用户名: 密码: 验证码:
SAR图像处理及地面目标识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(SAR)地面目标识别在战场感知中发挥着重要作用,是地面情报的主要来源之一,能够为战争决策提供强有力的支持。本论文主要对SAR地面目标识别技术进行了深入的研究,从两个方面展开:其一为SAR图像预处理,其二为SAR目标特征提取和SAR目标识别。论文内容可概括为如下六部分:
     第一部分,提出了一种复合的SAR图像去噪算法。该方法首先利用信号的小波相邻尺度相关性将信号和噪声分离,然后根据SAR图像近似瑞利分布的特点把SAR图像转换为近高斯分布,再分别利用复数扩散震动滤波器对SAR图像部分进行增强,用各项异性扩散方程对含噪部分进行去噪,最后用小波平稳变换对图像进行重构。实验结果表明,与传统的SAR图像去噪算法相比,新算法无论在边缘增强还是在噪声去除能力方面均有显著提高。
     第二部分,提出了一种基于CUDA分段自回归模型的SAR图像插值算法。由于硬件条件和SAR成像的限制,获取的SAR图像分辨率不高,不利于图像的观察和分析,通常的最近邻插值法、双线性插值法、双三次插值法、立方卷积插值法等对原始图像进行放大,一定程度上改善了图像的视觉效果,但是这些算法插值的精细度不够高,对图像的视觉效果改善度不够大。基于分段二维自回归模型(PAR)的图像插值算法,通过使用非线性优化的方法来同时估计模型参数和缺失像素。这种插值方法能够产生具有很好视觉效果的高分辨率图像,但是该方法的计算成本非常高。针对该问题,提出了一个基于CUDA的并行实现方法,它先将一幅图像根据两次插值约束分成多个9?9的局部窗口,对每个局部窗口进行基于分段自回归模型的图像插值:首先,启动一个CUDA线程利用自回归插值算法来对图像进行第一轮插值,而自回归模型的参数则利用高精度的共轭梯度算法进行估计;然后,在第二轮插值中,利用第一轮插值得到的自回归模型参数作为共轭梯度算法的初始值进行第二轮的参数估计,从而降低了第二轮插值时间。实验结果表明,与基于传统的CPU的插值算法相比,基于GPU的并行算法在实现插值一个2592?1944的图像时,时间缩短为原来的1/110,并且图像尺寸越大,加速越快。文中的算法能最佳的利用自回归模型的局部性和CUDA的并行性,在得到高质量插值图像的同时计算速度大幅提高。
     第三部分,提出了一种融合SAR目标轮廓和阴影轮廓的目标识别算法。在进行SAR自动识别时,大多数算法都使用目标内部结构特征,如灰度值,峰值,中心距等特征,而很少使用SAR图像轮廓信息,更很少使用SAR图像阴影信息。事实上,SAR图像轮廓反映了SAR目标的局部空间结构信息,如果分割得当,能够分割出准确,精细的轮廓信息,而轮廓信息可以作为一种非常稳健的识别特征的。因此我们首先提出了一种基于控制标记符的SAR图像分割算法,得到SAR图像目标轮廓和阴影轮廓,然后融合这两种轮廓进行SAR目标识别。基于MSTAR的实验结果验证了本算法的有效性。实验结果证明,目标轮廓和阴影轮廓的结合,除反映本身包含的局部空间结构信息外,还能反应SAR目标的高度信息,较单一轮廓特征,是一种更为稳健的特征。
     第四部分,提出了一种基于多模分布的SAR图像分割算法。SAR图像目标,背景,阴影的不同成像机理使得这三部分具有不同的统计特性。本文分析SAR图像三部分的统计性质,并对其分别建立统计模型,并给出了一种基于这三种模型组合的多模分布的SAR图像分割算法,对于目标分割和阴影分割分别采用不同的预处理方法,分别提出了快速Otsu分割算法分割目标,以及基于背景均值保留的冲击滤波算法分割阴影。分割结果表明,这种基于多模分布的SAR图像分割算法与传统的基于单模分割算法相比,能最佳的利用各部分统计特性的差异,得到准确的分割结果。
     第五部分,提出了一种SAR目标姿态角的估计算法。SAR成像对目标方位角非常敏感,当SAR与目标的相对位置发生变化时,目标的散射中心也会发生变化,导致不同的方位角下的目标有明显的区别。因此,SAR目标姿态角的估计是SAR目标识别的一个重要步骤,在SAR目标分类和识别中,精确的方位角估计可以减小目标匹配数和检测误差。我们在前面目标分割的基础上,分析SAR图像随方位角变化的不变特征,提出了一种基于清晰双边的随机Hough变换法,基于MSTAR的实测数据实验结果表明,这种算法估算SAR目标姿态角具有估计精度高,计算时间短的优点。
     第六部分,提出了一种基于纹理特征的SAR目标识别算法,同时针对SAR目标变体提出了一种基于局部纹理特征的SAR目标变体识别算法。由于真实世界中使用的测试数据不可能与训练数据完全一致,也就是同一目标存在多种不同变体,这是SAR目标识别的难点,也是影响SAR目标识别率和SAR目标识别推广性的主要原因之一。我们提出了一种针对变体的识别算法,利用变体与原目标局部纹理之间的相似性进行识别。首先,提出了一种基于清晰边缘的SAR图像配准算法,然后使用结合Gabor变换,LBP和空间区域直方图的纹理特征来描述SAR图像,最后用基于大特征的直方图序列的匹配做识别。由于采用了基于配准的纹理来描述SAR图像,因而能有效描述SAR目标;用局部直方图匹配来进行识别,比用基于全局特征的算法推广性更好。基于MSTAR S2的实验结果证明了本算法的有效性。
Synthetic Aperture Radar (SAR) ground target recognition plays an important role in battlefield awareness. As one of major source of ground information, it can provide powerful support to war decision. This dissertation addresses issues of SAR ground target recognition technology. The work of this dissertation mainly focuses on two aspects: The first one is SAR image pre-processing, and the second one are SAR target characteristics extraction and SAR target recognition. The main content of this dissertation is summarized as follows.
     The first part of this dissertation presents a composite adaptive enhancing and denoising algorithm for SAR images. The SAR images are differentiated from speckle noise via scale space correlation. Because SAR image can be described by approximate rayleigh’s distribution, complex diffusion coupled shock filter is used to enhance the signal differentiated from SAR image, and the anisotropic diffusion equation is used to denoise the speckle in SAR image. At last, the SAR image is reconstructed by stationary wavelet transform. Compared with traditional speckle removal algorithms, this new algorithm has better performance in terms of edge preserving and denoising.
     Based on CUDA, the second part of this dissertation proposes a parallel algorithm to speed up the SAR image interpolation algorithm based on the piecewise autoregressive model. Due to hardware condition and SAR imaging limitation, the resolution of obtained SAR image is not high enough for observation and analysis. Common image interpolation algorithms, such as nearest neighbor, bilinear interpolation, bicubic interpolation, cubic convolution interpolation, can be used to enlarge the original image. These algorithms can help to improve the visual effect of image in some degree. But limited by the fineness of algorithms, the improvement to visual effect of image is not high enough. The piece-wise 2D autoregressive (PAR) model interpolation algorithm uses non-linear optimization method to evaluate model parameters and missing pixels simultaneously. Because of good adaptability to image local pixel structure, this algorithm can get a high image reproduction quality. But the computational cost of this algorithm is also very high. A parallel algorithm based on CUDA is proposed to speed up the image interpolation algorithm based on the piecewise autoregressive model. An image is first divided into multiple 9?9 small local windows. For each local window, first, a CUDA thread is used to interpolate the local window using the autoregressive interpolation algorithm whose parameters are found by the high accuracy gradient descent algorithm; in the second interpolation round, the gradient descent algorithm uses the estimated parameters of the autoregressive model found in the first interpolation as the initial values to decrease the computation time in the second interpolation round. Numerical simulation indicates that this GPU based parallel algorithm can interpolate a 2592?1944 image within 1/110 of the time used by a CPU based algorithm. Moreover, the computation time saved decreases with the image size. Since this algorithm can parallel process the pixel interpolation on GPU, compared with traditional serial algorithm that runs on CPU, this parallel implementation can make better use of the local property of the piecewise autoregressive model and parallel property of CUDA, eventually achieving an interpolation image of high quality in a low computation time.
     The third part of this dissertation, a SAR image segmentation algorithm based on multi-mode distribution is proposed. In SAR image, the generations of image, target and background clutter are different, which give rise to their different statistical characteristics. In this part, an analysis of the different imaging characteristics of the three components is made and statistical models of them are developed, on the basis of which, a multi-mode distribution SAR image segmentation algorithm based on the combination of the three models is proposed. For the target and shadows segmentation, different pre-processing methods are adopted. A fast one-dimensional Otsu algorithm is proposed to segment target from background clutter and a SAR image enhancement algorithm based on the background mean-preserving shock filter to segment shadow from background clutter. Experimental results show that, compared with traditional segmentation algorithms based on the single-mode distributions, this multi-mode distribution segmentation algorithm can make the best use of the differences of statistical characteristics of the three components, with high segmentation accuracy and a better practicability.
     The fourth part of this dissertation gives an SAR target recognition algorithm based on fusion of target contour and shadow contour. When performing SAR automatic target recognition, the internal structure characteristics of target are most frequently used, such as gray value, peak value and center distance. SAR image contour information is rarely used in target recognition and SAR image shadow information is even less used. Actually, SAR image contour can reflect local spatial structure information of SAR target. If SAR image is segmented appropriately, correct and fine contour information can be acquired. Contour information is a kind of stable recognition characteristic. Therefore, to acquire target contour and shadow contour, we propose an SAR image segmentation algorithm based on marker-controlled. Then, fusion of these two kinds of contour is used to perform SAR target recognition. The effectiveness of this algorithm is verified through experimental results on MSTAR data. Experimental results show that, besides local spatial structure information, fusion of target contour and shadow contour also contains height information of SAR target. Compared with these two features used independently, fusion of contour is a kind of more stable characteristic.
     The fifth part of this dissertion presents an estimation algorithm for SAR target attitude angle. SAR imaging is very sensitive to target azimuth angle. When relative position between SAR and target is changed, scattering center of target will chage. This causes same target varies significantly under different azimuth angle. Therefore, SAR target attitude angle estimation is an important step of SAR target recognition. During SAR target classification and recognition, precise azimuth angle estimation can help to reduce target matching number and detection error. Based on the target segmentation mentioned above, we analyze the unchanged characteristics of SAR image under different azimuth angle and propose a Hough transformation algorithm based on clear double edge. Experimental result based on MSTAR measured data show that, using this algorithm to estimate SAR target attitude angle can achieve high precision and short computation time.
     Based on texture characteristic, the sixth part of this dissertation gives a SAR image recognition algorithm. Aiming at SAR target variant, a SAR target variant recognition algorithm based on local texture characteristic is also included in this part. Since one target usually has multiple variants in practice, the measured data in the real world is quite different from the training data, which cause the SAR automatic target recognition (ATR) difficult and becomes one of the major factors affecting SAR target recognition rate. Therefore this paper presents a SAR ATR algorithm aiming at the target variants. The new algorithm uses the local texture similarity between the variant and the original target for recognition. Firstly, a SAR image registration algorithm based on clear edges is proposed. Then, the texture characteristic obtained by a combined use of the Gabor transform, LBP and spatial domain histogram is employed to describe the SAR image. At last, histogram sequence matching based on the large characteristic is used to perform the recognition. Since texture characteristic based on registration is used to describe the SAR image, the SAR target can be described effectively. Furthermore, local histogram matching is used to perform the recognition; therefore the new algorithm has better generalization property than algorithms based on the global characteristic. The effectiveness of the proposed algorithm is verified by experimental results on MSTAR S2.
引文
[1]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [2]刘宏伟,杜兰,袁莉,保铮.雷达高分辨距离像目标识别研究进展.电子与信息学报, Vol. 27(8), 1328-1334, 2005.
    [3]袁礼海,宋建社,薛文通,赵伟舟. SAR图像自动目标识别系统研究与设计.计算机应用研究, Vol. 11, 249-251, 2006.
    [4]吴顺君,梅晓春.雷达信号处理和数据处理技术.北京:电子工业出版社, 2008.
    [5]黄世奇,刘代志.侦测目标的SAR图像处理与应用.北京:国防工业出版社,2009.
    [6]刘保昌.合成孔径雷达解多普勒模糊与双基合成孔径雷达成像算法研究.博士研究生学位论文.西安电子科技大学. 2010..
    [7] C. Oliver and S. Quegan. Understanding synthetic aperture radar images. New York: Artech House, 1998.
    [8]匡纲要,计科峰,粟毅,郁文贤. SAR图像自动目标识别研究.中国图象图形学报, Vol. 8(A), 1115-1120, 2003.
    [9]高贵. SAR图像目标ROI获取技术研究.博士研究生学位论文.国防科技大学. 2007.
    [10]韩萍. SAR图像自动目标识别及相关技术研究.博士研究生学位论文.天津民航学院. 2001.
    [11]胡利平.合成孔径雷达图像目标识别技术研究.博士研究生学位论文.西安电子科技大学. 2009.
    [12]王正明,朱炬波等, SAR图像提高分辨率技术.北京:科学出版社, 2006.
    [13] E. R. Keydel, S. W. Lee, and J. T. Moore. MSTAR extended operating conditions: a tutorial. Proc of SPIE on algorithm for synthetic aperture radar imagery IV, Vol. 2757, 228-242, 1996.
    [14] Ross Timothy D, Bradley Jeffrey J, Hudson Lanson J, Michael P. O’connor. SAR ATR-So What’s the problem?-An MSTAR Perspective. Algorithm for Synthetic Aperture Radar ImageryⅥ[C], Orlando, FL,SPIE 3721: 662-672,1999.
    [15] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant. Standard SAR ATR evaluation experiments using the MSTAR public release data set. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 566-573, 1998.
    [16] C. A. Wiley. Synthetic aperture radar. IEEE Trans. on Aerospace and Electronic Systems, Vol. 21(3), 440-443, 1985.
    [17] W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight synthetic apertureradar: signal processing algorithms. Boston: Artech House, 1995.
    [18]余志舜,朱兆达.逆合成孔径雷达横向距离定标.电子学报, Vol. 2(6), 45-48, 1997.
    [19]李强.单脉冲雷达目标三维成像与识别研究.博士研究生学位论文.西安电子科技大学. 2007.
    [20] Qun Zhang and Tat Soon Yeo. Three-dimensional SAR imaging of a ground moving target using the InISAR technique. IEEE Trans. on Geoscience and Remote Sensing, Vol. 42(9), 1818-1828, 2004.
    [21]马长征,张守宏.舰船目标单脉冲雷达三维成像技术.电子科学学刊, 22(3), 385-391, 2000.
    [22] Kim Kyung-Tae, Seo Dong-Kyu, and Kim Hyo-Tae. Efficient classification of ISAR images. IEEE Trans. on antennas and propagation, Vol. 53(5), 1611-1621, 2005.
    [23] S. Musman, D. Kerr, and C. Bachmann. Automatic recognition of ISAR ship images. IEEE Trans. on Aerospace and Electronics Systems, Vol. 32(4), 1392-1404, 1996.
    [24]黄玉琴.基于SAR图像的城市形态时空变化的研究.中国科学院研究生院(遥感应用研究所).博士研究生学位论文. 2006.
    [25]付琨.高分辨率单视单极化SAR图像地物分类方法研究.国防科学技术大学.博士研究生学位论文. 2002.
    [26]胡丹.基于SVM的SAR图像地物分类研究.中南大学.硕士研究生学位论文. 2008.
    [27]傅斌. SAR浅海水下地形探测.中国海洋大学.博士研究生学位论文. 2005.
    [28]谭衢霖.鄱阳湖湿地生态环境遥感变化监测研究.中国科学院研究生院(遥感应用研究所).博士研究生学位论文. 2002.
    [29]薛浩洁. SAR图像海洋表面油膜检测方法研究.中国科学院研究生院(电子学研究所).硕士研究生学位论文. 2004.
    [30]贾承丽. SAR图像道路和机场提取方法研究.国防科学技术大学.博士研究生学位论文. 2006.
    [31]蒋斌. SAR图像道路提取方法研究.国防科学技术大学.硕士研究生学位论. 2004.
    [32]蒋运辉. SAR图像中的道路检测技术研究.电子科技大学.硕士研究生学位论文. 2005.
    [33]戴光照,张荣.高分辨率SAR图像中的桥梁识别方法研究.遥感学报, Vol. 11(2), 177-184, 2007.
    [34]曹海梅.遥感图像中水上桥梁目标识别与毁伤分析研究.南京理工大学.硕士研究生学位论文. 2005.
    [35]邹英.水上桥梁目标识别算法研究.南京理工大学.硕士研究生学位论文. 2006.
    [36]琚春华,王伟明,王光明,姚庆栋.一种桥梁目标识别方法的研究.计算机工程, Vol. 25(6), 19-20, 1999.
    [37]李海艳.极化SAR图像海面船只监测方法研究.中国科学院研究生院(海洋研究所).博士研究生学位论文. 2007.
    [38] M. Alberto. Improved multilook techniques applied to SAR and SCANSAR images. IEEE Trans. on Geoscience and Remote Sensing, Vol. 23(4), 529-534, 1991.
    [39] J. S. Lee. A simple smoothing algorithm for synthetic aperture radar images. IEEE Trans. on System, Man, and Cybernetics, Vol. 13(1), 95-89, 1983.
    [40] J. S. Lee. Speckle suppression and analysis for synthetic aperture radar images. Optical Engineering, Vol. 25(5), 636-643, 1986.
    [41] D. T. Kuan and A. A. Sawchuk. Adaptive noise smoothing filter for signal-dependent noise. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 7(2), 165-177, 1985.
    [42] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans on Pat Anal Machine Intel. [J]. PAMI-12, 1990:629-639.
    [43] Gilboa G, Zeevi Y Y, Sochen N. Complex diffusion processes for image filtering[C].Scale-Space 2001, LNCS 2106, 299-307, Springer-Verlag 2001. Vancouver, BC, Canada.
    [44] Gilboa G, Sochen N, Zeevi Y Y. Regularized shock filters and complex diffusion[C]. ECCV-02, LNCS 2350, 399-313, Springer-Verlag 2002. Copenhagen.
    [45] Gilboa Guy, Sochen Nir, Yehoshua, Zeevi Y Y. Image enhancement and denoising by complex diffusion processes[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. 26, No. 8, Aug. 2004.
    [46] Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense [J]. IEEE Trans on Image Processing, 15(8): 2269–2280, 2006.
    [47] A. Lopes, E. Nezry and R. Touzi. Maximum a posteriori speckle and first order texture model in SAR images. Proceeding of the IGASS90. Maryland: University of Maryland, 2409-2412, 1990.
    [48] Gilboa G, Sochen N, Zeevi Y Y. Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes. ICIP’01, Thessaloniki, Greece, October 2001.
    [49]张亶,陈刚,基于偏微分方程的图像处理[M],北京:高等教育出版社, 2004:56-57.
    [50]付琨,匡纲要,郁文贤.基于改进相关邻域模型的SAR图像RCS重构.系统工程与电子技术, Vol.23(4), 48-53, 2001.
    [51]鹂苏丹,张翠,王正志,李广侠.一种基于相关邻域模型的SAR图像迭代滤波方法.数据采集与处理, Vol.18(2), 179-184, 2003.
    [52]邓炜,赵荣椿.基于小波变换的SAR图像相干斑噪声消除方法研究.信号处理, Vol. 17(1), 86-90, 2001.
    [53] J. P. Greory and A. W. Robert. ATR subsystem performance measure using manual segmentation of SAR target chips. SPIE, Vol. 3721, 685-692, 1999.
    [54] Ren Lu, Xing Mengdao, Bao Zheng. Adaptive despeckling SAR images based on scale space correlation C].IEEE ICASSP 2005. Philadelphia.
    [55]尹奎英,胡利平,刘宏伟,金林,一种复合的SAR图像去噪算法,西安电子科技大学学报,2010, 37(2): 224-230.
    [56] X Li, K U Barthel. Piecewise 2D Auto Regression for Predictive Image Coding[C]. In Proceedings of the IEEE International Conference on Image Processing[C], Chicago, Illinois, 1998:901-904.
    [57] ZhANG X, WU X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Trans Image Proc, 2008, 17: 887-896.
    [58]王岩,梁甸农,郭汉伟.基于正则化增强的SAR图像分割方法.信号处理, Vol. 19(3), 227-229, 2003.
    [59]张静,王国宏,刘福太.基于正则化方法的SAR图像分割及目标边缘检测算法.吉林大学学报, Vol. 38(1), 206-210, 2008.
    [60]田小林,焦李成,缑水平.基于PSO优化空间约束聚类的SAR图像分割.电子学报, Vol. 36(3), 453-457, 2008.
    [61] Otsu N. A Threshold Selection Method from Gray-Level Histogram [J].IEEE Transactions on Systems, Man, and Cybernetics, 1979 (1): 622661.
    [62]朱俊,王世唏,计科峰,粟毅.一种适用于SAR图像的2维Otsu改进算法[J].中国图象图形学报. 2009,1 (14): 14-18.
    [63] Kuiying Yin, Hongwei Liu, Liping Hu, Lin Jin. Maker-controlled SAR Image Segmentation Algorithm[C]. IET International Radar Conference, Guilin. 2009.
    [64]尹奎英,刘宏伟,金林,一种快速的Otsu双阈值SAR图像分割法,吉林大学学报(工学版),已录用.
    [65]韩萍,吴仁彪,蒋立辉.一种有效的SAR图像分割与目标识别方法.系统工程与电子技术, Vol. 26(6), 734-737, 2004.
    [66]成功,毛士艺. MSTAR图像中目标和阴影的局部特征提取及分类研究.全国第十届信号与信息处理、第四届DSP应用技术联合学术会议, 2006.
    [67]王义敏,安锦文,王若朴.基于局部双参数估计的SAR图像CFAR目标检测技术.火力与指挥控制, Vol. 31(4), 50-52, 2006.
    [68]成功,赵巍,毛士艺.双阈值CFAR SAR目标分割方法.信号处理, Vol. 23(1), 9-14, 2007.
    [69]张红蕾,宋建社,翟晓颖.一种基于二维最大熵的SAR图像自适应阈值分割算法.电光控制, Vol. 14(4), 63-65, 2007.
    [70]郑宗贵,毛士艺. MSTAR图像分割算法研究.系统工程与电子技术, Vol. 24(12), 93-96, 2003.
    [71]高贵,计科峰,匡纲要.基于马尔可夫随机场的SAR目标切片图像分割方法.现代雷达, Vol. 26(5), 42-45, 2004.
    [72]鹂苏丹,张翠,王正志.基于马尔可夫随机场的SAR图象目标分割.中国图象图形学报, Vol. 7(A)(8), 794-799, 2002.
    [73]曹兰英,夏良正,张昆辉.基于小波域MRF的SAR图像分割.东南大学学报, Vol. 34(6), 847-850, 2004.
    [74]侯一民,郭雷.一种基于马尔可夫随机场的SAR图像分割新方法.电子与信息学报, Vol. 29(5), 1069-1072, 2007.
    [75]张翠,郦苏丹,王正志. SAR图像目标分割与方位角估计.国防科技大学学报, Vol. 23(5), 74-78, 2001.
    [76]郦苏丹,张翠,王正志. SAR图像的最优分割方法.遥感技术与应用, Vol. 16 (3), 195-199, 2001.
    [77] R. A. Weisenssel, W. C. Karl, D. A. Castanon, G. J. Power and P. Douville. Markov random field segmentation methods for SAR target chips. SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VI, Vol. 3721, 462-473, 2000.
    [78] A. Robert, W. Weisenseel, K. Clem, et al. MRF-based algorithms for segmentation of SAR images. The Proceeding of the 1998 International Conference on Image Processing. Paris: IEEE, 1998, 770-774.
    [79] R. A. Weisenseel, W. C. Karl, D. A. Castanon, et al. Markov random field segmentation methods for SAR target chips. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VI, 1999, Vol. 3721, 462-473.
    [80] E. Aitnour, S. Wang, and D. Ziou. Segmentation of small vehicle targets in SAR images. Proceedings of SPIE on Automatic Target Recognition XII, Vol. 4726, 35-45, 2002.
    [81] R. Meth. Target/shadow segmentation and aspect estimation in synthetic apertureradar imagery. Conference on Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 188-196, 1998.
    [82] K. S. Wilson and G. J. Power. Region growing shadow segmentation in synthetic aperture radar images. Proc of International Conference on Imaging Science, Systems, and Technology (CISST 2000), 2000.
    [83] G. J. Powel and K. S. Wilson. Segmenting shadows from synthetic aperture radar imagery using edge-enhanced region growing. Proceedings of SPIE on Algorithms and Systems for Optical Information Processing IV, 2000, Vol. 4113, 106-114.
    [84] G. J. Power. Inter-algorithmic evaluation of SAR image segmentation algorithms using multiple measures. Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery VIII, 2001, Vol. 4382, 330– 337.
    [85] G. J. Power and A. A. S. Awwal. Optoelectronic complex inner product for evaluating quality of image segmentation. Proceedings of SPIE on Photonic Devices and Algorithms for Computing II, 2000, Vol. 4114, 13– 19.
    [86] Venkatachalam, Vidya, Hyeokho Choi, and Richard G. Baraniuk. Multiscale SAR image segmentation using wavelet-domain hidden markov tree models. Proceedings of SPIE -The International Society for Optical Engineering, 2000, Vol. 4053, 110-120.
    [87] Venkatachalam, Vidya, Robert D. Nowak, Richard G. Baraniuk, and Mario A. T. Figueiredo. Unsupervised SAR image segmentation using recursive partitioning. Proceedings of SPIE -The International Society for Optical Engineering, Vol. 4053, 121-129, 2000.
    [88] S. Beucher and F. Meyer. The morphological approach of segmentation: the watershed transformation. Mathematical Morphology in Image Processing. 1992.
    [89]张强,吴艳.基于上下文和隐类属的小波域马尔可夫随机场SAR图像分割[J].电子与信息学报. 2008:30(1),211-215.
    [90]黄世奇,刘代志,禹春来,陈亮.SAR图像目标方位角估计与分析,系统仿真学报[J].,20(7),1795-1799,2008.
    [91] Sun Y J, Liu Z P, and Todorovic S, et al. Adaptive Boosting for SAR Automatic Target Recognition. IEEE Trans. on Aerospace and Electronic Systems, 2007: 43(1): 112-125.
    [92]徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,29(9),370-374,2004.
    [93]计科峰,匡纲要,粟毅,等. SAR图像目标峰值特征提取与方位角估计方法研究[J].宇航学报, 25(1): 102-108, 2004.
    [94] B Bhanu. Recognition of articulated objects in SAR images [C]. Proc.ARPA image understanding workshop. 1: 1237-1250, 1996.
    [95]郦苏丹. SAR图像特征提取与目标识别方法研究[D].长沙:国防科学技术大学, 2001.
    [96]徐福泽,蒋本和,董楠.基于Hough变换和Radon变换对SAR图像目标姿态角识别的综合方法[J].烟台大学学报(自然科学与工程版).196-199, 20(3),2007.
    [97] Xu L, Oja E. Randomized Hough Trans form ( RHT ):mech anism, algorithms , and computation alcompl exit CVGIP[J]: Image Understanding, 1993, 57( 2),131-154.
    [98]尹奎英,刘宏伟,金林,王英华.融合目标轮廓和阴影轮廓的SAR图像目标识别,空军工程大学学报, Vol. 12(1), 24-28, 2011.
    [99]徐牧,王雪松,肖顺平.基于目标轮廓特征的SAR图像目标识别.系统工程及电子技术, Vol. 28(12), 1812-1815, 2006.
    [100] M. P. Hurst and R. Mittra. Scattering center analysis via prony’s method. IEEE Trans. on Antennas and Propagation, Vol. 35, 986-989, 1987.
    [101] L. C. Gerry and R. L. Moses. Attributed scattering centers for SAR ATR. IEEE Trans. on Image Processing, Vol. 6(1), 79-91, 1997.
    [102] M. A. Koets. Feature extraction using attributed scattering models on SAR imagery. Proc of SPIE on Algorithms for Synthetic Aperture Radar Imagery VI, 1999, Vol. 3721, 104-115.
    [103]计科峰,匡纲要,粟毅,郁文贤.一种改进的图像域SAR目标散射中心特征提取方法.电路与系统学报, Vol. 9(2), 40-44, 2004.
    [104] T. D. Ross, J. J. Bradley, L. J. Hudson, and M. P. O'Connor. SAR ATR - so what's the problem?– an MSTAR perspective. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery VI, 1999, Vol.3721, 662– 672.
    [105]计科峰,匡纲要,郁文贤. SAR图像目标峰值提取与稳定性分析.现代雷达, Vol. 25(2), 15-18, 2003.
    [106]高贵,计科峰,匡纲要,李德仁.高分辨SAR图像目标峰值提取及峰值稳定性分析.电子与信息学报, Vol. 27(4), 561-565, 2005.
    [107]王世晞,贺志国.基于PCA特征的快速SAR图像目标识别方法.国防科技大学学报, Vol. 30(3), 136-140, 2007.
    [108]韩萍,吴仁彪,王兆华,王蕴红.基于KPCA准则的SAR图像目标特征提取与识别.电子与信息学报, Vol. 25(10), 1297-1301, 2003.
    [109]韩萍,吴仁彪,王兆华.基于KFD准则的SAR目标特征提取与识别.现代雷达, Vol. 26(7), 27-30, 2004.
    [110]成功,赵巍,毛士艺.基于快速提升KLDA准则的MSTAR SAR目标特征提取与识别研究.航空学报, Vol. 28(3), 667-672, 2007.
    [111]胡利平,刘宏伟,吴顺君.基于两级2DPCA的SAR目标特征提取与识别.电子与信息学报, Vol. 30(7), 1722-1726, 2008.
    [112] Liping Hu, Jin Liu, Hongwei Liu, Bo Chen, Shunjun Wu. Automatic target recognition based on SAR images and two-stage 2DPCA features. APSAR2007. 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, 801-805, 2007.
    [113] Liping Hu, Hongwei Liu, Kuiying Yin, Shunjun Wu. Two-dimensional clustering-based discriminant analysis for synthetic aperture radar automatic target recognition. ISAPE2008. 8th International Symposium on Antenna, Propagation, and EM Theory, Kunming, 701-705, 2008.
    [114]胡利平,刘宏伟,李丽亚,吴顺君.两向二维最大子类散度差鉴别分析及其在SAR目标识别中的应用.航空学报, 30(12),2380-2386,2009.
    [115]尹奎英,刘宏伟,金林,王英华.一种基于局部纹理特征的SAR变体目标自动识别算法.吉林大学学报(工学版),已录用.
    [116] Yeliz A, Randolph L M. A Scattring Center Model for SAR Imagery. SPIE, 1999, 3869:76-85.
    [117] Lee C P, Randolph L M. Attributed Scattering Centers for SAR ATR. IEEE Transactions on image Processing, 1997, 6(1):79-91
    [118] Fuller D F, Terzuoli A J, Collins P J, Collins P J, Williams R. Approach to Object Classification Using Dispersive Scattering Centers. IEE Proceeding-Radar Sonar and Navigation, 2004, 151(2):85-90.
    [119]杨进,闫冬梅,王超,等.高分辨率SAR图像目标属性散射中心特征提取方法.中国图形图像学报,2009, 14(1):35-39.
    [1]王正明,朱炬波等, SAR图像提高分辨率技术.北京:科学出版社, 2006.
    [2] M. Alberto. Improved multilook techniques applied to SAR and SCANSAR images. IEEE Trans. on Geoscience and Remote Sensing, Vol. 23(4), 529-534, 1991.
    [3] J. S. Lee. A simple smoothing algorithm for synthetic aperture radar images. IEEE Trans. on System, Man, and Cybernetics, Vol. 13(1), 95-89, 1983.
    [4] J. S. Lee. Speckle suppression and analysis for synthetic aperture radar images. Optical Engineering, Vol. 25(5), 636-643, 1986.
    [5] D. T. Kuan and A. A. Sawchuk. Adaptive noise smoothing filter for signal-dependent noise. IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 7(2), 165-177, 1985.
    [6] A. Lopes, E. Nezry and R. Touzi. Maximum a posteriori speckle and first order texture model in SAR images. Proceeding of the IGASS90. Maryland: University of Maryland, 2409-2412, 1990.
    [7]付琨,匡纲要,郁文贤.基于改进相关邻域模型的SAR图像RCS重构.系统工程与电子技术, Vol.23(4), 48-53, 2001.
    [8]鹂苏丹,张翠,王正志,李广侠.一种基于相关邻域模型的SAR图像迭代滤波方法.数据采集与处理, Vol.18(2), 179-184, 2003.
    [9]邓炜,赵荣椿.基于小波变换的SAR图像相干斑噪声消除方法研究.信号处理,Vol. 17(1), 86-90, 2001.
    [10] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pat. Anal. Machine Intel., vol. PAMI-12, no. 7, pp. 629-639, 1990.
    [11] G. Gilboa, Y. Y. Zeevi, N. Sochen. Complex diffusion processes for image filtering. Michael Kerckhove (Ed.): Scale-Space 2001, LNCS 2106, pp. 299-307, Springer-Verlag 2001.
    [12] G. Gilboa, N. Sochen, Y. Y. Zeevi. Regularized shock filters and complex diffusion. ECCV-’02, LNCS 2350, pp. 399-313, Springer-Verlag 2002.
    [13] Guy Gilboa, Nir Sochen and Yehoshua Y. Zeevi. Image enhancement and denoising by complex diffusion processes. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 26, No. 8, Aug. 2004.
    [14] G. Gilboa, N. Sochen, and Y. Y. Zeevi. Estimation of optimal PDE-based denoising in the SNR sense. IEEE Trans. on Image Processing, 15(8): 2269–2280, 2006.
    [15] G. Gilboa, N. Sochen, Y. Y. Zeevi. Image enhancement segmentation and denoising by time dependent nonlinear diffusion processes. ICIP’01, Thessaloniki, Greece, October 2001.
    [16]张亶,陈刚,基于偏微分方程的图像处理,北京:高等教育出版社, 2004.
    [17] Ren Lu, Xing Mengdao, Bao Zheng. Adaptive despeckling SAR images based on scale space correlation. IEEE ICASSP 2005.
    [18] Kukunage K. Introduction to statistical pattern recognition[M ]. Boston: Academic. Press, 1990.
    [19]张贤达,现代信号处理,北京:清华大学出版社, 2002.
    [1]周峰,叶然,李光伟,等.大视场波前编码成像系统中的图像复原[J].光学学报,2010,30(2): 388~393.
    [2]耿则勋,王振国.改进的天文斑点图像高清晰重建方法[J].光学精密工程,2007,15(7):1151-1156.
    [3]王昊京,王建立,王鸣浩,等.采用双线性插值收缩的图像修复方法[J].光学精密工程,2010,18(5):1234-1241.
    [4]李勇,王珂,张立保,等.多断层融合的肺CT肿瘤靶区超分辨率重建[J].光学精密工程,2010,18(5):1212-1218.
    [5]王珏,黄苏红,蔡玉芳.工业CT图像环形伪影校正[J].光学精密工程,2010,18(5):1226-1233.
    [6] ZhANG X, WU X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J]. IEEE Trans Image Proc, 2008, 17: 887-896.
    [7] Nvida. Nvida CUDA Programming Guide Version 2.3.1[M]. 2009.
    [8] X Li, M T Orchard. New edge-directed interpolation. IEEE Transactions on Image Processing[J].2001, 10: 1521-1527.
    [9] X Li, K U Barthel. Piecewise 2D Auto Regression for Predictive Image Coding[C]. In Proceedings of the IEEE International Conference on Image Processing[C],Chicago, Illinois, 1998:901-904.
    [10]李大禹,胡立发,穆全全,等.CUDA架构下的液晶自适应波面数值解析[J].光学精密工程,2010,18(4):848-854.
    [11] S. Che, M Boyer, J Meng, D Tarjan. A performance study of general-purpose applications on graphics processors using CUDA[J]. Journal of arallel and Distributed Computing, 2008, 68(10): 1370-1380.
    [12] S. Che, M Boyer, J Meng, D Tarjan. A performance study of general-purpose applications on graphics processors using CUDA[J]. Journal of arallel and Distributed Computing, 2008, 68(10): 1370-1380.
    [1]李禹,计科锋,粟毅.合成孔径雷达图像分割技术综述[J].宇航学报,2008,29(2):407-412.
    [2] Perona P and Malik J. Scale-space and edge detection using anisotropic diffusion[J]. IEEE Trans on Pat Anal Machine Intel, 1990, 12(7):629-639.
    [3] Robert A, Weisenseel W, Clem K, et al. MRF-based algorithms for segmentation of SAR images[C]. The Proceeding of the 1998 International on conference on Image Processing, Paris, 1998.
    [4]张强,吴艳.基于上下文和隐类属的小波域马尔可夫随机场SAR图像分割[J].电子与信息学报, 2008,30(1):211-215
    [5]李响,韩萍,吴仁彪等.一种基于Weibull分布的SAR图像分割算法[J].系统工程与电子技术, 2007,29(5):677-679.
    [6] Chris O, Shaun Q. Understanding synthetic aperture radar images [M]. Norwood, MA: Artech House, 1988.
    [7] Du L, Liu H W, Bao Z, et al. A Two-distribution compounded statistical model for radar HRRP target recognition [J]. IEEE Transactions on Signal Processing, 2007, 55(4): 1223-1237.
    [8] Otsu N. A Threshold Selection Method from Gray-Level histogram [J].IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66.
    [9]朱俊,王世唏,计科峰,等.一种适用于SAR图像的2维Otsu改进算法[J].中国图象图形学报, 2009,1 (14): 14-18.
    [10] Gilboa G, Sochen N, Zeevi Y Y. Estimation of optimal PDE-based denoising in the SNR sense[J]. IEEE Transactions on Image Processing, 2006, 15(8): 2269-2280.
    [11] Yin K Y, Liu H W, Hu L P, et al. Maker-controlled SAR image segmentation algorithm[C]. IET International Radar Conference, Guilin, China, April 20-22, 2009.
    [1] T. Ross, S. Worrell, V. Velten, J. Mossing, and M. Bryant. Standard SAR ATR Evaluation Experiments Using the MSTAR Public Release Data Set. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 566-573, 1998.
    [2] M. Bryant, S. Worrell, and A. Dixon. MSE Template Size Analysis for MSTAR Data. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 396– 405, 1998.
    [3] L. M. Kaplan. Analysis of Multiplicative Speckle Models for Template-Based SAR ATR. IEEE Trans. on Aerospace and Electronic Systems, Vol. 37(4), 1424– 1432, 2001.
    [4] L. M. Kaplan, R. Murenzi, E. Asika, and K. Namuduri. Effect of Signal-To-Clutter Ratio on Template-Based ATR. Part of the SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370, 408– 419, 1998.
    [5] Robert A. Weisenseel, W. Clem Karl, and David A. Castanon et al, MRF-based algorithms for segmentation of SAR images, Proc. Of the 1998 International Conference on Image Processing, IEEE, Chicago, 1998.
    [6] R. A. Weisenssel, W. C. Karl, D.A. Castanon, G.J. power and P. Douville. Markov Random Field Segmentation Methods for SAR Target Chips. In E.G. Zelnio, proc. SPIE V 3721,editor, Algorithms for Synthetic Aperture Radar Imagery VI, pages 462-473, Orlando, 2000.
    [7] A. Lopes, E. Nezry, R. Touzi, and H. Laur. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sensing, vol. 14, no. 9, pp. 1735–1758, 1993.
    [8] Robert A. Weisenseel, W. Clem Karl, and David A. Castanon et al. Markov random field segmentation methods for SAR target chips, Proc. SPIE, Orlando, 1999.
    [9] Robert A. Weisenseel, W. Clem Karl, and David A. Castanon et al. MRF-based algorithms for segmentation of SAR images, Proc. Of the 1998 International Conference on Image Processing, IEEE, Chicago, 1998.
    [10] Beucher S., and Meyer, F. The Morphological Approach of Segmentation: The Watershed Transformation. In Mathematical Morphology in Image Processing. E. Dougherty (ed.), Marcel Dekker, New York. 1992.
    [11] L. Xu, A. Krzyzak and C.Y. Suen, Several methods for combining multiple classifiers and their applications in handwritten character recognition, IEEE Trans. on System, Man and Cybernetics SMC-22(3) (1992), 418–435.
    [12] G. J. Powel and K. S. Wilson. Segmenting Shadows from Synthetic Aperture Radar Imagery Using Edge-Enhanced Region Growing. In Bahran Javidi et al., SPIE 4114, editor, Algorithms and Systems for Optical Information Processing IV, pages 106-114, San Diego, 2000.
    [13] Elmedi Aitnouri, Shengrui Wang, Djemel Ziou. Segmentation of Small Vehicle Targets in SAR Images. In Automatic Target Recognition XII, Firooz A. Sadiadi, Editor, Proceedings of SPIE Vol.4726, 2002.
    [14] Zhang X D, Modern signal processing, Beijing: Tsinghua Press, 2002.
    [15] Arnab S. Automatic target recognition using high-range resolution data [M]. USA, 1998.
    [16] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images [M]. Norwood, Artech House, 1998.
    [17] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pat. Anal. Machine Intel., vol. PAMI-12, no. 7, pp. 629-639, 1990.
    [18] Michael Struwe. Variational Methods. Berlin: Springer Verlag, 1996.
    [19] A. Lopes, E. Nezry, R. Touzi, and H. Laur. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sensing, vol. 14, no. 9, pp. 1735–1758, 1993.
    [20] Kukunage K, Introduction to statistical pattern recognition [M], Boston:Academic. Press, 1990.
    [21] Yongjian Yu, and Scott T. Acton. Speckle Reducing Anisotropic Diffusion. IEEE Trans. on Image Processing, vol. 11, NO. 11, november 2002.
    [22] Yin Kuiying, and Liu Hongwei Jin Lin. Marker-Controlled SAR Image Segmentation Algorithm. IET conference, Guilin, 2009.
    [23] XU Mu, WANG Xuesong, XIAO Shunping. Novel SAR automatic target recognition method based on contour feature. Systems Engineering and Electronics. Vol. 28 No. 12 Dec. 2006.
    [24] Timothy Ross, Stephen Worrell, Vincent Velten, et al. Standard SAR ATR evaluation experiment using the MSTAR public release data set [J]. Algorithm for Synthetic Aperture Radar Imagery V, Orlando, FL, SPIE, 1998, 3370 (4): 566 573.
    [25] David Blacknell, Nicholas S, Arini QinetiQ. Morphological models for SAR ATR [J]. Algorithm for Synthetic Aperture Radar ImageryⅨ, 2002 , 4727: 69 79.
    [26] L. Xu, A. Kryzak and C. V. Suen. Methods of Combining Multiple Classifiers and Their Applications to Handwriting Recognition. IEEE Trans. on Systems, Man, and Cybernetics, Vol. 22 (3), 418-435, 1992.
    [1]黄世奇,刘代志,禹春来,陈亮.SAR图像目标方位角估计与分析,系统仿真学报[J].,20(7),1795-1799,2008.
    [2] Sun Y J, Liu Z P, and Todorovic S, et al. Adaptive Boosting for SAR Automatic Target Recognition. IEEE Trans. on Aerospace and Electronic Systems, 2007: 43(1): 112-125.
    [3]徐牧,王雪松,肖顺平.基于Hough变换与目标主轴提取的SAR图像目标方位角估计方法[J].电子与信息学报,29(9),370-374,2004.
    [4]贾承丽,匡纲要,粟毅.基于Hough变换的高分辨SAR图像道路目标检测,国防科技大学学报[J],6(1),50-55,2004.
    [5]康欣,韩崇昭,杨艺.基于结构的SAR图像配准[J].系统仿真学报, 18(5): 1307-1310, 2006.
    [6] L I Voicu, R Patton, H R Myler. Multi-criterion vehicle pose estimation for SAR-ATR[C],USA: SPIE. 1999, 3721: 497-506.
    [7] R Meth. Target/shadow segmentation and aspect estimation in SAR imagery [C].SPIE, 3370: 188-196,1998.
    [8]计科峰,匡纲要,粟毅,等. SAR图像目标峰值特征提取与方位角估计方法研究[J].宇航学报, 25(1): 102-108, 2004.
    [9] B Bhanu. Recognition of articulated objects in SAR images [C]. Proc.ARPA imageunderstanding workshop. 1: 1237-1250, 1996.
    [10]郦苏丹. SAR图像特征提取与目标识别方法研究[D].长沙:国防科学技术大学, 2001.
    [11]徐福泽,蒋本和,董楠.基于Hough变换和Radon变换对SAR图像目标姿态角识别的综合方法[J].烟台大学学报(自然科学与工程版).196-199, 20(3),2007.
    [12] Xu L, Oja E. Randomized Hough Trans form ( RHT ):mech anism, algorithms , and computation alcompl exit CVGIP[J]: Image Understanding, 1993, 57( 2),131-154.
    [1] Ross Timothy D, Bradley Jeffrey J, Hudson Lanson J, Michael P. O’connor. SAR ATR-So What’s the problem?-An MSTAR Perspective. Algorithm for Synthetic Aperture Radar ImageryⅥ[C], Orlando, FL,1999,SPIE 3721: 662-672.
    [2] Yuan C and Casasent D P. A new SVM for distorted SAR object classification. Proc. of SPIE on Optical Pattern Recognition XVI, Bellingham WA, 2005, 5816: 10-22.
    [3] Zhao Q, Principe J C. Support Vector Machines for SAR Automatic Target Recognition. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2): 643-654.
    [4] Bryant M L. Target signature manifold methods applied to the MSTAR database:preliminary results. Proc. of SPIE on Synthetic Aperture Radar Imagery VIII, USA: SPIE, 2001, 4382: 389-394.
    [5] Sun Y J, Liu Z P, and Todorovic S, et al. Adaptive Boosting for SAR Automatic Target Recognition. IEEE Trans. on Aerospace and Electronic Systems, 2007: 43(1): 112-125.
    [6] David Blacknell , Nicholas S , Arini QinetiQ. Morphological models for SAR ATR [ J ] . Algorithm for Synthetic A perture Radar ImageryⅨ, 2002 , 4727 : 69-79.
    [7]宦若虹,杨汝良,岳晋.一种合成孔径雷达图像特征提取与目标识别的新方法.电子与信息学报, 2008, 30(3): 554-558.
    [8]韩萍,吴仁彪,王兆华,王蕴红.基于KPCA准则的SAR图像目标特征提取与识别.电子与信息学报, Vol. 25(10), 1297-1301, 2003.
    [9]胡利平,刘宏伟,吴顺君.基于两级2DPCA的SAR目标特征提取及识别.电子与信息学报, 2008, 30(7): 1723-1726.
    [10]尹奎英,胡利平,刘宏伟,金林,一种复合的SAR图像去噪算法,西安电子科技大学学报,2010, 37(2): 224-230.
    [11] Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans on Pat Anal Machine Intel. [J]. PAMI-12, 1990:629-639.
    [12] Otsu N. A threshold selection method from Gray2Level histogram [J].IEEE Transactions on Systems, Man, and Cybernetics, 1979 (1): 622661.
    [13]刘健庄,栗文青.灰度图像的二维Otsu自动阈值分割法[J].自动化学报, 1993, 19 (1): 10121051.
    [14]张文超,山世光等,基于局部Gabor变化直方图序列的人脸描述与识别.软件学报[J]. 2006,17(12): 2508-2517.
    [15] Xudong Xie, Kin-Man Lam. Gabor-Based Kernel PCA With Doubly Nonlinear Mapping for Face Recognition With a single Face Image. IEEE Trans. on Image Processing, 2006, 15(9): 2481-2492.
    [16] Ojala T, Pietik?inen M, M?enp?? T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(7):971-987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700