用户名: 密码: 验证码:
真空精炼锂的研究与氧化锂真空碳热还原初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了金属锂及其化合物的性质、用途和消费情况,综述了金属锂
    和高纯锂的生产方法,对粗锂真空蒸馏精炼、碳酸锂真空加碳热分解、氧化
    锂真空碳热还原过程的热力学和动力学进行了计算与分析,对粗锂真空蒸馏
    精炼进行了试验研究,对氧化锂真空碳热还原提取金属锂进行了初步探索,
    提出了一个全新的提取锂的流程。
     对粗锂真空蒸馏精炼的热力学和动力学进行了研究。计算了锂中各杂质
    的分离系数,作出了Li-K、Li-Na、Li-Mg、Li-Ca、Li-Al、Li-Si、Li-Fe、Li-
    Ni二元系在573~1273K的蒸馏温度下的气液相平衡成分图,直观地表示了
    粗锂中杂质的含量、蒸馏温度对蒸馏产品的影响。还计算了K、Na、Li、Mg、
    Ca、Al、Si、Fe、Ni在真空中的最大蒸发速率以及锂在不同蒸馏温度进行
    真空蒸馏时的临界压强和蒸发系数,分析了金属在真空中的蒸发过程,研究
    了蒸馏温度、压强、冷凝条件对蒸法过程的影响。
     粗锂真空蒸馏精炼的热力学和动力学分析结果表明:根据分离系数的大
    小,粗锂中的杂质元素可分为三类:分离系数β_i>1的K和Na,分离系数β_i<1
    的Al、Fe、Ni、Si以及分离系数在1附近的Ca和Mg。用真空蒸馏的方法能
    够比较彻底地除去粗锂中的K、Na、Al、Si、Fe、Ni,而Ca和Mg的分离则
    较困难;为使粗锂中的杂质在真空蒸馏时与锂很好分离,应采用分步蒸馏的
    方法:即在较低温度下蒸馏低沸点杂质K和Na,第二步在较高温度下蒸馏
    锂,使高沸点杂质Al、Si、Fe、Ni残留下来。控制一定的蒸馏条件,可以使
    粗锂中的Ca和Mg得到比较彻底的分离。在锂的真空蒸馏过程中,由于存
    在临界压强,锂的蒸馏速度不能随系统压强的降低而无限增大,为保证蒸馏
    时锂有最大的蒸发速率,系统压强应稍低于临界压强。
     以工业级粗锂为原料,研究了粗锂真空蒸馏精炼的工艺条件。考察了一
    段(低温)蒸馏温度、一段蒸馏时间、二段(高温)蒸馏温度、添加剂的种类和添
    加量五个因素对粗锂真空蒸馏精炼的影响,得到了粗锂真空蒸馏精炼的较优
    工艺条件:一段蒸馏温度为550℃、一段蒸馏时间为60min、二段蒸馏温度
    为700℃、B_2O_3的添加量为锂的2.0%(Wt.)。在此条件下,纯度为99.632%的
    粗锂通过真空蒸馏精炼,得到纯度>99.9%的高纯锂。
     在973~1053K的温度范围内,对金属锂真空蒸发的动力学进行了研究。
    得到了金属锂在不同蒸发温度下蒸发的最大蒸发速率ω_(max)和临界压强P_(crit),发
    现金属锂的蒸发系数α随蒸发温度的升高而下降,得出了临界压强和最大蒸
    发速率与蒸发温度之间的关系式:
     P_(crit)=-4×10~(-4)T~2+0.9207T-512.2(Pa)
     ω=2×10~(-7)T~2+2×10~(-4)T+0.026(g·cm~(-2)·min~(-1))
     通过对碳酸锂真空加碳热分解和氧化锂真空碳热还原的热力学和动力学
    分析可知:在有碳存在的情况下,碳酸锂在真空和高温的条件下更容易分解,
    分解温度比纯碳酸锂的低约150K,并且随真空度的提高分解温度降低;在
    
     昆明理工大学博上学位论文 摘要IAbstract
     真空中碳能够将氧化理还原为金属理,随真空度的提高还原反应更容易进
     行。
     以碳酸理为原料,对真空碳热还原法制取金属银进行了初步研究,在压
     强不变的情况下,分别考察了温度和时间对碳酸银真空加碳热分解和氧化理
     真空碳热还原反应的影响,对分解反应和还原反应的反应机理和动力学模型。
     作了分析和讨论。在系统压强为-15Pa、分解温度为 923~*73K的条件下,
     得出了碳酸袒真空加碳热分解反应的分解串删)与分解时间雹的关系式:
     923K:卜=6.OXW炉一!.扣XI沪一十0.4317!
     9刀K:R==2.0X10-’尸一6.60X10”’尸十1.244*
     1023K:只。2.OXI炉P一】.01 IW十1.701!!
     1073K:R=3.OX10“P一5石SX10Y+3.9!52t
     表明分解反应属缩核反应模型和分解反应受界面化学反应所控制的反应机
     理,求出了分解反应在碳酸理沼点以下(923~973K)和沼点以上0~1073切
     进行的表观活化能 E。分别为 172.13 kJ/Inol和 137.58kJ/mol。
     在系统压强为20Pa、还原温度为1373K和1423K的条件下,分别得到
     了氧化理真空碳热还原反应的还原率用州与还原时间在的关系式:
     !373K:R。7xlw一!.66x 10-2t2 -I-l.3845t
     1423K:R=!X!W一二.75 X!0“Y十二.3439t
     表明氧化锰的碳热还原反应受扩散动力学控制,反应的表观活化能为391.14
     kjhalo通过试验,首次制得了纯度为54。34%的金属理。
     迢过以上研究,得出了以觑埋为原料,迟过真空加碳热分解、真空碳
     热还原、真空蒸瞩制取金属锰的原则工艺流程,该工艺对降低金瞩理的生产
     成本和环境保护具有重要意义。
The properties, the application and the consumption of metal lithium and its
     compounds are discussed in the thesis. The preparation methods of crude lithium and
     high purity lithium are overviewed. The principles involved in the process of vacuum
     distillation refining of crude lithium, vacuum thermal decomposition of Li2CO3 with
     carbon and vacuum carbothermic reduction of L120 have been analyzed with
     thermodynamic and kinetic calculation. The refining process of crude lithium by vacuum
     distillation was experimentally studied. In particular, the preliminary study on the process
     of producing metal lithium from Li20 by vacuum carbothermic reduction was also carried
     out experimentally and a novel process for preparing metal lithium has been proposed.
     The thermodynamics and kinetics on the refining process of crude lithium by vacuum
     distillation are studied. The separation coefficients of the impurities in crude lithium are
     calculated. The liquid-vapor equilibrium composition diagram of Li-K, Li-Na, Li-Mg, Li-
     Ca, Li-Al, Li-Si, Li-Fe and Li-Ni binary system are worked out in a range of 573K to
     1273 from which the quality of distillated lithium is how to be influenced by contents of
     impurities and distillation temperature is shown obviously. The maximum evaporation
     rates of K, Na, Li, Mg, Ca, Al, Si, Fe and Ni, the critical pressure and the accommodation
     coefficient of lithium during the process of distillation are also calculated respectively.
     The distillation process of metal in vacuum is discussed. The influences on distillation by
     distillation temperature, chamber pressure and condensation parameter are studied.
     The results from thermodynamic and kinetic analyses on lithium refining process by
     vacuum distillation indicate that the impurities in lithium can be classified as three kinds
     according to the separation coefficient: P >1 as K and Na. P <1 as Al, Si, Fe and Ni, P
     ~ 1 as Ca and Mg. The former two kinds of impurities can be removed easily from
     lithium by vacuum distillation while the removal of the impurities of Ca and Mg shows
     more difficult. In order to separate the impwities of crude lithium more completely in
     vacuum, fractional distillation should be adopted in the process. That is the impurities
     such as low boiling point elements of K and Na are distillated at lower temperature, then
     Li is distillated at higher temperature while the high boiling elements of Al, Si, Fe and Ni
     are remained in residue. By controlling the parameters, Ca and Mg can also be separated
     with Li more completely. The distillation rate of lithium can’t increase infinitely as the
     chamber pressure decreases because there is a known critical pressure during the process
     lithium’s vacuum distillation. The maximum chamber pressure should be controlled just a
     little less than the critical pressure to ensure the higher distillation rate of lithium during
     the evaporation process.
     With the feedstock of industry-grade lithium, the refining process of lithium by
     vacuum distillation was approached in more details. The principal parameters involved in
    
    
    this process are the first phase (lower temperature) distillation temperature and distillation
     time, the second phase (higher temperature) distillation temperature, the varieties and
     quantities of the additives were examined. The optimized technical parameters of vacuum
     distillation refining have been obtained: the first step distillation temperature ~?50C,
     the first phase distillation period is 60mins, the second phase distillation temperature
     700(2, the additive is B203 and its quantity is 2.0%(wt.). On this condition, the metal
     lithium with a h
引文
1 刘翊纶主编.基础元素化学.北京:高等教育出版社,1992,173~193
    2 李润年,田书芳编.1-109号元素.北京:北京师范大学出版社,1987:14~20
    3 刘翊纶,任德厚.《无机化学丛书》第一卷-碱金属.北京:科学出版社,1984:289~354
    4 《稀有金属手册》编辑委员会编著.稀有金属手册(下册)北京:冶金工业出版社,1995
    5 《有色金属提取冶金手册》编辑委员会编,赵天从,何福熙主编,有色金属提取冶金手册(有色金属总论).北京:冶金工业出版社,1992
    6 中国大百科全书总编辑委员会《矿冶》编辑委员会.中国大百科全书(矿冶).北京,上海:中国大百科全书出版社,1984
    7 中国大百科全书总编辑委员会《化学》编辑委员会.中国大百科全书(化学Ⅱ).北京,上海:中国大百科全书出版社,1989:671
    8 李铭谦编.国外锂铷铯工业.北京:中国工业出版社,1965
    9 杨重遇主编.轻金属冶金学.北京:冶金工业出版社,1991:318~327
    10 Clifford A. Hampel. Rare metals Handbook. London:Published by Reinhold Publishing Corpoation, 1961:239~270
    11 奥斯特罗什科等著.锂的化学与工艺学,曾华酰译.北京:中国工业出版社,1965
    12 M.E. Weeks. J. Chem. Educ., 1956, 33:487
    13 邱向东主编:有色金属进展(第五卷第五册 锂铷铯).长沙:中南工业大学出版社,1995(内部刊物):157(1)~199(43)
    14 [苏联]格里申,格拉祖诺夫,阿拉克洛夫,等.锂的性质.如镜译.北京:中国工业出版社,1966
    15 "Gmelins Handbuch der anorganische Chemie",Lithium Ergzungsband,System-Number 20,Verlag Chemie, 1960
    16 Kubaschewski O,Alcock C B.冶金热化学.邱竹贤等译.北京:冶金工业出版社,1985
    17 戴永年,赵忠编著.真空冶金.北京:冶金工业出版社,1988
    18 Georges J. Kipouros,Donald R. Sadoway. JOM, 1998,(5):24~26
    19 1960:178~187
    20 1959:176
    21 核素图编制组.《核素图》,北京:原子能出版社
    22 Smith, Sugden. Proc. Roy. Soc. 1953,219(A):204
    23 Acrell, Spetebergen, Heyding. Canad. J. Chem. 1955,(2):33
    24 J. W. Melior. Supplement to Mellor's Comprehensive Treaties on Inorganic and Theoretical Chemistry(Vol. Ⅰ).Longmans, 1961
    25 G. Brauer. Handbook of Preparative Inorganic Chemistry(Vol. 1). Academic, 1962.973~974
    26 J,Kleinbery编,张靓华等译,申泮文校.无机合成(第七卷).北京:科学出版社,1974:1
    27 R. Hader, R. Nielsen, M. Herre. Industr Engng Chem. 1951,43(12):2636
    28 1944,17(1~2)
    
    
    29 H.A. Laitinen,U. S. Ferguson,R. A. Osteryoung. J Electro Chem Soc. 1957,104:516
    30 R. B. Ellestad, K. M. Leute. US 2, 516, 109. 1950, 7:25
    31 R.B. Ellestad, F. F. Clarke. Mining Engineering. 1955, 7(11): 1045
    32 石颖.我国锂盐工艺三十年.新疆有色金属.1989,(3):1~11
    33 D. S. Lairder. Lithium and its Compounds. 1957:4~5
    34 Chemical Age. 1949, 60(1540): 119~120
    35 1955,(6)
    36 A.G.Morachevskii. lzv. Vyssh. Ucheb. Zaved.,Tsvet.Met. 1974,(17):94
    37 Richand Bauer. Chemie—Ingenieur Technik. 1972, (44): 147
    38 Kirk Othmer, Encyclopedia of Chemical Technology. New York: Intersciene Publisher,1967: 535
    39 1952
    40 S.I. Kuznetsov. Chem, of the USSR. 1973, 46:2703
    41 A.S. Mikulinskii. Schelochnye Elem., Sb. Dokl, Vses. Soveshch.(2nd):Novosibirisk,1964:343~360
    42 W. Kroll, A. Schlechten. Metals Technol. 1947,14(4):2197
    43 R.Stauffer. Metals Technol. 1947,1 4(6):1~
    44 P.S. Baker. Lithium Metal Production. Oak Ridge National Laboratory, Tenn. Rept.1953:CF-53-4-185
    45 泽利克曼,萨姆索诺夫,克列茵著.稀有金属冶金学(下册).冶金工业部有色金属工业管理局编译.北京:冶金工业出版社,1956:263~286
    46 J.H. de Boer, J. Broos, H. Emmens.Zs anorg Chem. 1930,119:113
    47 1954
    48 W. Morris, L. Pidgeon. Cand J Chem, 1958,36(6):910
    49 1958
    50 小林正夫.金属.1958,28(12):933~936
    51 小松童造.电气化学.1962,30(4):209~214
    52 杨斌,戴永年著.真空冶炼法提取金属锂的研究.昆明:云南科技出版社,1995
    53 杨斌.真空冶炼法提取金属锂的研究.1998,昆明理工大学博士学位论文
    54 日本化学会编.稀有金属制取.董万堂译,宁克复校.北京:中国工业出版社:1963:162~173
    55 F.K. Mctaggart. Use of Plasma in production of Metals from their Halides. US Pat.3,533,777.1970
    56 K. Luther. Phys Chem. 1972
    57 1956
    58 A. Cox, J. W. A. Morris, D. J. Fray. Improving the Efficiency of Electrowinning of Lithium. Light Metals 1998, 1998:1295~1298
    59 《稀有金属知识》编写组编.锂、铷、铯.北京:冶金工业出版社,1974:1~24
    60 1954
    61 1956:450
    
    
    62 Ed. R. L Lyon. Liquid Metals Handbook (2nd).Washington: 1955:38~102
    63 W.N. Gill, R. P. Vanek, R. V. Jelinek, et al. Eng Joural. 1960,6(1):139~144
    64 E.E. Hoffman. Simposium on Newer Metals. ASTM Spec Techn Publ. 1959,(272):195~206
    65 Metal Progress. 1958,73(6):96
    66 1960,(6):56~60
    67 程志翔等译.锂和氢化锂译文集.北京:原子能出版社,1980
    68 R.R. Rogers, G. E. Viens. Effect of Pressure on the Refining of Lithium by Distillation. J Elwctrochem Soc 1951,98(12):483~487
    69 Paul H. Schmidt. Purification of Lithium Metal by High-Vacuum Fraction Distillation. J Electro Chem Soc. 1966,113(2):201~204
    70 P.S. Baker, F.D. Duncan, N.B. Green. Science. 1953,11: 3078
    71 A.G. Ward, G, H. Broomfield. The Purification of Lithium by Vacuum Distillation. J. Appl. Chem. 1963, 13(8):329~334
    72 Winlder O, Bakish R. 真空冶金学.康显澄等译:上海:上海科学技术出版社,1982
    73 兰海苍,赵炜,胡初潜等.真空蒸馏法制取高纯金属锂工业试验.稀有金属,1988,22(4):286~289
    74 《稀有金属应用编写组》.稀有金属应用(上).北京:冶金工业出版社,1974
    75 锂铷铯科技协作组.有色金属进展(下篇第27分册)—锂铷铯.北京:中国有色金属工业总公司,1984:1~44(内部刊物)
    76 刘世友.锂的新用途与展望.金属世界.1994,(6):12~13
    77 师昌绪主编.材料大词典.北京:化学工业出版社,1994:641~642
    78 《材料科学技术百科全书》编辑委员会编.材料科学技术百科全书(下).北京:中国大百科全书出版社,1995:759~760
    79 孙伯勤.最轻的合金—Al-Li合金.金属世界.1994,(6):15
    80 陈铮.铝锂合金的发展趋势、关键技术及应用.材料导报.1999,13(2):1~3
    81 唐小真主编,杨宏秀,丁马太编.材料化学导论.北京:高等教育出版社,1997,203~205
    82 胡德昌,胡滨编著.新型材料特性及应用.广州:广东科技出版社,1996:338
    83 柯山.移动电话电池质量的现状与未来.移动通信.1999,(2)
    84 孔令兵,张良莹,姚熹.LiCl/SiO_2薄膜的制备及湿敏性能.硅酸盐学报,1998,(4)
    85 张秀荣,张顺兴,柴耀.新型非线性光学晶体硼酸铯锂的研究.人工晶体学报,1998,27(1)
    86 万尤宝,张约品,朱宝铃,等.铁铌酸钾锂晶体的生长:人工晶体学报,1999,28(2)
    87 Piers Nicholoson, Keith Evans. Evaluating New Direction for the Lithium Market. JOM, 1998, (5): 24~26
    88 罗思 A. 真空技术.北京:机械工业出版社,1979
    89 戴永年主编.有色金属真空冶金.北京:冶金工业出版社,1998
    90 戴永年,杨斌编著.有色金属材料的真空冶金.北京;冶金工业出版社,2000
    91 李洪桂主编.稀有金属冶金原理及工艺.北京:冶金工业出版社,1981
    92 戴永年等.有色金晨的真空冶金.中国真空学会真空科学技术研讨会,真空高新技术报告会论文集,合肥,1996:1~13
    93 中川洋著.真空蒸馏(日).东京都:日刊工业新闻社,昭和39年(1964)
    
    
    94 Y. N. Dai, et al. Zinc Vacuum Distilling Recovery from Dipping Galvanizing Residue,Toronto, Ontario:33rd Annual Conference of Metallurgists of CIM, 1994, August 20-25
    95 武钢实业公司,昆明工学院真空冶金研究所。武钢实业公司冶炼厂锌渣提纯产品评定会纪要,1992
    96 戴永年,杨斌有色金属的真空冶金的发展动态。昆明:96’全国冶金物化学术年会,1996
    97 Nesmeyanov A N.Vapor Pressure of the Chemical Elements. Amsterdan: Elsevier, 1963
    98 1986
    99 东北工学院有色重金属教研室.锌冶金.北京:冶金工业出版社,1987
    100 A. Volsky, E.Sergievskaya. Theory of Metallurgical Process: Pyrometallurgical Process(2nd).Moscow:MIR Publisher, 1978
    101 R.比利特著.蒸馏工程.黄宇粱,等译.北京:轻加工出版社,1988
    102 M. Olette. Physical Chemistry of Process Metallurgy. 1961,8(2):1065~1087
    103 R. Harris. Metall Trans. 1984,15B(3):251~257
    104 O.库巴谢夫斯基,C.B.奥尔考克著.冶金热化学。邱竹贤,梁英教,李席孟等译.北京:冶金工业出版社,1985.
    105 虞觉奇,易文质,陈邦迪编译.二元合金状态图集.上海:上海科学技术出版社,1987
    106 Ralph Hultgren, et al. Selected Values of the Thermodynamic properties of Binary Alloys. 1973
    107 R. G. Ward. J of Iron and Steel Institute. 1963,(1):11~15
    108 T. R. A. Davey. Vacuum. 1962,(12):83~95
    109 J. Krger. Proceeding of the 4th ICV(Section 3).1968:159~164
    110 V. I. Yaviskiy. Proceeding of the 4th ICV(section 2).1968:79~84
    111 R. F. Bunshah. Trans Vacuum Metallurgy Conference, 1963:121~139
    112 汪锡孝.试验研究方法.长沙:湖南科学技术出版社,1989.
    113 《正交试验法》编写组编.正交试验法.北京:国防工业出版社,1976
    114 《正交试验设计法》编写组编.正交试验设计法.上海:上海科学技术出版社,1979
    115 中华人民共和国国家标准.UDC 669.884,GB4730-84.高纯锂.1985年4月1日实施
    116 A A J Smeets.Trans Instn Min Metall(Set.C).1991,100(1):42~54
    117 A A J Smeets.用铝和硅真空热还原法提取锂,国外稀有金属,1992,(3):15~31
    118 梁英教,车荫昌主编.无机物热力学数据手册.东北大学出版社.沈阳,1993年:83~473
    119 Vauquelin. Ann Chim Phys. 1817,7(2):284
    120 L Troost.Ann Chim Phys. 1857,51(3):103
    121 C. R. Troost. Acad Sci.1862,55(2):366
    122 1940, (9):37
    123 Leabau. Ann Chim Phys. 1905,(8):422
    124 A Harder, E Zintl, B Z Duth. Elektrochem. 1934, 40:588
    125 傅崇说主编.有色冶金原理.北京:冶金工业出版社,1990
    126 黄培云主编.粉末冶金原理,北京:冶金工业出版社,1982
    127 莫鼎成编.冶金动力学.长沙.中南工大出版社.1987.
    128 H.Y.Sohn,et al.提取冶金速率过程.北京:冶金工业出版社,1984
    129 梁英教主编.物理化学(修订版).北京:冶金工业出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700