用户名: 密码: 验证码:
滇西澜沧江岩浆—变质—构造活动带铜(金)多金属找矿远景研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滇西澜沧江岩浆-变质-构造活动带是我国西南一条重要的构造带,构造位置极
    为重要特殊,地质现象极其复杂,此外还有丰富的金属矿点分布,是矿化集中区,对
    本带的研究具有重大的地质意义。
     本区处于冈瓦纳古陆块与劳亚古陆块的汇聚带,由两大板块分裂的微板块组成。
    通过详细探讨本区及周边的大地构造分区与演化,可将本区划分为三个微板块:a、兰
    坪-思茅微板块,在本区出露有安定-藤条江古生代洋壳俯冲蛇绿混杂岩带、维西-
    绿春印支裂谷、兰坪-思茅中生代后碰撞陆内裂陷、澜沧江印支火山岛弧,澜沧江碰
    撞汇聚带;b、吕宁-孟连微板块,在本区出露有澜沧-西盟中晚元古代至古生代早
    期陆壳变质地体、吕宁-孟连晚古生代大陆边缘裂谷系、柯街-南定河汇聚带;c、
    保山微板块,在本区露有崇山中晚元古代-古生代早期陆壳变质地体、保山陆架裂陷。
     作为东特提斯巨型造山系的一部分,本区拥有多次洋盆开合和陆洋盆山体制转
    换,其演化史如下:伴随早古生代泛大陆解体,本区于晚泥盆-早石炭世开裂成洋,
    石炭-二叠纪为主扩张期,发育有拉斑系列-钙碱性系列-钾玄岩系列岩石组合。晚
    二叠纪末期,火山弧顶部发育浅海及海陆交互相火山碎屑沉积。至早三叠世,全区缺
    失下三叠统沉积。这说明古澜沧江洋在晚二叠至早三叠间关闭。中、晚三叠世的岛弧
    火山岩带说明澜沧江缝合带的再度打开,然而随着西侧怒江洋的打开,特提斯活动中
    心的西移,打开不久的澜沧江洋再度关闭,三个微板块完全拼贴,本区进入陆内改造
    阶段,兰坪-思茅地块整体下陷成裂陷盆地,为断裂构造控制的持续缓慢的均衡沉降,
    大面积沉降史到喜山运动期结束。第三纪末,印度板块与欧亚汇聚拼贴,本区全部地
    层均发生强烈褶皱及大规模逆冲推覆构造。
     受本区演化史影响,本区铜多金属矿具有多期、多系列的特点,在三个主要演化
    阶段有着不同的成矿系列:a、澜沧江洋古特提斯期,在其扩张早期有碱性玄武岩式
    矿床形成,在扩张晚期有蛇绿岩式矿床,在闭合期形成了细碧角斑岩式矿床;b、澜
    沧江洋中特提斯期形成有扩张早期的基性火山岩式矿床。扩张中期的中酸性火山岩-
    次火山岩式矿床和热水沉积(含铜)菱铁矿、磁撞汇聚期的产于碳酸盐岩和碎屑岩中
    的Sb、Hg、As、Au热液矿床;c、后澜沧江洋陆内改造期主要形成中、新生代红层
    铜矿以及与中酸性岩浆活动有关的系列矿床。此外,本区成矿还有如下特点:a、矿
    产分布与构造-岩浆-热活动带一致;b、成矿后的改造作用十分强烈。
     由于本区经历了特提斯多次扩张与封闭,从而在本区形成了三个主要含矿层、
    三个主要的成矿系列以及三个大的成矿带,构成了本区的“三楼多梯”式区域成矿模
    式。本区的找矿亦须根据其系列、成矿带等方面特点对其建立预测标志、圈定远景成
    矿区。
     本次研究,在综合分析研究该区的地、物、化、遥、数等方面信息之后,、指出
    了漕涧河地区为一有望找到中型以上铜矿的远景区。
The rnagmatic, metamorphic and tectonic mobile zone of Lancangjiang ,western Yurinan province ,China is an important tectonic mobile zone in western China. Its tectonic location is very special and the geological phenomena are very complex. Moreover, it抯 a mineralize centralize zone and there are lots of nonferrous metal deposits in this area. The researching for this area is very important.
     Composed by the microplates which were split from the Gandwana and Larauisa lands, it located in their syntaxis zone. Based on thorough researching on its geotectonic dividing and evolution, this area can be divided into three microplates. a. The LanpingSimao microplate, it includes the An抎ing-Tengtiaojiang Palaeozoic ocean floor ophiolite zone, the Weixi-lvchun Mesozoic rift valley, the Lanping-Simao Mesozoic post-collision continental rift, the Lancangjiang Triassic volcanic island curve, Lancangjiang collision suture zone. b. The Changning-Menglian microplate, it includes the Lancang-Ximeng middle and late Proterozoic-Palaeozoic continental edge rift valley, Kejie-Nandinghe suture zone. c. The Baoshan microplatc, it includes Chongshan middle and late ProterozoicPalaeozoic continental metamorphic terrain, Baoshan shelf nfl.
     As a part of the eastern Tetbyan orogenic zone, it had opened and closed several times in its evolution history. After Devonian-Carboniferous period, the continent was disintegrated. This area was split and began to ocean making and the Carboniferous-Permian period was the main period of expanding, and it had tholeiite series梒alc-alkali rock series
    梜alibasalt series magmatic activities in this period. At the end of late Permian series, there抯 volcanic-clastic deposit of neritic facies and marine-land alternately facies on the top of volcanic curve .For the deposit of lower Triassic series doesn抰 exist in whole area, the Paleo-Lancan~iang Ocean was closed in later Perrnian.early Triassic period. After three microplate sutured together the last time, the continental transforming period was beginning in this area and the Lanping-Simao terrain became a rift basin along with the sag of whole area. The sag lasted to the Himalayan movement period. At the end of Tertiary, the India plate was sutured to the Eurasia, so the forming of folds and large reversed nappe happened strongly in all strata in this area.
     Influenced by its tectonic evolution, the metallogenetic characteristic of copperpolymetal deposit are polytime and polyphyletic .In its three main evolution period, different metallogenetic series was formed. a. In Paleo -Tethyan Lancangjiang ocean period, the alkali-basalt-hosted deposits formed in the early expansion period, and the ophiolite serieshosted deposits formed in the main period of expansion and the spilite series rock-hosted deposits formed in the closure period. b. In Mid-Tethyan Lancangjiang ocean period, the basic volcanic rock series-hosted deposits formed in the early expansion period, and the
    
    
    2
    2,
    
    
    
    Neutral-acid volcanic and subvolcanic rock series-hosted deposits and the hot water spathic iron ore formed in the late expansion period, and the Sb, Hg,As,Au hydrothermal deposits in clastic and carborialite formation formed in sutured period. c. In the continental transforming of rear Lancangjiang ocean, the copper deposit from the Mesozoic-Cenozoic red clastic formation and Neutral-acid magnlatic deposits was formed. Besides , it has other characteristic such as :a. The deposit distributed along with the tectonic-magmatic-heat flow zone. b. The post-metallogenetic transformation action was very strong.
     On its evolution history ,it formed three main ore strata ,three main metallogenetic series , three main metallogenetic zone .The area metallogenetic model can be concluded to three strata and several channel? The forecasting mark抯 establishing and prospecting area~s delimiting for exploration in this area must take these factors into account.
     After made full use of the information Of geology, geophysics, geochemistry and mathematical geology in this a
引文
1.A.C.布朗,1997,以沉积岩为容矿岩石的世界级层状铜矿床的特征、成因概念和控矿因素.国外地质科技,(5):21-26
    2.H.L.Barnes,1987,热液矿床地球化学,北京:地质出版社,148-178
    3.百星碧,1994,深部地质研究的重大进展,中国地质,5
    4.毕献武,胡瑞忠,1988,哀劳山金矿带成矿流体稀土元素地球化学.地质论评44(3):264-269
    5.曹显光等,1994,澜苍老厂大型多金属矿床的物化探标志和效果研究.西南矿产地质,8(3-4):9-16
    6.陈炳蔚,等,1987,怒江-澜沧江-金沙江地区大地构造,北京:地质出版社,221-234
    7.陈炳蔚等,1991,三江地区主要大地构造问题及其与成矿的关系,北京:地质出版社,122
    8.陈富,2000,酸性含矿热液的成因及成矿演化模式.地质地球化学,28(1):48-52
    9.陈国达,1992a,历史—因果大地构造学刍议,大地构造与成矿学,16(1):1—71
    10.陈国达,1992b,地洼学说的新进展北京:科学出版社
    11.陈国达,1997,中国大地构造概要,北京:地震出版社
    12.陈好寿,1994,矿床同位索地球化学,杭州:浙江大学出版社,49-55
    13.陈纪明,寸跬,1997,中国金矿地质的新进展,北京:地质出版社
    14.陈先沛,1988,热水沉积成岩作用的研究进展,矿物岩石地球化学通讯,(2):103-104
    15.陈先沛,高纪元,陈多福等,1992,热水沉积概念及其岩石学指标.沉积学报,10(3):128-132
    16.陈先沛,祁思敏,1997,热水沉积成矿作用,见:中国科学院矿床地球化学开放实验室著,矿场地球化学.北京:地质出版社,248-265
    17.陈振胜,张理刚,1992,热液体系氢、氧同位素分馏机制及其地质意义.地质学报,66(2):158-169
    18.程相皋,等,1996,云南澜沧县老厂银铅矿床找矿勘探新进展,西南矿产地质,37-38(1-2):46-57
    19.程裕其,等,1979,初论矿床成矿系列问题,中国地质科学院院报,1(1)
    20.程裕其,等,1983,再论矿床的成矿系列问题,中国地质科学院院报,6号
    21.崔银亮,1994,试论卤水成矿作用的几个基本问属.西南矿产地质,8(3、4):16-23
    22.崔银亮,扬灿,1998,勐腊型新山多金属矿床地质特征及控矿因素探讨,云南地质,17(2):207-216
    23.戴金星,1988,云南省腾冲县硫磺糖天然气的碳同位素组成特征和成因.科学通报,33(15):1168-1170
    24.地质矿产部“三江”地质编委会,1987,怒江-澜沧江-金沙江地区大地构造,地矿部地质专报五,构造地质力学第二号,北京:地质出版社,230-235
    25.丁悌评等,1994,硅同位素地球化学,北京:地质出版社,17-46
    26.段嘉瑞等,1992,澜沧地区逆冲推覆构造研究,云南地质,11(4):197-201
    27.段嘉瑞等,1991,滇西澜沧裂谷,大地构造与成矿学,3:156-167
    28.范承钧,1992,滇西区域地质特征,云南地质,(4)
    29.范承钧,等,1992,滇西地壳结构和地壳深部构造,云南地球物理文集,云南大学出版社,102-109
    
    
    30.范承钧,张翼飞,1997云南西部地质构造格局.云南地质,12(2):139-147
    31.甫为民,1992,兰坪金满铜矿床成矿地质特征及成因探讨.云南地质,11(1):63-69
    32.郭文魁,等,1978,我国主要类型铜矿床成矿和分布问题.地质学报32(3):169-181
    33.何明秦,等,1988,云南金满铜矿床改造成因证据.地质与勘探.34(2):13-15
    34.何文举,1987,云龙白洋厂银—多金属矿床成矿地质条件及控矿因素,云南地质,5(4)
    35.侯增谦,等,1996,“三江”古特提斯地幔热柱——洋中脊玄武岩证据.地球科学,17(4):363
    36.候增谦,等,1996,三江”古特提斯地幔热柱——洋岛玄武岩证据.地球科学,17(4):343
    37.季红兵,李朝阳,1998,滇西金满铜矿床成矿流体地球化学特征及来源.矿物学报,18(1):28-37
    38.阚荣举等,1992,云南地球物理区域特征与板内动力学模式,云南地球物理文集,云南大学出版社,51-57
    39.李昌贵,等,1988,云南勐腊新山上三叠统的海棉斑礁及沉积型菱铁矿,地质论评,34(5)
    40.李朝阳,等,1993,滇西地区陆相热水沉积成矿作用。铀矿地质,9(1):14-21
    41.李朝阳,季红兵,1994,陆相热水沉积矿床的特征,见:胡瑞忠主编,矿床地球化学研究,北京:地震出版社,102-105
    42.李峰,甫为民,冉崇英,1992,兰坪金满铜矿床成矿物质来源研究.昆明理工学院学报,17(4):8-15
    43.李峰,甫为民,庄凤良,1993,兰坪盆地西缘铜矿床流体包裹体研究及找矿意义.昆明理工学院学报,18(2):1-10
    44.李峰,1994,兰坪—思茅盆地铜矿床区域控矿因素,有色金属矿产与勘察,3(6):321.327
    45.李峰,等,1993,云南兰坪金满铜矿床地质地球化学特征.矿产与地质,7(3)
    46.李峰,等,1996,滇西改造型钢矿床的黝铜矿族矿物.云南地质,15(3):239-246
    47.李峰,甫为民,李雷,1997,滇西红层铜矿区域成矿物质来源研究.云南地质,16(3):233-244
    48.李峰,黄敦义,甫为民,1994,水平水泄铜矿床地质特征及其成因.云南地质,13(3):341-349
    49.李峰,李雷,黄敦义,1996,滇西含钢(多金属)菱铁矿床成矿规律.昆明理工学院学报,21(1):1-7
    50.李富春,刘源,金章东,耿建华,1999,流体在金属成矿中的作用,矿产与地质,13(7):129-133
    51.李继亮,1988.滇西三江的大地构造演化.地质科学.23(4):337-346
    52.李雷,等,1996,澜苍老厂钢多金属矿床地质特征及多期同位成矿.15(3):246-257
    53.李雷,赵斌,等,1989,云南澜苍老厂多金属矿区遥感影像特征及其找矿意义,矿产与勘察,(1)
    54.李兴林,1996,临沧复式花岗岩基的基本特征及形成构造环境的研究.云南地质,15(1):1-19
    55.李学礼,1988,水文地球化学,原子能出版社,284-288
    56.李兆林,杨荣勇,孙晓明,李院生,1996,地质作用中的流体形成演化及成矿作用,地学前缘,3(3-4):237-243
    57.刘斌,1995,流体包裹体的氧逸度计算公式及其应用,矿物学报,15(3):291-302
    58.刘凤山,1997,“西南三江”地区铜矿床找矿方向.中国地质,(11);31-33
    59.刘继顺,1996,韧性剪切带中金成矿研究的若干问题,地质论评,42(2):123-128
    60.刘家军,郑明华,1991,硅质岩的新成因.四川地质学报,11(4):251-255
    61.刘建明,1991,海底喷流型层控金矿床.见:朱上庆等编,层控矿床学.北京:地质出版社,101-120
    62.刘建明,刘家军,1997a,滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,17(4):448-456
    
    
    63.刘建明,刘家军,顾雪祥,1997b,沉积盆地中流体活动及其成矿作用.岩石矿物学杂志,16(4):341-352
    64.刘英俊,等,1984,元素地球化学,北京:地质出版社,194-225
    65.刘肇昌,李凡友,钟康惠,1997,金沙江、澜沧江、怒江地区地体—裂谷构造与演化.有色金属矿产与勘察,6(1):8-15
    66.柳贺昌,1996,滇、川、黔铅锌成矿区的成矿模式.云南地质,15(1):41.52
    67.罗君烈,1990,滇西特提斯造山带的演化及基本特征,云南地质,9(4):251-262
    68.罗君烈,扬友华,赵准,等,1992,滇西特得斯的演化及主要金属矿床成矿作用,北京:地质出版社,215-252
    69.马东升,1998,地壳中流体的大规模流动系统及其成矿意义,高校地质学报,4(3):259
    70.莫宣学等,1993,三江特提斯火山作用与成矿,北京:地质出版社,126
    71.潘长云,1992,“三江”地区花岗岩铅同位素特征.云南地质,11(1):1-9
    72.潘长云,等,1992,金沙江-哀牢山岩带富碱侵入岩的成矿专属性.云南地质,11(2):144-153
    73.冉崇英,李峰,甫为民,1992,兰坪盆地西缘石登火山岩与铜矿地质地球化学研究及找矿靶区优选,昆明理工学院地质系,100-108
    74.冉崇英,张智筠,刘为华,1994,康滇裂谷旋回与铜矿层楼结构及其地球化学演化,国科学,24(3):325-330
    75.上官志冠,张钟禄,1991,滇西试验区温泉的稳定同位素地球化学研究.现代地壳运动研究(5),北京;地震出版社,87-96
    76.孙海田,等,1990,中条山式热液喷气成因铜矿床,北京,北京科技出版社,17
    77.田洪亮,1997,兰坪白秩坪铜多金属矿床地质特征,云南地质,16(1):105-108
    78.田洪亮,1998,兰坪三山多金属矿床地质特征.云南地质,17(2):199-207
    79.佟伟,等,1989,腾冲地热,北京:科学出版社,67
    80.涂光炽,1988,中国层控矿床地球化学(第三卷),北京:科学出版社,1-26
    81.涂光炽等,1984,中国层控矿床地球化学,(第一卷),北京:科学出版社,129-188
    82.汪辑安、徐青,等,1990,云南大地热流及地热地质问属.地震地质,12(4)
    83.王登红,1997,铜经济地质的进展评述.地质科技情报,16(2):62-66
    84.王根,等,1991,云南兰坪—思茅盆地砂岩型和热液型铜矿成因探讨,西南矿产地质,5(4):25-35
    85.王汝兴,鲁文举,1991,云南省兰坪县金满铜矿床成矿地履特征及找矿前景.西南矿产地质,5(1):34-42
    86.王秀璋等,1992,中国改造型金矿床地球化学,北京:科学出版社,
    87.王秀璋等,1996,变质细碎屑岩型金矿床的三阶段成矿模式,矿床地质,14(4):322-327
    88.王增润,吴延之,等,1992,滇西澜沧裂谷成矿作用兼论老厂大型铜铅银矿床成因,矿产与勘察,1(4)
    89.王之田、秦克章等,1994,大型铜矿床地质与找矿,冶金工业出版社,2-49
    90.王中刚,等,1989,稀土元素地球化学,北京:科学出版社,247-278
    91.魏菊英、王关玉,1988,同位素地球化学,北京:地质出版社,140-149
    92.吴建民,黄永平,刘肇昌,1998,扬子地台西缘海相火山岩缝造及其控矿特征分析,云南地质,17(2):119-128
    93.先大贤,1987,西双版纳及其邻区的温泉分布及特征.云南地质,6(1)
    
    
    94.肖荣阁,李朝阳,1993,云南兰坪啦井温泉喷流沉积矿化体的发现及其地质意义,地质论评,39(1):73-78
    95.谢福德等,1990,流体包裹体研究实践指南,武汉:中国地质大学出版社,45-49
    96.熊鹏飞,池顺都,李紫金,1994,中国若干主要类型铜矿勘察模式,武汉:中国地质大学出版社,1-3
    97.薛啸峰,1993,壳幔演化与成岩成矿同位素地球化学,北京:地震出版社,36
    98.颜文,李朝阳,1997,一种新类型铜矿床的地球化学特征及其热水沉积成因.地球化学,26(1):55-63
    99.扬城芳,等,1996,云南元阳大坪闪长岩体地质特征及其与金矿的关系.西南矿产地质,37-38(1-2):33-38
    100.扬敏之,1997,微量元素研究在矿床地球化学中的应用,见:中国科学院矿床地球化学开放研究实验室主编,矿床地球化学,北京:地质出版社,457-474
    101.扬兴裕,1993,永平水泄铜矿床地质特征.云南地质,12(4):352-356
    102.扬振德,1995,一条巨型花岗岩推覆体.云南地质,14(2):99-109
    103.杨世瑜,1994,论遥感图像的线。环构造等级体制,西南矿产地质,8(3、4);50-57
    104.叶庆统,等,1992,三江地区区域地球化学背景和金银铅锌成矿作用.北京:地质出版社,23-160
    105.尹汉辉,范蔚鸣,林舸,1990,云南兰坪—思茅地洼盆地演化的深部因素及幔.壳复合作用.大地构造与成矿学,14(2):133-124
    106.袁海华,1987,同位素地质年代学,重庆:重庆大学出版社,26-28
    107.云南省地质矿产局,1990,云南省区域地质志.北京:地质出版社,12-200
    108.云南省地质矿产局,1991,云南省岩相古地理图集说明书(1:300万)
    109.张本仁,等,1990,秦巴区域地球化学文集,武汉:中国地质大学出版社,216-226
    110.张峰根,等,1987,怒江.澜沧江-金沙江地区构造体系及演化程式,北京:地质出版社
    111.张理刚,1985,稳定同位素在地质科学中的应用,西安:陕西科学出版社,54-83
    112.张理刚,1989,成岩成矿理论与找矿,北京:北京大学出版社,30-45
    113.张理刚,陈振胜,刘敬秀,等,1985,两阶段水岩同位素交换理论及其勘察应用,北京:地质出版社,24-45
    114.张生,李统锦,王连魁,1997,广东长坑金银矿床成矿地球化学,地球化学,26(4):78-85
    115.张学诚,1995,康滇裂谷带火山活动及其碱性(钠质)火山岩系特征.云南地质,14(2):81-99
    116.郑明华,周渝峰,刘建明,等,1994,喷流型与浊流型层控金矿床,成都:四川科学技术出版社,123-142
    117.钟康惠,等,1996,金沙江——雅砻江地区沉积岩系中的有色金属、贵金属矿床的成矿特征与找矿方向.西南矿产地质,37-38(1-2):16-25
    118.周宗孟,1993,云南兰坪县金满铜矿床,见:中国有色金属工业总公司地质勘查总局变.中国铜矿找矿新进展,北京矿产地质研究所编辑出版,423-426
    119.朱上庆,黄华盛,等,1988,层控矿床地质学,冶金工业出版社,334-340
    120.邹贻安,1982,维西楚格扎菱铁矿床之特征及成因探讨.云南地质,4 (2)
    121.Ahmad s.n.Rose a.w.,Fluid inclusions in porphyry and skarm ore at Santa Rita,New Mexico. Econ.geol.,75(2):229-250
    122.Annie Michard.1989.Rare earth elements systematics in hydrothermal fluids.Geochim.Cosmochin. Acta.53:745-750
    123.Baiwah Zu,Seccombe P.K.,Ofler R.,1987,Trace element distribution,Co:Ni ratios and genesis of the Big Cadia iron-copper deposit,New south Wales Australia,Mineral deposit,22:292-300
    124.Balashove L.G.,1987,The role of evaporate basin in producing stratiform mincralization.lnter. Geol .Review, 29(4)
    
    
    125.Barnes H.L.,1963,Ore solution chemistry experimental determination of mineral solubilities, Econ. Geol., 53:1054-1060
    126.Boyle r.w.,1979,The geochemiatry of gold and its deposits. Geol.Surv. Canada.Bull.,280:584
    127.Bralia A., Sabatini G. N., Karpukhima V.S., et al.,1979, A revaluation of the Co/Ni ratio in pyrites as a geochemical tool in Ore genesis problem. Mineral deposit,14:353-374
    128.Branam J.D., 1990,Genesis of sediment-host copper minerlization in south-central Kansas, sulfur/carbon and sulfur isotope systematic. Econ. Geol., 85:601-921
    129.Branov E.N., et al.,1973,Occurrence of Cu, Zn, Pb and other elements in pyrites from aureoles of pyrite deposits. Geochem. Int, 10:834-844
    130.Bratia M.R., et al., 1981,Trace-element geochemistry and sedimentary provinces: a study from the Tasrrmn Geosyncline, Austria. Chem. Geol., 33:115-125
    131.Bratia M.R., et al., 1985,Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks provenance and tectonic settings control. Sediment. Geol., 45:97-113
    132.Campell a.,et al.,1984,Hydrogen and oxygen Isotope study of the Son Cristobal Mine,Pero: implication of the role of sater to rock ratios for the genesis of wolframite deposits. Ecoa .Geol.,79:1818-1832
    133.Chan w.,1988,Mesozonic and Cenozoic sandstone-hosted copper deposits in south China. Mineral Deposita,23(3):262-267
    134.Cowper M. And Richard D.,1989,Mechanism of chalcopyrite formation from iron monosulfldes in aqueous solutions(<100℃,ph 2-4.5).Chem. Geol.,78:325-341
    135.Cox S. F. ,et al.,1987,The role of fluid in syntectonic mass transport and the location of metamorphic vein type ore deposits. Ore. Geol.Rev.,2:65-86
    136.David A. Crerar and H. L. Barnes, 1976,Ore solution chemistry V. Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200℃ to 350℃,Econ. Geol.,71:772-794
    137.Davies G.,1994, Thermomechanical erosion of the lithosphere .J.Petrol,29:625-679
    138.Drummond S.E. ,and Ohmoto h.,1985,Chemical evolution and mineral deposition in boiling hydrothermal system. Econ.Oeol.,80: 126-147
    139.Dutrizac J.D., et al.,1970,TheKinetics of dissolution of bomite in acidified ferric sulfate solutions. Metall. Trans.,1:225.231
    140.Edmond J.W. ,Von Damn K., 1983,Hot springs on the ocean floor. Sci. Americen,298:70-84
    141.Elderfield H., et al.,1990,The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochim. Cosmochain.Acta,54:971-991
    142.Etheridge M.A. ,et al.,1981,The role of the fluid phase during regional metamorphism and deformation. J.Met.genl.,1:205-226
    143.Ferry T. M. ,et al.,1991,Fluid flow, mineral reactions, and metasomatism .Geology, 19:211-214
    144.Finlow-bates T.,1979, Cyclic in the Lead-Zinc-Silver-bearing sediments at Mt. Isa.mine, Queensland, Australia, and rates of sulfide accumlation. Econ.geol.,74:1408-1419
    145.Frankling J.M., Sangater D.F.,Lydon J.W.,1986,Volcanic-associated massive sulfide deposits. Econ.geol., 1981,76(3):485-627
    146.Friedmamn S.T.,Burbank D.W.,1995,Rift basins and supradetachment basins: intracontinental extensional end-members. Basin Research,7:109-127
    147.Fuex A.N,,Baker D.R.,1973,Stable carbon isotope in selected granitic, mafic and Ultramafic rocks. Oeochim. Cosmochim. Aota,37:252-531
    148.G.A.Shields, et al.,1999, sulphux isotope compositions of sedimentary phosphorites from the basal Cambrian of China :implications for Neoproterozoic-Cambrian biogeochemical cycling. The Journal of the Geological society, 156(5):943-955
    149.Gao MingXiu, 1993,Cenozoic tectonic in the eastern tlank of the Eastern Himalayan mountain Arc,Memoly of Lithospheric tectonic evolution research(1),Seismology press, 167-173
    150.Guillemette N. And William-Jones A.s.,1993,Genesis of the Au-sb-W deposits at Ixtahuacan,Guatemala :evidence from fluid inclusion and stable isotopas. Mineral.Deposita,28:167-180
    151.Hackbath C.T. and Peterson U.,1984,A fractional crystallization model for the deposition of argentian tetrahedrite,Econ.geol.,79:448-460
    152.Hannington M.D.,Thompson G.,et al.,1988,Gold and native Copper in supergene sulfides from the MidAtlantic Redige. Nature,333:64-66
    153.Hedenquist J.W.,1991,Boiling and dilution in the shallow portion of Waiotapu geothermal system,New Zealand. Geochem. Cosmochim. Acta,55:2753-2765
    154.Hedge C. E. ,1974,Strontium isotopes in economic geology. Econ. Geol,66:823-825
    155.Heinrich C.A.,1989,A fluid inclusion and stable isotope study of synmetamorphic copper ore formation at Mount Isa, Australia. Econ.Geol.,84(3):529-550
    
    
    156.Hemley J.J. and Hunt J.P.,1992,Hydrothermal ore-forming process in the light of studies in the rockbuffered system :I. Iron-Copper-Zinc-Lead sulfide solubility relations. Econ. Geol.,87:1-32
    157.Hemley R.W., et al.,1979,Some geothermal aspects of polymetallic massive sulfide formation. Econ. GeoL,74:1600-1612
    158.Holy L.D.,1983,regional evolution of hydrothermal fluids in the Norand district,Qubec: evidence from δ ~(13)O values from volcanogenic massive sulfide deposits. Econ.Geol.,87(3):471-510
    159.Hopf S.,1993,Behaviour of rare earth elements in geothermal systems of New Zealand .Journal of Geochemical Exploration
    160.Horibe Y.,Kim K.R.,Crag H.,1986,Hydrothermal methane plumes in the Marian backarc spreading center. Nature,324:131-133
    161.Howell D.G., el al.,1987,Crustal evolution of northern Alaska inferred from sedimentology and structural relation of the Kondik basin. Tectonics
    162.Howell D.G.,et al. 1987. crustal evolution of northern Alaska inferred from sedimentology and structural relation of the Kandikbasin.Tectonics,
    163.J.A.plant, 1990,Regional Geochemical and identification of Meudlogenic province: Example from Lead-Zinc-Barium. Geochem. Explor.(1/2): 195-224
    164.Kenji Natsu, 1991,Strotium isotopic composition of hot spring and mineral spring water, JAPAN. Applied Geochemistry,6:543-551
    165.Kerrich R.R. and Fyte W.S.,1981,The gold-carbonate association: source of CO_2 and CO_2-fixation reactions in Archaean lode deposits. Chem. Geol.,33:265-294
    166.Large R.R., 1992,Australian volcanic-hosted massive sulfide deposits: feature, styles, and genetic models. Econ.Geol.87(3): 471-510
    167.Loftus-Hills G. and Solomon M., 1967,Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Mineral deposita, 2:228-242
    168.Luce F.D., et al.,1977,studies of sulfosalts of copper V. phase and phase relations in the system Cu-Sb-As-S between 350℃ and 500℃,Econ.Geol.,72:271-289
    169.Lydon J.W.,1988,Volcanogenic massive sulfide deposits. Part 2:Genetic models. Geoscience Canada, 15(1):15
    170.Lyon G.L.,Hulston J R.,1984,Carbon and hydrogen isotopic compositions of new Zealand geothermal gases. Geochimica. Cosmo. Acta.,48(6): 1161-1171
    171.M.L.Hauck, et al., 1998,crustal structure of the Himalayan orogen at-90°east longitude from project INDEPTH deep reflection profiles. Tectonics, 17(4): 481-501
    172.Martin J.M., et al., 1987,Facies control of strata-bound ore deposits in carbonate rocks;The Fe-(Pb-Zn)deposits in Alpine Triassic of the Alpujarrides,Southern Spain.Mineral.deposits,22:216-226
    173.Maske S. And Skinner B.J., 1971,strudies of sulfosalts of copper Ⅰ. phase and phase relations in the system Cu-As-S.Econ. Gelo.,66(901-918)
    174.Mckenzie D.P.,Bickle M.J.,1988,The volume and composition of melt generated by extension of the lithosphere. J.Pelrol,29:625-679
    175.Metcalfe R., et al., 1994,Fluid-rock interactions during continental red-bed diagenesis: implications for theoretical models of mineralization in sedimentary basins. Geol.socie.spec.publ., 78:301-324
    176.Mishra B. And Mookherjee A., 1991,Tetrahedrite minaral chemistry and metal Zoning: a thermodynimic assesment from the Rajpura-Dariba polymetallic deposit, India. Ecoa. Geol.86:1529-1538
    177.Mookherjee A.,Philip R.,1979,Distribution of copper, cobalt and nickel in ores and host rocks ,ingaldhal katataka,Inda. Mineral deposita 14:33-35
    178.Muray R.W.,Brink M.R.,Gerlaeh D.C., et al., 1990,Rare earth elements as indicators of different marine depositional enviroments in chert and shale .Geology, 18(3):268-271
    179.Neison C.E., 1985,Hydrothermal eruption mechanism and hot spring gold deposits. Econ. Geol., 80:1639-1663
    180.Norman D., et al., 1989,Analysis of trace elements including rate earth elements in fluids inclusion liquid. Econ. Geol.,84:162-166
    181.Ohmoto H.,1972,Systematics of sulfur and carbon Isotopes in hydrothermal ore deposits. Econ. Geol.,67:551-578
    182.Pisutha-Arnnond V.,Ohmoto H.,1983,Thermal history, and Chemical and isotopic compositions of the ore-forming fluids responsible for the Kuroko massive sulfide deposits in the Hokurok district of Japan. Ecoa. Geol.,5:523-558
    183.R.Raiswell&Q.T.,2000,Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. The Journal of the Geological Society, 157(1):239-251
    184.Richard W.A.,1998,Inverse and forward numerical modeling of trishear fault-propagation folds. Tectonics, 17(4):640-649
    
    
    185.Rordder E., 1984,Fluid inclusions. Reviews in Mineralogy
    186.Rose A.W,, 1989,Mobility of copper and other heavy metals in sedimentary environments, in RW boyle and AC brown:Sediment-hosted stratiform copper deposits,GAC,:97-101
    187.Rossmaan G.R., et al.,1987,Rb,Sr, Nd and Sm concentration in quartz. Geochem. Cosmochim. Acta,51:2325-2329
    188.S.A.stewart ,1999,Geometry of thin-skinned tectonic systems in relation to detachment layer thickness in sedimentary basins. Tectonics, 18(4):719-731
    189.Seal R.R., Essense E.J., 1990,Retrahedrite and tennantite: evaluation of thermodynimic data and phase equilibria. Canadian Mineralogist, 28:725-738
    190.Shea D. ,Helz G.R.,1988,The solubility of copper in sulfidic waters :sulfide and polysulfide complexes in equilibrium with covellite. Geochim.et Cosmochim. Acta, 52:1815-1825
    191.Sibson R.k ,Howard Poulsen ,1998,High-angel reverse faults ,Fluid-prexsure cycling and mesothermal gold-quartz deposit. Geology, 16:551-555
    192.Skinner B. J., Luce F. D.,Makovicky E.,1992,studies of the sulfosalts of copper Ⅱ. Phase and Phase relations in the system Cu-Sb-S. Econ. Geol.,67:924-938
    193.Smalley P.C.,1992,~(87)Sr/~(86)Sr variation in formation water and calcite,Ekofist oilfield. Applied Geochemistry,7:341-350
    194.Song x., 1984,Minor elements and ore genesis of the Fankon Lead-Zinc deposit, China. Mineral. Deposita, 19:95-104
    195.Spycher N.F., Reed M. H., 1989,Evolution of a broadbands-type epithermal ore fluid along alterative p-t paths. Econ. Geol.,84:328-359
    196.Subba Rao P. V.,Naqvi S.M.,1997,Geological setting, mineralogy ,geochemistry and genesis of the Middle Archaean Kalyadi copper deposit, Western Dharwar creton, southern India. Mineralium deposita, 32(2): 230-242
    197.Sverjensky D,A.,1989, Chemical evolution of basinal brines that formed sediment-hosted Cu-Pb-Zn deposits,in Rw boyle and AC Brown: Sediment-host stratiform copper depoaits,GAC, 127-134
    198.Tatsuka K. And Morimoto N.,1977,Tetrahedrite stability relations in the Cu-Sb-S System. Econ.Goal ,72:258-270
    199.W. James Dunlap, et al., 1998,Karakaram fault zone rocks cool in two phases. The Journal of the Geological Society, 155(6):903-913
    200.White R.S.,Mckenzie D.,1989,Magmatism at riff zone: the generation of volcanic continent margins and flood basalts. Geophys. Res, 1989:809-823
    201.Whitican M.J.,Faber E.,Schoell M.,1986,Biogenic methane formation in marine and freshwater environments CO_2 reduction vs. Acetate fermentation-isotope evidence .Goachimica et Cosmochimica Acta,50:693-709

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700