用户名: 密码: 验证码:
下一代移动通信系统中的差错控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通信是对抗错误的艺术,差错控制技术是通信核心技术之一。移动通信系统经历了复杂的时变和频率选择性衰落信道,信道状况非常复杂,需要设计高效、可靠的差错控制方案保证通信的可靠性。移动通信系统的差错控制技术包括两个方面:混合自动请求重传技术(HARQ)和信道编码技术。混合自动请求重传技术利用重发错误信息同时提供功率增益和时间分集增益;信道编码技术利用增加冗余为传输的信息提供检错和纠错能力。
     在下一代移动通信系统中,如何结合MIMO、OFDM等传输技术和中继网络结构,设计高效、可靠的差错控制技术是一类极具研究价值的课题。
     HARQ技术因其原理简单,易于实现,在移动通信领域得到了广泛的应用。目前使用较多的是递增冗余传输方式,即发送端并不完全重复前次发送信息,而是采用不完全相同(或者完全不同)的冗余版本。而由于编码本身特点和信道传输状况,不同的比特位对解码的影响不同,因此如何结合编码和信道传输特点,设计高效的传输重发比特选择方案,是HARQ技术设计的关键。
     在近十年问,低密度奇偶校验码(LDPC)无疑信道编码领域最热的技术,LDPC码具有结构简单,编码性能优秀,解码时延低等特点,被广泛应用在了移动广播和通信领域。LDPC码根据校验矩阵的列重分为规则和非规则两种,其中非规则码性能远胜于规则码。对于非规则LDPC码来说,由于列重(度分布)不同,各个编码后的比特对抗错误的能力不尽相同。总体来说:列重(度分布)较大的保护能力强,对解码贡献也较大;列重小的比特容易发生错误,贡献较小。这种不同的对抗错误能力被称为LDPC码的不等保护特性。利用这种特性,优选的设计系统,可以为传输提供较高的功率增益,即发送功率一定,性能更好。
     本论文以LDPC码和HARQ技术为代表,研究了差错控制技术在下一代移动通信系统中的应用。基于LDPC码的不等保护特性,本论文研究了MIMO、OFDM和中继网络的差错控制技术:优化设计了LDPC编码的HARQ、MIMO、OFDM和中继网络传输方案,并初步研究了中继网络的HARQ重传中继节点选择方法。以提高传输功率效率为目标,结合MIMO系统带来的空间自由度,OFDM系统子载波的灵活分配,HARQ灵活的重发比特选择性以及中继网络带来的分集传输增益,优化的设计了下一代移动通信系统的传输方案。
     本文主要工作包括:
     1.提出了一种基于LDPC码度分布的MIMO传输方案(DDB-MIMO)。在该方案中,具有较大的度的重要比特采用传输分集(TD)模式传输,而具有较小的度的比特采用空间复用(SM)模式进行传输。本方案通过为重要比特提供更多的保护,显著的提高了系统的吞吐量增益。
     2.提出了一种基于LDPC码度分布的OFDM传输方案(DD&RLDPC-COFDM)。该方案同时考虑了初传和重传的码字与子载波映射关系,结合了LDPC码度分布的不等保护特性和OFDM子载波不同的可靠度。本方案中,初次传输时将度分布大的节点映射到接收信噪比高的子载波,接收失败后,优先重传(前次传输时)接收信噪比较低的子载波承载的信息。由于在初传时为重要信息提供更多保护,在重发时优先重发(前次传输)可靠度较的子载波信息,本方案可以提供显著的性能增益。
     3.基于中继网络特点,分析了基于成对差错概率(PEP)的帧错误概率(FEP)性能,得出结论:为了同时获得编码中继系统的编码增益和分集增益,广播阶段需要好的信道编码,多址阶段冗余版本设计较为重要。结合LDPC码的特点,本文提出一种中继网络的LDPC编码方法:即首先通过搜索得到一个好码,然后依据度分布将LDPC校验矩阵分为平均度分布不同的几个子码块。在传输阶段分别采用不同的子信道编码码块:在广播阶段源节点优先发送性能较好的高度分布子块,保证中继节点可以成功接收并进一步将信息转发,以确保系统的具有分集增益;在多址阶段源节点和中继节点发送不同于广播阶段的子码块,在目的节点形成互补冗余结构,提供较高的编码增益。
     4.提出了一种基于中继网络的HARQ重发节点选择方案。本方案研究了在保证目的节点接收性能的前提下,最小转发功率中继节点选择的问题。可用于重发的中继节点根据所需转发功率的不同,被分了若干候选节点区域。通过分析,依据本方案提供方案选择的转发节点既可以提供转发的分集增益,同时还可以提供较高的系统功率效率。
Communication is the art of error control, error control technologies is the key of the communication. Enduring time-variant and frequency-selection fading channel, the mobile channel is quite complicated and thus a qualified and reliable error control mechanism is required for communication reliability. Error control technologies in mobile communication system mainly include two different kinds of technologies:hybrid automatic retransmission query (HARQ) and channel coding. HARQ achieves both energy and time-diversity gains by retransmission and channel coding offers error detection and correction abilities by introducing redundancy information.
     In next generation mobile communication system, it's a highlighted issue how to combine MIMO, OFDM and relay with error control technologies effectively.
     HARQ has been widely applied due to its simple but effective principle and easy to be implemented. Among all schemes, incremental redundancy is mostly deployed, in which different coding version is repeated. However different repeat packet selection schemes lead different gain due to different code's property and channel condition. As a result, how to design an effective repeat packet selection method is the key challanege for HARQ design.
     In last decady, low density parity check (LDPC) code is the hottest topic in channel coding area. With simple coding structure, significant coding gain and low decoding dealy LDPC has been widely implemented in mobile TV and communication systems. Recognized as different column weight (a.k.a. degree) LDPC is divided into two categories:regular and irregular LDPC code. As the column weight is well optimized and different in a check martrix, irregular LDPC code outperforms regular code. Bits in a code block with different degree have different performance and those with large degree perform better due to larger protection. Known as unequal protection (UEP) of LDPC code bits with larger degrees are often used to protect important information. The system is optimized with UEP property and higher power efficiency would thus be achieved.
     In this paper the performance of HARQ and LDPC codes is studied. Topics including the error control scheme of MIMO, OFDM and relay system are studied based on the UEP property. Besides, the performance of repeat partner selection scheme in relay network is also investigated. By leveraging the space diversity of MIMO, frequency selection scheduling of OFDM, repeat packet selection of HARQ and time-space diversity of relay, transmission schemes for next generation mobile network are designed for high transmission power efficiency.
     Work in this paper could be summarized as:
     1. A LDPC coded MIMO scheme (DDB-MIMO) is proposed. In this scheme, important bits (with large degrees) are mapped to the transmission diversity (TD) symbols for better protection and bits with small degrees are mapped to spatial multiplexing (SM) symbols for higher transmission rate. By offering better protection to important bits the scheme achieves significant gain.
     2. A LDPC coded OFDM scheme (DD&R LDPC-COFDM) is proposed by taking both first transmission and repeat packet selection method into consideration. By combining LDPC UEP property and different reliability of OFDM subcarriers together the important bits are mapped to reliable subcarriers (with large receiving SNR) and for retransmission the bits on less reliable subcarriers are prior to be repeated.
     3. The frame error probability (FEP) based on pairwise error probability (PEP) for relay network is analyzed and it is found that:in order to achieve both diversity and coding gain a good channel code is required in broadcast (BC) mode and for MAC mode different redundancy version is important. A LDPC based relay transmission scheme is proposed. In the scheme a good LDPC code is required and then divided into several sub code blocks by mean column weight (MCW). In BC mode the sub block with large MCW is employed and the rest blocks are transmitted in MAC mode. The scheme provides reliable transmission in BC mode and thus the diversity gain is guaranteed. In MAC mode by combining different redundancy version the decoding at destination node is more reliable.
     4. A HARQ repeat partner selection scheme is proposed. In the partner candidate region where every partner could provide enough power for retransmission the partner with less forwarding power is chosen and thus the higher repeat power efficiency is achieved.
引文
[1]C. E. Shannon, The Mathematical Theory of Communications. BSTJ, vol.27, July-Oct.1948, pp:379~423,623~656
    [2]王新梅,肖国镇,《纠错码—原理与方法》,西安电子科技大学出版社,1991年
    [3]R. W. Hamming, "Error correcting and detecting codes", BSTJ, vol.29,1950, pp: 147~160
    [4]M. J. E. Golay, Binary coding, IRE Trans. Inform. Theory, vol.4,1954, pp23~28
    [5]I. S. Reed, A class of multiple-error-correcting codes and decoding scheme, IRE Trans. Inform. Theory, vol.4,1954, pp38~49
    [6]D. E. Muller, Application of Boolean algebra to switching circuit design and error detection, IRE Trans. Electronic Computing, vol.3,1954, pp:6~12
    [7]R. C. Bose, D. K. Ray-Chaudhuri, On a class of error correcting binary group codes, Information and Control, vol.3, March 1960, pp:68~79
    [8]A. Hocquenghum, Codes corrcteurs, d'erreurs, Chiffres, vol.2,1959 (in French), pp:147~156
    [9]L. R. Bahl, J. Cocke, F. Jelinek, J. Raviv, Optimal decoding of linear codes for minimizing symbol error rate, IEEE Trans. Inform. Theory, vol.20, March 1974, pp:284~287
    [10]A. J. Viterbi, Error Bound for convolutional codes and asymptotically optimum decoding algorithm, IEEE Trans. Inform. Theory, vol. IT-13,1967, pp:260~269
    [11]G. D. Forney, Concatenated codes, MIT Press, Combridge,1966
    [12]V. D. Goppa, New class of linear correcting codes, Problemy Peredachi Inform., vol.6,1970, pp:24~30
    [13]P. Elias, Coding for noisy channels, IRE Convention Record, vol.3, part 4,1955, pp37~46
    [14]J Ramsey, Realization of optimum interleavers, IEEE Trans. Inform. Theory, 1970, Vol. IT-16, pp.338-345
    [15]C.Berrou, A Glavieux, P. Thitimajshima, Near Shannon limit Error-correcting coding and decoding, Proc. ICC'93, Geneva, Switherland, May,1993. pp: 1064-70
    [16]Gallager, R. G., Low density parity check codes, IRE Trans. Info. Theory,1962, IT-8,pp:21-28.
    [17]D.J.C. MacKay, R. M. Neal, Near Shannon limit performance of low-density parity-check codes, IEE Electronics. Lett., vol.32, no 18, Aug.1996, pp: 1645~1646
    [18]ETSI EN 302307 V1.1.1 (2004-06), http://www.etsi.org/
    [19]R. M. Pyndiah, Near optimum decoding of product codes:Block turbo codes, IEEE Trans. Comm, vol.46, Aug.1998, pp:1003~1010
    [20]D.Chase, A class of algorithms for decoding block codes with channel measurement information, IEEE Trans. Inform. Theory, Vol.18, No.1, Jan.1972, pp:170-182
    [21]D. Divsalar, H. Jin, and R. J. McEliece, Coding theorems for'turbo-like'codes, in Proc.36th Allerton Conf., Urbana, IL, Sept.23-25,1998, pp:201-210
    [22]D. Divsalar, S. Dolinar, and F. Pollara, Low complexity turbo-like codes, in 2nd Int. Symp. Turbo Codes, Sept.2000, pp:73-80
    [23]G. F. Javier, W.Zhong, Approaching Shannon performance by iterative decoding of linear codes with low density generator matrix, IEEE Communications Letters, Vol.7, No.6, June 2003, pp:266~268
    [24]D. J. C. MacKay, R. M. Neal, Good codes based on very sparse matrices,5th IMA Conference, Berlin,1995, pp:100~111
    [25]Wu Xiaofu, Xue Yingjian, Xiang Haige, On concatenated zigzag codes and their decoding schemes, IEEE communications Letters, Vol.8, No.1, Jan.2004, pp: 54~56
    [26]P. Li, X. Huang, P. Nam, Zigzag codes and concatenated zigzag codes, IEEE Trans. on Inform. Theory, Vol.47, No.2, Feb.2001, pp:800~807
    [27]H. Behairy, S. C. Chang, Parallel concatenated Gallager codes, Electronics Letters, Vol.36, No.24, Nov.2000, pp:2025~2026
    [28]H. Behairy, S. C. Chang, Analysis and design of parallel concatenated Gallager codes, Electronics Letters, Vol.38, No.18, Aug,2002, pp:1039~1040
    [29]S. Verdu, et al, The special commemorative issue celebrates the 50th anniversary of Claude E.Shannon's'A mathematical theory of Communication', IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2042~2760
    [30]S. Verdu, Fifty years of Shannon theory, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2057~2078
    [31]J. Korner, A.Orlitsky, Zero-error information theory, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2207~2229
    [32]R. M. Gray, D. L. Neuboff, Quantization, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2325~2383
    [33]G. D. Forney, G. Ungerboeck, Modulation and coding for linear Gaussian channels, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2384~2415
    [34]D. J. Costello, J. Hagenauer, H. Imai, S. B. Wicker, Applications of error-control coding, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2531~2560
    [35]A. R. Calderbank, The art of signaling:fifty years of coding theory, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2561~2595
    [36]E. Biglieri, J. Proakis, S. Shamai, Fading channels:information-theoretic and communications aspects, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2619~2692
    [37]T. Berger, J. D. Gibson, Lossy source coding, IEEE Trans. Inform. Theory, Vol. 44, No.6, Oct.1998, pp:2693~2723
    [38]C. H. Bennett, P. W. Shor, Quantum information theory, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp:2724~2742
    [39]A. Barron, J.Rissanen, B.Yu, The minimum description length principle in coding and modeling, IEEE Trans. Inform. Theory, Vol.44, No.6, Oct.1998, pp2743~2760
    [40]M. Luby, M. Mitzenmacher, M. A. Shokrollahi, D. A. Spielman, Analysis of low-density codes and improve designs using irregular graphs, Proc.30th Annu. Symp. Theory of Computing,1998, pp249~258
    [41]T. Richardson, R. Urbanke, The capacity of low-density parity-check codes under message-passing decoding, IEEE Trans. Inform. Theory, vol.47, Feb.2001, pp599~618
    [42]S.T.Brink, Convergence behavior of iteratively decoded parallel concatenated codes, IEEE Trans. Communications, vol.49, No.10, Oct.2001,1727~1736
    [43]S.T.Brink, Density of low-density parity check codes for modulation and detection, IEEE Trans. Communications, vol.52, No.4, APRIL.2004,670~677
    [44]S. Y. Chung, G. D. Forney, T. Richardson, R. Urbanke, On the design of low-density parity-check codes within 0.0045dB of the Shannon limit, IEEE Comm. Letters, vol.5, Feb.2001, pp58-60
    [45]M. C. Davey, D. J. C. MacKay, low density parity check codesGF(q), IEEE Comm. Letters, vol.2, June 1998, pp165~167
    [46]林家儒,Turbo码在CDMA中的应用及非规则LDPC码性能的研究,博士论文,北京:北京邮电大学
    [47]林家儒,吴伟陵.LDPC码在RICE信道中的性能分析.北京邮电大学学报,2004,27(2):48-53
    [48]S.T.Brink, Density of low-density parity check codes for modulation and detection, IEEE Trans. Communications, vol.52, No.4, APRIL.2004,670-677
    [49]B. Lu, X. Wang, K. R. Narayanan, LDPC-Based space-time coded OFDM systems over correlated fading channels:performance analysis and receiver design, IEEE Trans. Comm., vol.50, Jan.2002, pp924~934
    [50]B.Lu, G.Yue, X.Wang. Performance analysis and design optimization of LDPC coded MIMO OFDM systems, IEEE Global Telecommunications conference. 2003,3:1316~1320
    [51]S.J.Johnson, S.R.Weller, A family of Irregular LDPC Codes with Low Encoding Complexity, IEEE Communications Letters, Vol 7, No.2,2003, pp:79~81
    [52]S. J. Johnson and S. R. Weller, Construction of low-density paritycheck codes from Kirkman triple systems, Proc. IEEE Globecom Conf., Nov.2001, pp. 970~974
    [53]B. Vasic. Combinational constructions of structured low-density parity-check codes ofr iterative decoding. Proc.2001 IEEE Information Theory Workshop.Vol.1 2001,312
    [54]S.J. Johnson, S.R.Weller, Regular low-density parity-check codes from combinatorial designs, Proc.2001 IEEE Information Theory Workshop Cairns. Austrlia. Vol 1,2001 90~92.
    [55]H.Tang, J.Xu, Y.Kou, S.Lin etal, On algebric construction of Gallager and circulant low density parity-check codes, IEEE Trans. Inform. Theory, Vol.50, 2004 1269~1279
    [56]Jon-Lark Kim, Uri N.Peled, et al, Explicit construction of families of LDPC codes with No 4-cycles, IEEE Trans. Inform. Theory, Vol.50, No.10, Oct.2004, 2378~2388
    [57]Y.Kou, S.Lin, M.P.C. Fossorier, Low-density parity-check codes based on finite geometrics:a rediscovery and new results, IEEE Trans. Inform. Theory, Vol.47, No.7,2001,2711~2736
    [58]Z.Liu, D.A.Pados, A decoding algorithm for finite geometry LDPC codes, IEEE on Commun. Vol.53, No.3, Mar.2005,415~421
    [59]MacKay David, Good error-correcting codes based on very sparse matrices, IEEE Trans. On Information theory, vol.45, No.2, Mar.1999,399~431
    [60]MacKay Davey, Neal R., Near Shannon limit performace of low-density parity-check codes, Electronics Letters, vol.33, No.6457-458, Mar.13,1997
    [61]Xiao-Yu Hu, et al. Progressive Edge-Growth Tanner Graphs, IEEE Trans. Inform. Theory. Feb.2001,995-1001
    [62]R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA:MIT Press, 1963.
    [63]Xiao Y. H., Evangelos E., Dieter M. A., Ajay D. Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes. IEEE Global Telecommunications Conference 2001,2:1036A-1036E
    [64]A.J.Viterbi, An intuitive justification and a simplified implementation of the MAP decoder for convolutional codes, IEEE Journal Select Areas Commun., Col.16, No.2,1998,269~274
    [65]P.Robertson, E. Villebrun, P. Hoeher, A comparison of optimal and sub-optimal MAP decoding algorithms operationting in the log domain, Proc. Intl. Commun. Conf., June 1995,1009~1013
    [66]E.Eleftheriou, T.Mittelholzer, A.Dholakia, Reduced-complexity decoding algorithm for low-density parity check codes, IEE Electronics Letters, Vol.37, Jan. 2001 102~104
    [67]J.chen, M.P.C.Fossorier, Near optimum universal belief propagation based decoding of low-density parity check codes IEEE Trans. Commun. Vol.50, No.3, 2002,406~414
    [68]J.chen, M.P.C.Fossorier, Near optimum universal belief propagation based decoding of LDPC codes and Extension to Turbo decoding, ISIT 2001, Washington, DC, June,2001,189
    [69]Song Hui-shi, Zhang ping, Belief-Propagation-Approximated Decoding of Low-Density Parity-Check Codes, The Journal of China Universities of Posts and Telecommunications,Vol.11, No.1,2004,24~28
    [70]J.Heo, Analysis of scaling soft information on low density parity check code, Electronic Letters, Vol.39, No.2,2003,219~221
    [71]A.Nouh, A.H.banihashemi, Bootstrap decoding of low-density parity-check codes, IEEE Communications Letters, Nol.6, No.9,2002,391~393
    [72]S. Hirst, B. Honary, Decoding of generalised low-density parity-check codes using weighted bit-flip voting, IEE Proc. Commu, Vol.149, No.1 2002,1~5
    [73]J.Zhang, M. P. C. Fossorier, A modified weighted bit-flipping decoding of low-density Parity-check codes, IEEE Commu. Letters, Vol.8, No.3,2004, 165~167
    [74]殷柳国, 低密度奇偶校验码编译码技术及应用研究.博士学位论文,北京,清华大学,2004
    [75]贺玉成,孙韶辉,慕建君,王新梅,快速低密度校验码迭代译码量化算法,西 安电子科技大学学报,Vol.29, No..3,2002,338~342
    [76]孙韶辉,慕建君,王新梅,低密度校验码BP译码算法中量化问题的研究,电子学报,Vol.31, No.2,2003,217~220
    [77]Ping Li, W.K. Leung, Decoding low density parity check codes with finte quantization bits, IEEE communications Letters, Vol.4, No.2,2000,62-64
    [78]杨莉,王新梅等,置信传播译码算法的性能测度,电子学报,Vol.30,No.4,2002,577-580
    [79]贺玉成,基于图模型的低密度校验码理论及应用研究,[博士论文],西安:西安电子科技大学
    [80]D.Changyan, P.David, et al. Finite-length analysis of low-density parity-check codes on the binary erasure channel, IEEE Trans. on Inform. Theory, Vol.48, No. 6,2002,1570~1579
    [81]慕建君,贺玉成,王新梅,低密度纠删码稳定收敛条件的证明,电子学报,Vol. 30, No.4,2002,530~532
    [82]Yingjian Xue, Haige Xiang, Performance analysis of finite-length LDPC codes, the 4th IEEE workshop on signal processing advances in wireless communications,2003,85~89
    [83]Renato Vicente, David Saad, Yoshiyuki Kabashima, Low Density Parity Check Codes -- A Statistical Physics, Imaging and Electron Physics.125
    [84]D. Saad, Y. Kabashima, T. Murayama, R. Vicente, Statistical Physics of Low Density Parity Check Error Correcting Codes, Cryptography and Coding,8-th IMA International Conference. Editor:B. Honary,2001, pp 307~316
    [85]Y. Kabashima, T. Murayama and D. Saad, Typical Performance of Gallager-type Error-Correcting Codes, Phys. Rev. Lett..84.1999, pp 1355~1358
    [86]R. Vicente, D. Saad, Y. Kabashima, Statistical Physics of Irregular Low-Density Parity Check Codes, Jour. Phys. A.33,1999, pp 6527-6542
    [87]B. Lu, X. Wang, K. R. Narayanan, LDPC-Based space-time coded OFDM systems over correlated fading channels:performance analysis and receiver design, IEEE Trans. Comm., vol.50, Jan.2002, pp924~934H
    [88]Jin, T. Richardson, Design of low-density parity-check codes for noncoherent MPSK communication, IEEE ISIT'02, June 2002, pp1035~934
    [89]E. Eleftheriou, S. Oelcer, Low-density parity-check codes for multilevel modulation, IEEE ISIT'02, June 2002, pp442
    [90]J.Y.Chung, M.Y.Alias, F. Guo, L. Hanzo, LDPC and turbo coding assisted space-time block coded OFDM for H.26L compressed wireless video telephony, 14th IEEE Proceedings on personal, Indoor and mobile radio communications, Vol.2003, Vol.22, No.3,2702~2706
    [91]Xing Guanbin, Shen Manyuan, Hu Jun, et al, An LDPC-based terrestrial multimedia broadcasting (TMB) system:design, implementation and experimental results, Proceedings of IEEE international conf. on acoustics, speech and signal processing,2004, No.3, iv-905-8
    [92]马玉明,袁东风,杨秀梅,非规则LDPC码的不等错误保护性能研究,通信学报,第26卷11期,2005年11月:132-136
    [93]郭锐,基于LDPC码不等错误保护的立体视频通信研究,[博士论文],杭州: 浙江大学,信息科学与工程学院,2007年6月
    [94]张玉玲,袁东风,程翔,具有不等错误保护特性的LDPC编码调制方案,通信学报,第27卷12期,2006年12月:98-102
    [95]N.S.Skantzos, D.Saad, Y.Kabashima, Analysis of common attacks in LDPCC-based public-key cryptosystems, http://www.NCRG Tech Report Search Result.htm
    [96]Y. Kabashima, T. Murayama, D. Saad, Cryptographical properties of Ising spin systems, Phys. Rev. Lett.84.2000, pp 2030-2033
    [97]R. M. Tanner, A recursive approach to low complexity codes IEEE Trans. Inform. Theory, vol.27, May 1981, pp533-547
    [98]M.Luby, M. Mitzenmacher, M.A.Shokrollahi, D.A.Spielman, Improved low-density parity-check codes using irregular graphs, IEEE Trans. Inform Theory, vol.47,No.2, Feb.2001, pp585-598
    [99]T.J.Richardson, R.L.Urbanke. Efficient Encoding of Low-Density Parity-Check Codes [J]. IEEE Trans. Inform. Theory,2001,47(2):638-656
    [100]R.M.Neal, Sparse matrix methods and probabilistic inference algorithms, http: //www. cs. Utoronto.ca/-radford/
    [101]Y.Xiumei, Y.Dongfeng, et al, New Research on Unequal Error Protection (UEP) Property of Irregular LDPC codes, IEEE Consumer Communications and Networking Conference,2004,361-363
    [102]Jinghu Chen, M. P. C. Fossorier, Density evolution for two improved BP-Based decoding algorithms of LDPC codes, IEEE Trans, on Communications, Vol.6, No.5,2002,208~210
    [103]X. Huang, Cooperative Optimization for Solving Large Scale Combinatorial Problems, Theory and Algorithms for Cooperative Systems.World Scientific, 2004, pp.117~156.
    [104]X.Huang, Near perfect decoding of LDPC codes, http://arxiv.org/pdf/cs.IT /0504021
    [105]S.T.Brink, Density of low-density parity check codes for modulation and detection, IEEE Trans. Communications, vol.52, No.4, APRIL.2004,670-677
    [106]S. Y. Chung, T. Richardson, R. Urbanke, Analysis of sum-product decoding of low-density parity-check codes using Gaussian approximation, IEEE Trans. Inform. Theory, vol.47, Feb.2001, pp657-670
    [107]3GPP TS 25.308 v5.3.0, High speed downlink packet access(HSDPA): overall description, December 2002
    [108]3GPP TS 25.858 v5.0.0, High speed downlink packet access(HSDPA): physical layer aspect, March 2002
    [109]3GPP TR25.835, Report on Hybrid ARQ Type Ⅱ/Ⅲ, September 2000
    [110]3GPP TS25.123, Requirements for support of radio resource management(TDD), March 2003
    [111]J. Ha and S. W. McLaughlin, Rate-compatible puncturing of low-density parity-check codes, IEEE Trans. Inform. Theory, vol. IT 50, Nov.2004, pp. 2824-2836
    [112]S. Sesia, G. Caire, G. Vivier, Incremental redundancy hybrid ARQ schemes based on low-density parity-check codes, Communications, IEEE Transactions on, Volume 52, Issue 8, Aug.2004, pp 1311-1321
    [113]M.R. Yazdani, A.H. Banihashemi, On construction of rate-compatible low-density Parity-check codes, Communications Letters, IEEE Vol.8, Issue 3, March 2004, pp 159-161
    [114]M. Yazdani, A.H. Banihashemi, Irregular rate-compatible LDPC codes for capacity-approaching hybrid-ARQ schemes, Electrical and Computer Engineering,2004. Canadian Conference on, Vol.1, May 2004 pp 303-306
    [115]J. M. Shea, Reliability-Based Hybrid ARQ. IEE Electronics Letters, vol.38 June 2002, pp 644-645
    [116]A. Roongta and J. M. Shea, Reliability-based Hybrid ARQ using Convolutional Codes. ICC 03. IEEE International Conference on, vol.4,11-15 May 2003, pp 2889-2893
    [117]Cao Yiqing, Gu Jian, Qi Lin, Yang Dacheng, Degree Distribution Based HARQ for Irregular LDPC, Electronic Letters,2006,42(6):363~364.
    [118]Foschini G.J, Gans M.J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, vol.6, No.31998, pp:311-335.
    [119]Telatar E. Capacity of multi-antenna Gaussian channels. European Transactionson Telecommunications,1999, vol.10, No.6,1999, pp:585-595.
    [120]Wolniansky P.W., Foschini G.J., Golden G.D., et al. V-BLAST:an architecture for realizing very high data rates over the rich-scattering wireless channel, in:International Symposium on Signals, Systems, and Electronics. Pisa, Italy:IEEE,1998. pp.295-300.
    [121]Tarokh V., Seshadri N., Calderbank A.R. Space-time codes for high data ratewireless communication:performance criterion and code construction. IEEE Transactions on Information Theory, vol.44, No.2,1998, pp:744-765.
    [122]Wittneben A. A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation.in:International Conference on Communications.Geneva, Switzerland:IEEE,1993.1630-1634.
    [123]Wittneben A. Basestation modulation diversity for digital simulcast, in:Vehicular Technology Conference.St.Louis,MO,USA:IEEE,1991.848-853.
    [124]Alamouti S. M., Simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, vol.16, No.8,1998, pp:1451-1458.
    [125]3G TS 25.221 V3.3.0 (2000.3), http://www.3gpp.org.
    [126]Tarokh V, Jafarkhani H., Calderbank A.R. Space-time block codes from orthogonal designs.IEEE Transactions on Information Theory, vol.45, No.5, 1999,pp:1456-1467.
    [127]Tarokh V, Jafarkhani H., Calderbank A.R. Space-time block coding for wireless communications:Performance results.IEEE Journal on Selected Areas in Communications, vol.17, No.3,1999, pp:451-460.
    [128]Guixia K., Xianglan J., Qingyi Q., et al. The decision schemes on the concatenation of space-time block code and convolutional code in WCDMA system. in:International Conferences on Info-Tech and Info Net. Beijing, China: IEEE,2001.693-697.
    [129]Yi G, Ben Letaief K. Concatenated space-time block coding with trellis coded modulation in fading channels. IEEE Transactions on Wireless Communications, vol.1, No.4,2002, pp:580-590.
    [130]Liew T.H., Pliquett J., Yeap B.L., et al. Concatenated space time block codes and TCM,turbo TCM, convolutional as well as turbo codes. in:Global Telecommunications Conference.San Francisco,CA,USA:IEEE,2000.1829-1833.
    [131]Junghoon S., Howlader M.M.K. Design schemes of space-time block codes concatenated with turbo codes. in:Vehicular Technology Conference. Birmingham, AL, USA:IEEE,2002.1030-1034.
    [132]Li G., Fair I.J., Krzymien W.A. Low-density parity-check codes for space-time wireless transmission. IEEE Transactions on Wireless Communications, vol.5, No.2,2006, pp:312-322.
    [133]Hochwald B.M., Marzetta T.L. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, vol.46, No.2,2000, pp:543-564.
    [134]Ganesan G, Stoica P. Differential modulation using space-time block codes. IEEE Signal Processing Letters, vol.9, No.2,2002, pp:57-60.
    [135]Foschini G.J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, vol.1, No.2,1996, pp:41-59.
    [136]Sari H., Karam G, Jeanclaude I. Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine, vol.33, No.2, 1995, pp:100-109.
    [137]Bingham J.A.C. Multicarrier modulation for data transmission:an idea whose time has come. IEEE Communications Magazine,1990,28(5):5-14.
    [138]Wang Z., Giannakis G.B. Wireless multicarrier communications:Where Fourier meets Shannon. IEEE Signal Processing Magazine, vol.17, No.3,2000, pp:29-48.
    [139]Yang H. A road to future broadband wireless access:MIMO-OFDM-Based air interface.IEEE Communications Magazine, vol.43, No.1,2005, pp:53-60.
    [140]Zelst A., Nee R., Awater GA. Space division multiplexing (SDM) for OFDM systems. in:Vehicular Technology Conference Proceedings.Tokyo, Japan: IEEE,2000.1070-1074.
    [141]Piechocki R.J., Fletcher P.N., Nix A.R., et al.Performance evaluation of BLAST-OFDM enhanced Hiperlan/2 using simulated and measured channel data. Electronics Letters, vol.37, No.18,2001, pp:1137-1139.
    [142]Batariere M.D., Kepler J.F., Krauss T.P., et al. An experimental OFDM system for broadband mobile communications, in:Vehicular Technology Conference. Atlantic City, NJ, USA:IEEE,2001.pp.1947-1951.
    [143]Sampath H., Talwar S., Tellado J., et al. A fourth-generation MIMO-OFDM broadband wireless system:design, performance, and field trial results. IEEE Communications Magazine,2002, vol.40, No.9, pp:143-149.
    [144]Ten Brink S., Kramer G, Ashikhmin A. Design of low-density parity-check codes for modulation and detection.IEEE Transactions on Communications, vol. 52, No.4,2004, pp:670-678.
    [145]Hou J., Siegel P.H., Milstein L.B. Design of multi-input multi-output systems based on low-density parity-check codes. IEEE Transactions on Communications, vol.53, No.4,2005, pp:601-611.
    [146]Lu B., Yue G, Wang X. Performance analysis and design optimization of LDPC-coded MIMO OFDM systems. IEEE Transactions on Signal Processing,, vol.52, No.2,2004, pp:348-361.
    [147]Zheng J., Rao B.D. LDPC-coded MIMO systems with unknown block fading channels:soft MIMO detector design, channel estimation, and code optimization. IEEE Transactions on Signal Processing, vol.54, No.4,2006, pp:1504-1518.
    [148]Ka Leong L. Layered space-time structure with low density parity check and convolutional codes:[Master Disertation].University of Sydney,2001.
    [149]Vucetic B., Yuan J. Space-Time Coding. John Wiley,2003.
    [150]Futaki H., Ohtsuki T. Low-density parity-check (LDPC) coded OFDM systems with M-PSK. in:Vehicular Technology Conference. Birmingham, AL, USA:IEEE,2002. pp:1035-1039.
    [151]Futaki H., Ohtsuki T. Performance of low-density parity-check (LDPC) coded OFDM systems. in:International Conference on Communications. New York, NY:IEEE,2002. pp:1696-1700.
    [152]Lu B., Wang X., Narayanan K.R.LDPC-based space-time coded OFDM systems over correlated fading channels:Performance analysis and receiver design. IEEE Transactions on Communications, vol.50, No.1,2002, pp:74-88.
    [153]Yan X., Mujtaba S.A.A hybrid decoding approach for LDPC coded MIMO-OFDM systems. in:Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA:IEEE,2004. pp:1173-1177.
    [154]Png K.-B., Peng X., Chin F. Performance studies of a multi-band OFDM system using a simplified LDPC code. in:International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Kyoto, Japan:IEEE,2004. pp:376-380.
    [155]Al-Rawi G.A., Al-Naffouri T.Y., Bahai A., et al. An iterative receiver for coded OFDM systems over time-varying wireless channels. in:International Conference on Communications.Anchorage,AK,USA:IEEE,2003.pp:3371-3376.
    [156]Wang X., Yue G, Narayanan K.R. Optimization of LDPC-coded turbo CDMA systems.IEEE Transactions on Signal Processing, vol.53, No.42005, pp: 1500-1510.
    [157]Yue G, Wang X. Coding-spreading tradeoff in LDPC-coded CDMA with turbo multiuser detection. IEEE Transactions on Wireless Communications, vol.3, No.5,2004, pp:1734-1745.
    [158]Sanderovich A., Peleg M., Shamai S.LDPC coded MIMO multiple access with iterative joint decoding. IEEE Transactions on Information Theory, vol.51, No.4,2005, pp:1437-1450.
    [159]Berlin P., Tuninetti D.LDPC codes for fading Gaussian broadcast channels. IEEE Transactions on Information Theory, vol.51, No.6,2005, pp:2173-2182.
    [160]Morello A., Mignone V.DVB-S2:the second generation standard for satellite broad-band services. Proceedings of the IEEE, vol.94, No.1,2006, pp:210-227.
    [161]Winner, Assessment of advanced beam forming and MIMO technologies, https://www. ist-winner. org
    [162]Burt Masnick, Jack Wolf, On Linear Unequal Error Protection Codes, IEEE Trans. Inform. Theory, vol.3, NO.4, October 1967, pp.600-607.
    [163]Im Boiarinov, G1 Katsman, Linear Unequal Error Protection Codes, IEEE Trans. Inform. Theory, vol.27, NO.2, March 1981, pp.168-175
    [164]H. Pishro-Nik, N. Rahnavard, and F. Fekri, Non-Uniform Error Correction Using Low-Density Parity-Check Codes, IEEE Trans. Inform. Theory, vol.51, Issue 7, July 2005 pp.2702-2714
    [165]3GPP, R1-061813, Mitsubishi Electric, Ordered transmission scheme for LDPC-coded symbols, June 2006
    [166]Cai Li-yu, Wan Yan, Song Peng-peng et al. Improved HARQ scheme using channel quality feedback for OFDM systems. Proceedings of IEEE Vehicular Technology Conference (VTC 2004-Spring):Milan, Italy:IEEE, May 17-19, 2004, pp:1869-1872
    [167]Wu Yan-yan, Cao Yi-qing, Chi Lian-gang et al. Improved sRB-HARQ for OFDM system. Proceedings of IEEE Vehicular Technology Conference (VTC'2007-Spring):Dublin, Ireland:IEEE, April 22-24,2007, pp:3111-3114
    [168]雷维嘉,谢显中,李广军,一种基于LDPC编码的协作通信方式,电子学报,Vol.35,No.4,2007,712-715
    [169]Hong Wen, Liang Zhou, Zhongpei Zhang, Cooperative Coding Using Parallel Concatenated LDPC Codes, Information Theory Workshop,2006. ITW apos; 06 Punta del Este. IEEE, Vol., Issue, Oct.2006 pp.395-398
    [170]A. Stefanov, E. Erkip, Cooperative coding for wireless networks, IEEE Transactions on Communications, Vol.52, Issue:9, Sept.2004, pp.1470-1476
    [171]Zinan Lin, Elza Erkip and Andrej Stefanov, Cooperative regions and partner choice in coded Cooperative systems, IEEE Transactions on Communications, Vol.54, Issue:4, April 2006, pp.1323-1334
    [172]J.N. Laneman, D.N.C. Tse and G.W. Wornell, Cooperative diversity in wireless networks efficient protocols and outage behavior, IEEE Trans. On Information Theory, Volume:50, Issue:12 Dec.2004, pp.3062-3080
    [173]Arnab Chakrabarti, Ashutosh Sabharwal and Behaam Aazhang, Cooperative communications:Fundamental Limits and Practical Implementation, http://scholarship.rice.edu/handle/1911/19781
    [174]Chuxiang Li, Guosen Yue, Xiaodong Wang and Khojastepour, M.A., LDPC Code Design for Half Duplex Cooperative Relay, IEEE Trans. On Wireless Communications, Volume:7, Issue:11, Part 2, Nov.2008, pp.4558-4567
    [175]A. Chakrabarti,1. Erkip, A. Sabharwal, and B. Aazhang, Code designs for cooperative communications, Signal Processing Magazine, IEEE Volume 24, Issue 5, Sep.2007 pp.16-26
    [176]A. Chakrabarti, A. Sabharwal, and B. Aazhang, Quantizer design for compress and forward relaying, in Proc. CTW Poster Session, May 2007.
    [177]Arnab Chakrabarti, LDPC Code Design for Half-Duplex Decode-and-Forward Relaying
    [178]H. Behairy, S.-C. Chang, Parallel on Catenated Gallager codes, Electron. Letters,2000, vol.36, No.24, pp:2025-2026.
    [179]Z. Lin, E. Erkip and A. Stefanov, Exact Pairwise Error Probability for the MIMO Block Fading Channel, International Symposium on Information Theory and its Applications, ISITA 2004, Oct.10-13,2004, Parma, Italy.
    [180]A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity—Part I:System description, IEEE Trans. Commun., vol.51, pp.1927-1938, Nov.2003,
    [181]A. Sendonaris, User cooperation diversity—Part II:Implementation aspects and performance analysis, IEEE Trans. Commun., vol.51, pp.1939-1948, Nov. 2003.
    [182]T. Hunter and A. Nosratinia, Cooperation diversity through coding, in Proc. IEEE Int. Symp. Information Theory, Lausanne, Switzerland, June 2002, pp.220.
    [183]R. Knopp and P. A. Humblet, On coding for block fading channels, IEEE Trans. Inform. Theory, vol.46, Jan.2000, pp.189-205.
    [184]J. Hagenauer, Rate-compatible punctured convolutional codes (RCPC codes) and their applications, IEEE Trans. Commun., vol.36, Apr.1988, pp:389-400.
    [185]S. Lin and D. J. Costello, Error Control Coding:Fundamentals and Applications. Englewood Cliffs, NJ:Prentice-Hall,1983.
    [186]Van Der Meulen, E. C. Transmission of information in a T-terminal discrete memoryless channel. [PhD dissertation], Berkeley, Dept. of Statistics, University of California,1968
    [187]Slepian, D. and Wolf, J. Noiseless coding of correlated information sources. IEEE Trans. Inform. Theory, vol.19,1973, pp:471-480.
    [188]Gaarder, N. T. andWolf, J. K. The capacity region of a multiple-access discrete memoryless channel can increase with feedback. IEEE Trans. Inform. Theory, vol.21-1,1975, pp:100-102.
    [189]Cover, T. M. and Leung, C. S. K. An achievable rate region for the multiple-access channel with feedback. IEEE Trans. Inform. Theory, vol.27, No. 3,1981, pp:292-298.
    [190]Willems, F. M. J. Informationtheoretical Results for the Discrete Memoryless Multiple Access Channel. [PhD dissertation], Leuven, Belgium, Katholieke Univ. Leuven,1982
    [191]Cover, T. M. Broadcast channels. IEEE Trans. Inform. Theory, vol.18,1972, pp:2-14.
    [192]Cover, T. M. An achievable rate region for the broadcast channel. IEEE Trans. Inform. Theory, vol.21, No.4,1975, pp:399-404.
    [193]Bergmans, P. and Cover, T. M. Cooperative broadcasting. IEEE Trans. Inform. Theory, vol.20,1974, pp:317-324.
    [194]Marton, K. A coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inform. Theory, vol.25, No.3,1979, pp:306-311.
    [195]Gel'fand, S. I. and Pinsker, M. S. Capacity of a broadcast channel with one deterministic component. Probl. Pered. Inform., vol.16, No.1,1980, pp:24-34.
    [196]Han, T. S. The capacity region for the deterministic broadcast channel with a common message. IEEE Trans. Inform. Theory, vol.27, No.1,1981, pp: 122-125.
    [197]El Gamal, A. and van der Meulen, E. C. A proof of Marton's coding theorem for the discrete memoryless broadcast channel. IEEE Trans. Inform. Theory, vol. 27, No.1,1981, pp:120-122.
    [198]Cover, T., El Gamal, A., and Salehi, M. Multiple access channels with arbitrarily correlated sources. IEEE Trans. Inform. Theory, Vol.26, No.6,1980, pp:648-657.
    [199]Wyner, A. D. The rate-distortion function for source coding with side information at the receiver—Ⅱ:General sources. Inform. Contr., vol.38,1978, pp: 60-80.
    [200]Wyner, A. D. and Ziv, J. The rate-distortion function for source coding with side information at the receiver. IEEE Trans. Inform. Theory, vol.22, No.1,1976, pp:1-11.
    [201]Cover, T. M. and El Gamal, A. A. Capacity theorems for the relay channel. IEEE Trans. Inform. Theory, vol.25,1979, pp:572-584.
    [202]El Gamal, A. A. and Aref, M. The capacity of the semi-deterministic relay channel. IEEE Trans. Inform. Theory, vol.28, No.3,1982, pp:536.
    [203]Aref, M. R. Information flow in relay networks. [PhD disesstation], Stanford University,1980
    [204]El Gamal, A. A. On information flowin relay networks. In Proc. of IEEE National Telecommunications Conference, vol 2,1981, pp:D4.1.1-D4.1.4.
    [205]King, R. C. Multiple access channels with generalized feedback. [PhD disesstation], Stanford University,1978.
    [206]Carleial, A. B. Multiple-access channels with different generalized feedback signals. IEEE Trans. Inform. Theory, vol.28, No.6,1982, pp:841-850.
    [207]Kramer, G, Gastpar, M., and Gupta, P. Cooperative strategies and capacity theorems for relay networks. IEEE Trans. Inform. Theory, vol.51, No.9,2005, pp:3037-3063.
    [208]Zhang, Z. Partial converse for a relay channel. IEEE Trans. Inform. Theory, vol.34, No.5,1988, pp:1106-1110.
    [209]Zeng, C. M., Kuhlmann, R, and Buzo, A. Achievability proof of some multiuser channel coding theorems using backward decoding. IEEE Trans. Inform. Theory, vol.35, No.6,1989, pp:1160-1165.
    [210]Thomas, J. A. Feedback can at most double Gaussian multiple access channel capacity. IEEE Trans. Inform. Theory, vol.33, No.5,1987, pp:711-716.
    [211]Ahlswede, R. and Kaspi, A. H. Optimal coding strategies for certain permuting channels. IEEE Trans. Inform. Theory, vol.33 No.3,1987, pp: 310-314.
    [212]Kobayashi, K. Combinatorial structure and capacity of the permuting relay channel. IEEE Trans. Inform. Theory, vol.33, No.6,1987, pp:813-826.
    [213]Vanroose, P. and van der Meulen, E. C. Uniquely decodable codes for deterministic relay channels. IEEE Trans. Inform. Theory, vol.38, No.4,1992, pp:1203-1212.
    [214]Foschini, G. J. and Gans, M. J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, vol.6, No.3,1998, pp:311-335.
    [215]Telatar, I. E. Capacity of multiple-antenna Gaussian channels. Eur. Trans. Tel., vol.10, No.6,1999, pp:585-595.
    [216]Biglieri, E., Proakis, J., and Shamai, S. Fading channels:Information theoretic and communications aspects. IEEE Trans. Inform. Theory, vol.44, No. 6,1998, pp:2619-2692.
    [217]Sendonaris, A., Erkip, E., and Aazhang, B. User cooperation diversity. Part I. System description. IEEE Trans. Commun., vol.51,2003, pp:1927-1938.
    [218]Sendonaris, A., Erkip, E., and Aazhang, B. User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Trans. Commun., vol.51, 2003, pp:1939-1948.
    [219]Laneman, J. N. Cooperative diversity in wireless networks:Algorithms and Architectures. [PhD disertation], Massachusetts Institute of Technology, Cambridge, MA.2002
    [220]Laneman, J. N., Tse, D. N. C, andWornell, G.W. Cooperative diversity in wireless networks:Efficient protocols and outage behavior. IEEE Trans. Inform. Theory, vol.50,2004, pp:3062-3080.
    [221]Laneman, J. N. and Wornell, G. W. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. Inform. Theory, vol.49, No.10,2003, pp:2415-2425.
    [222]Chong, H. F., Motani, M., and Garg, H. K. New coding strategies for the relay channel. In Proc. of ISIT,2005, pp:1086-1090.
    [223]Schein, B. and Gallager, R. The Gaussian parallel relay network. In Proc. of ISIT, Sorrento, Italy.2000, pp:22
    [224]Schein, B. Distributed coordination in network information theory. [PhD disesstation], Massachusetts Institute of Technology.2001
    [225]Wang, Bo, Zhang, Junshan, and Host-Madsen, A. On the capacity of MIMO relay channels. IEEE Trans. Inform. Theory, vol.51,2005, pp:29-43.
    [226]Host-Madsen, A. and Zhang, J. Capacity bounds and power allocation for the wireless relay channel. IEEE Trans. Inform. Theory, vol.51, No.6,2005, pp: 2020-2040.
    [227]Khojastepour, M. A. Distributed Cooperative Communications in Wireless Networks. [PhD disertation], Dept. of Electrical and Computer Engg., Rice University.2004
    [228]Mitran, P., Ochiai, H., and Tarokh, V. Space-time diversity enhancements using collaborative communications. IEEE Trans. Inform. Theory, vol.51, No.6, 2005, pp:2041-2057.
    [229]Nabar, R. U., Bolcskei, H., and Kneubuhler, F. W. Fading relay channels: Performance limits and space-time signal design. IEEE J. Select. Areas Commun., vol.22,2004, pp:1099-1109.
    [230]El Gamal, A., Mohseni, M., and Zahedi, S. On reliable communication over additive white Gaussian noise relay channels. IEEE Trans. Inform. Theory, vol. 46, No.2,2004, pp:388-404
    [231]Reznik, A., Kulkarni, S. R., and Verd'u, S. Degraded Gaussian multiple relay channel:capacity and optimal power allocation. IEEE Trans. Inform. Theory, vol. 50, No.12,2004, pp:3037-3046.
    [232]Toumpis, S. and Goldsmith, A. J. Capacity regions for wireless ad hoc networks. IEEE Trans. Wireless Commun., vol.2, No.4,2003, pp:736-748.
    [233]Liang, Y. and Veeravalli, V. V. Gaussian orthogonal relay channels:Optimal resource allocation and capacity. IEEE Trans. Inform. Theory, vol.51,2005, pp: 3284-3289.
    [234]Boyer, J., Falconer, D. D., and Yanikomeroglu, H. Multihop diversity in wireless relaying channels. IEEE Trans. Commun., vol.52, No.10,2004, pp: 1820-1830.
    [235]Hasna, M. O. and Alouini, M.-S. End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Trans. Wireless Commun., vol.2, No.6,2003, pp:1126-1131.
    [236]Gupta, P. and Kumar, P. R. The capacity of wireless networks. IEEE Trans. Inform. Theory, Vol.46, No.2 Mar.2000, pp:388-404.
    [237]Gupta, P. and Kumar, P. R. Towards an information theory of large networks: An achievable rate region. IEEE Transactions on Information Theory, vol.49-8, 2003, pp:1877-1894.
    [238]Gastpar, M. and Vetterli, M. On the capacity of large Gaussian relay networks. IEEE Trans. Inform. Theory, vol.51 No.3,2005, pp:765-779.
    [239]Xie, L. L. and Kumar, P. R. An achievable rate for the multiple-level relay channel. IEEE Trans. Inform. Theory, vol.51, No.4,2005, pp:1348-1358.
    [240]Xue, F., Xie, Liang-Liang, and Kumar, P. R. The transport capacity of wireless networks over fading channels. IEEE Trans. Inform. Theory, vol.51, No. 3,2005, pp:834-847.
    [241]Grossglauser, M. and Tse, D. N. C. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Networking, vol.10, No.4,2002, pp: 477-486.
    [242]L. Zheng and D. Tse, Diversity and multiplexing:A fundamental tradeoff in multiple-antenna channels, IEEE Trans. Inform. Theory, vol.49, May 2003, pp. 1073-1096.
    [243]K. Azarian, H. Gamal, and P. Schniter, On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels, IEEE Trans. Inform. Theory, vol.51, no.12, Dec.2005. pp.4152-4172
    [244]M. Yulksel and E. Erkip, Multi-antenna cooperative wireless systems:A diversity multiplexing tradeoff perspective, IEEE Trans. Inform. Theory,2007,
    [245]D. Chen and J. Laneman, The diversity-multiplexing tradeoff for the multi-access relay channel, in Proc. CISS,2006, pp.1324-1328.
    [246]Stefanov, A. and Erkip, E. Cooperative coding for wireless networks. IEEE Trans. Commun., vol.52, No.9,2004, pp:1470-1476.
    [247]Janani, M., Hedayat, A., Hunter, T. E., and Nosratinia, A. Coded cooperation in wireless communications:space-time transmission and iterative decoding. IEEE Trans. Signal Processing, vol.52,2004, pp:362-371.
    [248]Hunter, T. E., Sanayei, S., and Nosratinia, A. The outage behavior of coded cooperation. In Proc. of ISIT,2004, pp 270.
    [249]Chakrabarti, A., de Baynast, A., Sabharwal, A., and Aazhang, B. LDPC code design for half-duplex decode-and-forward relaying. In Proc. of the Allerton Conference, Monticello, IL.2005
    [250]Zhang, Z., Bahceci, I., and Duman, T. M. Capacity approaching codes for relay channels. In Proc. of ISIT.2004
    [251]Zhang, Zheng and Duman, T. M. Capacity approaching turbo coding for half duplex relaying. In Proc. of ISIT.2005
    [252]Castura, J. and Mao, Yongyi Rateless coding for wireless relay channels. In Proc. of ISIT,2005, pp 810-814.
    [253]Zhao, B. and Valenti, M. C. Distributed turbo coded diversity for relay channel. Electronics letters, vol.39,2003, pp:786-787.
    [254]宋谱,基于广播优势的无线网络编码系统性能分析与应用研究,[博士论文],北京,北京邮电大学,2009年5月
    [255]陈红,无线通信中的ARQ与自适应调制编码技术研究,[博士论文],西安,西南交通大学,2006年10月
    [256]A. Stefanov and E. Erkip, Cooperative information transmission in wireless networks, in Proc.2nd IEEE Asian-European Workshop Concepts in Information Theory, Breisach, Germany, June 2002, pp.90-93.
    [257]R. Knopp and P. A. Humblet, On coding for block fading channels, IEEE Trans. Inform. Theory, vol.46, Jan.2000. pp.189-205,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700