity anomalies: applications in Western Washington. PAGEOPH, 135: 31~51
    Lemoine F. C, Smith D E, Kunz L, et al. 1996. The development of the NASA GSFC and NIMA joint geopotential model. proceeding paper for the International Symposium on Gravity, Geoid and Marine Geodesy (GRAGEOMAR 1996). Tokyo,Japan
    Lewis Brian T R and LeRoy M Dorman. 1970. Experimental isostasy 2. An isostatic model for the U. S. A. Derived from gravity and topographic data. Journal of Geophysical Research,75(17):3367~3386
    Lindrith Cordell, 1994, Potential-field sounding using Euler's homogeneity equation and Zidaroo bubbling, Geophysics, vol. 59, no. 6, p. 902~908
    Liu H S, Chang E S, and Wyatt G H. 1976, Small-scale mantle convection system and stress field under the Pacific plate. Phys Earth Planet. Inter. 13:212~217
    Liu H S. 1977. Convection pattern and stress system under the African plate. Phys Earth Plant Inter, 15:60~68
    Lobkovsky, L. I., A. T. Ismail-Zadeh, S. S. Krasovsky, P. Ya. Kuprienko and S. Cloetingh, 1998, Gravity anomalies and possible formation mechanism of the Doieper-Donets Basin, Tectonophysics, vol. 268, No.1-4, P. 281-292
    Maguire P K H, Swain P K H, Masootti P K H and Khan P K H, 1994. A crustal and uppermost mantle cross-sectional model of Kenya Rift derived from seismic and gravity data. Tectonophysics, 236:217~249
    Marte; C. and A. Souriau, 1989, A morphological method of geometric analysis of images: Application to the Indian Ocean, J. G. R. vol. 94, B2, 1715~1726
    McKenzie Dan and Derek Fairhead. 1997. Estimates of the effective elastic thickness of the continental lithosphere from Bouguer and free air gravity anomalies. J.G.R. 102(b12):27523~27552
    McMechan G A, Fuis G S, 1987, Ray equation migration of wide-angle reflection from southern Alaska. J Geophys. Res. 92(1): 407-420
    McNitt, J. R., 1970, The geologic environment of geothermal field as a guide to exploration, Rapporteur's Report, Section III, Pisa
    Mcqueen, H. W, S. and Stacey F.D., 1976, Interpretation of low degree components of gravitational potential in terms of undulations of mantle phase boundaries, Tectonophsics, vol. 34, no. 1~2
    Menke W., 1984, Geophysical data analysis: discrete inverse theory, Academic Press, Now York, p 7~99
    
    
    Merdonca C. A. and J. B. C. Silva, 1994, The equivalent data concept applied to the interpolation of potential-field data, Geophics, vol. 59, No. 5, p. 722-733
    Mikhal K Kahan and Walter D. Moony, 2001, Density structure of the lithosphere in the southwestern United States and its tectonic significance, J. G. R, vol. 106, No. B1, p721~739
    Mohan N L and Anand Babu, 1995, An ananlysis of 3-D analytic signal, Geophysics, vol. 60, no. 2, p. 531~536
    Nafe, J. E. and Drake, C. L., 1963, Physical properties of marine sediments, in M. N. Hill (Editor), The Sea, 3. Interscience, New York, pp. 794~815
    Nagihara S. and S. A. Hall, 2001, Three-dimensional gravity inversion using simulated annealing: Constraints on the diapiric roots of allochthonous salt structures, Geophysics, vol. 66, No. 5, p. 2741~2753
    Negi J G, Agrawal J G and Thakur J G, 1989. Inversion of regional features of the deep and main geology of India. Tectonophysics, 165:155~165
    Oxbuegh E R, and Turcotte D L. 1974. Membrane tectonics and East African rift. Earth Planetary Science Letters, 22:133~140
    Parker, R. L., 1973, The rapid calculation of potential anomalies, Geophysics J. R. astr. Soc. Vol.31, pp. 447~455
    Parker,R. L. 1973, the rapid calculation of potential anomalies. Geophysics J. R. astr. Soc. Vol.31,447`455
    Parson B., 1983, The relationship between surface topography, gravity anomalies and temperature structure of convection, Journal of Geophysical Research, vol. 88, 9721~9739
    Paulowski R. S., Green's equivalent-lever concept in gravity band-pass filter design, Geophysics, vol. 59, No. 1, p. 69~74
    Pawlowski, R. S., and R. O. Hansen, 1990, Gravity anomaly separation by Wiener filtering, Geophysics, vol. 55, no. 3. p. 539~548
    Pick M, Picha J, and Vyskocil V, 1973. Theory of the Earth's Gravity Field, Elsevier. New York, 538p
    Pinto, V. and Casas, A., 1996,An interactive 2d and 3d gravity modeling program for IBM-comptible personal computers, Computers & Geosciences, vol. 22, No. 5, p. 535~546
    Pohanka L, 1988, Optimum expression for computation of the gravity field of a homogeneous polyhedral body, geophysical prospecting, vol. 37, p. 733~751
    Ridd, M. F., 1980, Possible Palaeozoic drift of SE Asia and Triassic collision with China, J. Geol. Soc. London, 137: 634~640.
    Robert S. Pawlowski, 1995, Preferential continuation for potential-field anomaly enhancement, Geophysics, vol. 60, no. 2, p390~398.
    Runcorn S K. 1967. Flow in the mantle inferred from the low degree harmonics of the geopotential. Geophys J R Astr Soc. 14:375~384.
    
    Starostenko V I, Kostynkevich A S, and Kozlenko V G, 1988. Seismogravimetric method: principles, algorithms, and results. Geophys J, 93: 295~309
    Talwani M. et al, 1959, A crustal section across the Puerto Rico Trench, J, Geophys. Res., v94, 1545~1555
    Tapponnier , P G.Peltzer and R. Armijo On then mechanics of the collision between India and Asia, in: Collision Tectionics, edited by: Coward, M.p., and Ries, A.C. Geological Society Special Publication, London, 19, 116-157, 1986
    Telfor, W. N., Geldart, L. P. and Sheriff, R. E., 1990, Applied Geophysics, Cambridge University Press Cambridge, p. 6
    Thurber C H and Aki K, 1987. Three-dimensional seismic imaging, Annu. Rev. Earth Planet Sci, 15:115~139
    Thurber, C. H., 1983, Earthquake locations and three- dimensional crustal structure in the Coyote lake area, Central California, J. Geophys. Res., 88, 8226-8236.
    Thurber, C.H. and Ellsworth, W.L., 1980, Rapid solution of ray tracing problems in heterogeneous media, Bull. Seism. Soc. Am., 70, 1137-1148.
    Thureton J. B. and R. J. Brown, 1994, Automatic source-edge location with a new variable pass-band, horizontal-gradient operator, Geophysics, vol. 59, No. 4,
    Um, J. and Thurber, C.H., 1987,A fast algorithm for two-point seismic ray tracing, Bull. Seism. Soc. Am., 77, 972-986.
    Wagener M., 1989, Regional three-dimensional gravity iverstigations in the Black Forest, south western Germany, Tectonophysc vol. 5, p 13~23
    Won, I. J. and Bevis, M. G., 1987, Computing the gravitational and magnetic anomalies due to a polygon: Algorithms and Fortran subroutines. Geophysics, 52, 232~238
    Woollard, G. P., 1975, Regional changes in gravity and their relation to crustal parameters, Bur. Grav. Int. Bull. Inf. 36:106~110
    Woollard, G. R., 1959, Crustal structure from gravity and seismic measurements, J. Geophys. Res., vol. 64, 10, p 1521~1643
    Zeyen Hermann, 1993, 3D joint inversion of magnetic and gravimetric data with a priori information, Geophysical Journal international, vol.112, no. 2, p. 244~256
    Zhong Shijie, 1997, Dynamics of crustal compensation and its influences on crustal isostasy, J. G. R. v102, B7, 15287~15300
    白登海等,1994,从测深结果推论腾冲热海热田的岩浆热源,科学通报,39(4):344~347,
    陈炳蔚, 1982, 西藏八宿来姑群上石炭统似冰积岩的发现及其意义,地质评论,28(2): 148~151
    陈立华,宋仲和,安昌强等,1992,中国南北带地壳上地幔三维面波速度结构和各向异性,地球物理学报, 35:574~583。
    陈墨香、汪集旸、邓孝主编,1994,《中国地热资源》,科学出版社
    崔作舟,卢德源,陈纪平等,攀西地区的深部地壳结构与构造,地球物理学报,1987,30(6)566~580
    范承均,1982,滇西区域地质特征,云南地质,1(4): 323~336
    范光华、宋泽元、马强民、夏明忠,1986,准噶尔盆地油气远景资料预测,新疆石油地质7(4):52~61 方剑。1994。利用卫星重力数据计算地球内部密度异常。地球物理学进展, 9(3):60~65
    方盛铭,冯锐, 田长征等,1997, 亚洲中部地区均衡重力异常特征及地震活动性,地震学报,vol. 19, No. 6, p. 650~654
    方盛铭,冯锐,李长法等,1997,亚洲中部地区地幔上部密度不均匀性研究,科学通报,vol. 42, No. 6, 663~673
    方盛铭,冯锐等,1999,亚洲中部地区岩石圈均衡补偿深度和弹性板模型反演结果分析,地球物理学报,vol. 42, 增刊, p. 115~121
    费鼎,张新生。1987。准噶尔地区磁场解释及区域构造特征。地球物理学报,30(5):459~461
    冯锐, McEvilly, T.V., 由地震反射波剖面研究圣安德烈斯断层带的结构, 地震学报, 8, 341-353, 1986. 冯锐, 陶裕录, 1993。 地震-重力联合反演中的非块状一致性模型。地球物理学报,36:63~475
    冯锐,1985。中国地壳厚度及上地幔密度分布(三维重力反演结果)。地震学报,7(2):143~157
    冯锐,王均,郑书真等,1987,论华北地区的均衡状态(一), 地震学报, vol. 9, No. 4, p. 406~416
    冯锐,王均,郑书真等,1988,论华北地区的均衡状态(二), 地震学报, vol. 10, No. 4, p. 385~394
    冯锐,严惠芬,张若水,1986。 三维位场的快速反演方法及程序设计。地震学报,7(4): 390~403
    冯先岳1985,论新疆地震地质特征,地震地质,7:36~43
    冯先岳,1986,天山活动断层与地震,新疆地质,4卷,3期
    冯益民,霍有光,1997,西准噶尔古板块构造研究的某些新进展,中国地质科学院西安地质矿产研究所所刊,16:56~72
    冯益民,朱宝清,肖序常等,1991,中国新疆准噶尔山系构造演化,见:肖序常等主编,古中亚复合巨型缝合带南缘构造演化,北京科学技术出版社,北京,66~91
    傅容珊。1983。地球重力异常源的深度。 地壳形变与地震,7(4):19~23
    傅容珊。1994。上地幔小尺度热对流及大陆岩石层动力学。中国固体地球物理学进展。 北京:海洋出版社,169~178
    高锐,成湘洲,丁谦,1995, 格尔木-额济纳旗地学断面地球动力学模型初探,地球物理学报,38增刊II:3~14.
    管泽霖等编,1982,地球重力场及固体潮,测绘出版社,北京
    郭樟民, 1990, 利用卫星重力资料研究新疆及周边国家和地区深部构造,新疆维吾尔自治区国家305项目V6-3研究报告
    郭樟民,1987,利用卫星重力资料和磁卫星资料对中国大陆及邻近海域内的地幔结构探讨,桂林深部地球物理会议
    韩新民,1996,腾冲火山地质研究评述,地震地磁观测与研究,17(2):20~30
    侯重初,1979, 利用位场转换建立一个重磁异常解释系统,物探与化探,2(3)
    侯重初等,1986,提取长波异常的方法及其在泛华北地区航磁异常上的应用,地质信息技术,no. 2
    侯遵泽等,1999, 中国重力异常的小波变换与多尺度分析, 地球物理学报, vol40, no1, 85~95
    胡鸿翔,高世玉, 滇西地区地壳浅部基底速度细结构的研究,中国地震,1993,9(4)357~363
    胡鸿翔,陆涵行,王椿镛等,1986,滇西地区地壳结构的爆破地震研究, 地球物理学报,29, 133-144。
    胡鸿翔,云南基底界面速度分布与浅层断裂的爆破地震研究,地震地质,1993,15(2)181~185
    黄怀曾,吴功建等编著,1994,岩石圈动力学研究,地质出版社, 北京,131页
    黄尚瑶编著,1993,《中国温泉资源》,地图出版社
    皇甫岗,姜朝松主编,2000,腾冲火山研究,昆明:云南科技出版社,418
    姜朝松,1998,腾冲地区新生代火山活动分期,地震研究,21(4)
    姜朝松,1998,腾冲新生代火山分布特征,地震研究, 21:309-319。
    姜朝松,王绍晋,周瑞琦,周真恒,龙晓帆,2000,腾冲火山活动构造动力学研究,地震研究, 23(2):179-187。
    江为为,武传真,1991, 中国西部盆地及周边地区区域重力场和地壳构造, 地球物理进展,25:37~50
    江远达, 1983,新疆布格重力异常的基本特征和大地构造的一些问题,中国北方板块构造文集,中国地质科学院沈阳地质矿产研究所
    蒋福珍,方剑, 2001, 康滇地区重力场分离,反演与地壳构造,地震学报,vol. 23, No. 4, p. 391~397
    李瑞浩,1988,重力学引论,地震出版社,北京,
    李四光,1970, 天文、地址、古生物,地质出版社,北京
    李雄, 1991,地震-重力联合反演--不同方法的实现与对比, 中国地球物理学会年刊(1991), 7, 地震出版社,北京
    梁桂培等,1983,甘肃西部地球深部构造,西部地震学报,vol. 5, p. 66~71
    廖志杰,佟伟,张保山,1985,中国西南新生代火山于地热活动,地质研究论文集-1985,北京大学出版社,北京,177~185
    林中洋,胡鸿翔,张文彬等,1993,滇西地区地壳上地幔速度结构特征的研究, 地震学报, 15,427-440。
    刘长风, 1993, 准噶尔盆地的磁性基底, 物探与化探, vol. 17, No. 5, p.347~353
    刘光夏、赵文俊、任文菊, 等。1992,台湾地壳结构的三维重力研究。地震学报,14:316~324
    刘国栋,中国大陆岩石圈结构与动力学,地球物理学报,第37卷,增刊II,1994,65-81
    刘瑞丰,陈培善,李强,云南及其邻近地区三维速度图象,地震学报,1993,15(1)61~67
    刘元龙,王谦身,1977, 用压缩质面法反演重力资料以估计地壳构造,地球物理学报,vol. 20, p. 59~69
    刘元龙,王谦身,1978,根据重力资料探讨北京,天津及其邻近地区的地壳构造,地球物理学报,vol. 21, p. 9~17
    刘元龙,王谦身,武传真,周文虎,1977, 喜马拉雅山脉中部地区地壳构造及其地质意义的研究,地球物理学报,vol. 20, p. 143~149
    楼海,王椿镛,1999,三维连续密度分布的重力计算及应用,地震学报,21(3):297~304
    楼海,王椿镛,刘祖荫,皇甫岗,秦嘉正,2001,腾冲火山区地壳上部三维地震层析成像,地震学报,(待发表)
    楼海,王椿镛,王飞,2000,卫星重力资料揭示的新疆天山地区构造动力学状态,地震学报,22(5):482~490
    卢造勋,1983, 东北地区深部构造与地震,长春地质学院院报,vol. 1, p. 113~121
    马宗晋,薛峰峦,1983,中国大陆地震深度分布与“易震层”初探,地震科学研究,3期
    莫伊谢廷科,У.И., G.拉纳利,高莉青、陈彭年译,1990,《地热研究与应用》,地震出版社
    穆治国,佟伟,1987,腾冲火山活动的时代和岩浆来源问题,地球物理学报, 30(3):261~270
    宁津生,李建成,陈建国等。1997。卫星重力异常图。中国地球物理图集(袁学诚主编)。北京:地质出版社 34~52
    坪井忠二,1979, 重力(第二版),岩波书店,东京
    齐霍诺夫 A. H. (刘光鼎译),1964,重力场的平均法,北京,中国工业出版社,7~25
    钱瘦石等,1981, 用压缩质面法反演沐河流域的地壳构造,地质科学研究, vol. 3, p. 37~42
    秦嘉政,皇甫岗,李强,钱晓东,苏有锦和蔡明军,2000,腾冲火山及邻区速度结构的三维层析成像,地震研究, 23(2):157~164
    任继舜等,1980, 中国大地构造及其演化, 科学出版社。
    莎玛, P.V.,1983,地质学研究中的地球物理方法,地质出版社,北京
    孙 洁,徐常芳,江钊等,1989,滇西地区地壳上地幔电性结构与地壳构造运动的关系,地震地质, 11:35-45。
    索洛金,A.B.,1956,重力测量学与重力勘探,地质出版社, 北京。
    汤耀庆,肖序常,赵民等,1993,新疆北部大地构造研究的新进展,新疆地质科学。地4辑,地质出版社,1-12
    腾吉文,刘福田,全幼黎等,1994,中国西北造山带与沉积盆地地区的地壳和地面的地震层析成像,中国固体地球物理学进展-庆祝曾融生教授诞辰七十周年,北京,海洋出版社。
    涂光炽主编,1993,新疆北部固体地球科学新进展,北京,科学出版社
    汪一鹏, 2000,青藏高原活动构造基本特征,活动断裂研究,(6),135~144,地质出版社。
    王椿镛,皇甫岗,万登堡等,2000,腾冲火山区地壳结构的人工地震探测,地震研究,23(2)148~156
    王椿镛,楼海,王飞,1998,大别山超高压变质带地壳上部的三维速度成像,寸丹集,北京:科学出版社。
    
    王椿镛,楼海,魏秀成,吴庆举, 2001, 天山北缘的地壳结构和1906年玛纳斯地震的地震构造, 地震学报, vol. 23, No. 5, p.46-~470
    王椿镛,楼海,吴建平,白志明,皇甫岗,秦嘉政,2001,腾冲火山地热区地壳结构的地震学研究,地震学报,(待发表)
    王椿镛,张先康,陈步云,等。1997,大别造山带的地壳结构研究。中国科学(D),27(3): 221~226
    王椿镛,张先康,陈步云,等。1997,大别造山带的地壳结构研究。中国科学(D),27(3): 221~226
    王谦身,刘元龙,1976, 辽南地区地壳结构轮廓,地球物理学报,vol. 19, p. 165~176
    王谦身等,1982, 亚洲大陆地壳厚度分布轮廓及地壳构造特征的探讨, 地震地质,vol. 4, no. 3, p. 19~29
    王谦身等,1986, 海南岛地球物理特征及深部地壳构造轮廓,海南岛地质与石碌铁矿地球化学,科学出版社,北京, p.23~32
    王勇,许厚泽,1997, 欧亚大陆均衡残差大地水准面和上地幔强度,地球物理学报,vol. 40, No. 2, p. 202~210
    王作勋,邬继易,吕喜朝等。1990。天山多旋回构造演化及成矿。北京:科学出版社,217
    王懋基,中国地壳深部构造的区域特征, 物探与化探,vol. 5, p. 193~204, 1981
    魏梦华,殷秀华,史志宏,刘占坡,1980, 利用重力资料推断华北平原北部地壳结构的基本特征,华北平原断块区的形成和发展,科学出版社,北京,p. 361~367
    吴乾藩,金祖华,谢毅真等,1988,云南地区地热的基本特征,地震地质,10(4):177~183。
    吴乾蕃、谢毅真、祖金华、王都,1988,华北地热场研究,中国地震,4(1):41~48
    吴乾蕃、谢毅真,1990,松辽盆地地温场与油气生成、运移、富集的关系,石油学报,11(1):9~15
    吴乾蕃、祖金华、廉雨方,1990,我国第5号地学断面的大地热流研究,科学通报,35(2): 126~129
    萧敬涌, 1965, 重力勘探(修定本),中国工业出版社, 北京。
    萧敬涌等编著,1983,重力勘探资料解释手册,地质出版社,北京。
    肖序常 汤耀庆 冯益民 朱宝清 李锦轶 赵 民,1992,新疆北部及邻区大地构造,北京,地质出版社。
    肖序常等,1990,试论新疆北部大地构造演化,新疆地质科学,第一辑。
    谢宏、赵白、林隆栋、龙绮妹,1984,准噶尔盆地西北缘逆掩断层带的含油特点,新疆石油地质,5(3):1~15
    谢新生,1999,挤压带褶皱构造力学解析及其地震意义。地震学报,21(3):278~284
    新疆地质局,1978, 中国天山地质构造,地质出版社。
    新疆维吾尔自治区地质矿产局。新疆维吾尔自治区区域地质志。北京:地质出版社,841
    熊光楚,1982,变密度体重力勘探反演的多解性问题,地球物理学报,vol. 25, no. 6, p. 549~553
    徐锡伟,邓起东,张培震等。1992。 新疆玛纳斯-霍尔果斯断裂-褶皱带河流阶地的变形及其构造意义。活动断裂研究(2),北京:地震出版社,117~127
    宴贤富,1981, 云南及邻区的深部地质构造,地质学报, vol. 55, p. 20~29
    杨文采,1997,地球物理反演的理论与方法,地质出版社,北京
    杨晓平,邓起东,冯先岳。1996。北天山吐谷鲁活动断裂-背斜几何学、运动学特征研究。活动断裂研究(5)。北京:地震出版社,42~53
    姚伯初, 曾维军,陈艺中,1994, 南海北部陆缘东部的地壳结构,地球物理学报,vol. 37, p. 27~35
    叶建庆,蔡绍平,秦嘉政,蔡明军,刘学军,陈敏恭,2000,腾冲火山区微震类型与波谱研究,地震研究 23(2):117~123
    叶正仁,谢小碧,1985,攀西地区的重力均衡与地壳密度结构,地球物理学报,vol. 28, No.3, p. 260~267
    伊捷尔松,H., 1963,位理论及其在地球形状理论和地球物理中的应用,中国工业出版社,北京,p. 32~38
    殷秀华,刘铁胜,刘占坡, 1993,均衡重力异常和地壳表,浅层地质结构,地震地质, vol. 15, no. 2, p. 149~155
    殷秀华,史志宏,刘占坡,张玉梅,1980, 中国大陆区域重力场基本特征,地震地质, vol. 2, No. 4, 69~75
    殷秀华,史志宏,刘占坡,张玉梅,1982, 华北北部的均衡重力异常的初步研究,地震地质,vol. 4, p. 27~34
    余钦范,楼海,1994, 水平梯度极大值法,物化探计算技术,vol. 10, no. 4
    余钦范,孙运生,楼海等,1993年,青藏高原磁力测量与地壳结构研究,北京,地质出版社
    袁学诚。1996。中国地球物理图集。北京,地质出版社:200
    云南省地矿局,1990,云南区域地质志,地质出版社。
    曾融生,1984,固体地球物理学导论,科学出版社,北京,152~157
    曾维鲁,1985, GEM10B地球模型,全球自由空气重力异常及勒让德函数计算的研究,地球物理学报,vol. 28, No. 6, p. 595~606,
    张赤军, 1988,由地面卫星重力资料研究岩石圈密度。地球物理学报,31(6)664~671
    张季生,1997,利用卫星重力、磁力资料研究深部地质构造。岩石圈研究的现代方法,北京:原子能出版社,103~112
    张友南,马堇,1997,深部地壳镁铁质岩石波速的研究,地球物理学报,40(2):221~229
    赵白, 1992,准噶尔盆地的形成与演化, 新疆石油地质,13(3):191~196
    赵白, 1993,准噶尔盆地的构造特征与构造划分,新疆石油地质,14(3):209~215
    中国科学院地理研究所,1964,新疆地貌, 科学出版社,北京
    中国科学院地质研究所地热组,1978,《地热研究论文集》科学出版社
    周国藩,张健,1994,利用卫星重力场特征分析青藏高原的构造演化趋势,中国地球物理学会年刊,p81
    周慧兰,1990,地球内部物理,地震出版社,北京
    周真恒 向才英、姜朝松,腾冲火山岩稀土和微量元素地球化学研究,地震研究,23(2):215~230,2000
    周真恒 向才英、杨海林,腾冲火山岩同位素地球化学研究,地震研究,23(2):194~200,2000
    朱宝清,冯益民,1994, 新疆西准噶尔板块构造及演化,新疆地质, 12(2):91~104
    朱宝清等,1984,西准噶尔西南地区古海洋与板块构造, 中国地质科学院院报, 10:137~150
    朱广生,桂嘉先,熊新斌,1995,密度与纵横波速度关系,地球物理学报,vol.38, p. 260~264
    朱英,刘元生,1990,新疆北部地区大地构造深部构造及成矿预测,新疆305项目V6-2研究报告。
    邹宗濂,1991,大别山东段重力场与深部构造的新探讨,湖北物化探,1: 36~43
    佟伟, 章铭陶,1989,腾冲地热,北京,科学出版社,p 267
    阚荣举,韩 源,1992,云南遮放至马龙地学断面说明书,地震出版社。
    阚荣举,林中洋, 1986, 云南地壳上地幔构造的初步研究,中国地震,2(4)50~61
    阚荣举,赵晋明,1994,腾冲火山地区的壳幔构造,陈运泰等主编:中国固体地球物理学进展,海洋出版社, 23-30。
    胥颐,1992,重力均衡与天山的构造运动,内陆地震,(10)3:
    胥颐,1994,新疆天山及临区地壳上地幔三维速度图像,地震学报,第16卷,第4期
    胥颐,朱介寿,刘志坚,张华卿, 朱燕。1994。新疆天山及邻区地壳上地幔三维速度图像。地震学报,16(4):480~487

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅:66554900、66554949;咨询服务:66554800;科技查新:66554700