用户名: 密码: 验证码:
陀螺仪转子系统非线性动力特性及稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陀螺仪是构成惯性导航系统的基础核心器件,其性能很大程度上取决于陀螺仪转子系统的性能。为了提高卫星陀螺仪的精度、灵敏度、寿命和可靠性,开展对陀螺仪转子系统非线性动力特性及稳定性的分析具有重要的学术意义和应用价值。本文建立了滚动轴承-转子系统非线性动力学模型,分析了陀螺仪转子系统的非线性动力特性和稳定性。
     本文的主要内容和结论如下:
     1、陀螺仪转子系统非线性动力特性分析
     建立了考虑变柔度、Hertzian接触力等多种非线性因素的滚动轴承-转子系统动力学模型;提出了一种计算滚动轴承刚度的新方法,该方法可以得到滚动轴承时变的刚度矩阵;研究了系统转速、滚动体数目、等效黏滞阻尼、轴承径向力等结构和工作参数对陀螺仪转子系统的非线性动力特性的影响。结果表明转子系统具有丰富的周期和非周期(拟周期或混沌)响应形式,转子系统进入混沌的主要途径是倍周期分岔,合理的选择转子系统的结构和工作参数,可降低系统的不稳定性。
     2、考虑表面缺陷的陀螺仪转子系统非线性动力特性分析
     建立了考虑滚动轴承表面波纹度、表面局部缺陷的转子系统非线性动力学模型;采用数值方法、Poincaré映射方法、频谱分析法等,分析了陀螺仪转子系统的分岔、混沌等特性;分析了波纹度波数、幅值,表面缺陷动荷系数等参数与转子系统非线性动力特性间的关系,发现外圈波纹度波数与滚动轴承滚动体数目相等时,转子系统会产生强烈振动;内圈波纹度引起的振动频率与波数有明确的函数关系。提出了依据振动时域参数对表面局部缺陷进行识别的方法。
     3、陀螺仪转子系统非线性动力稳定性分析
     根据Floquet理论,判断、分析了滚动轴承-转子系统的周期解的稳定性;采用不动点法、直接数值积分法、Poincaré映射、功率谱分析等方法,分析了不同阻尼情况下转子系统周期解的稳定性以及分岔、混沌等特性;研究了阻尼对陀螺仪转子系统非线性稳定性的影响;发现随着阻尼的增大,系统的拓扑结构逐渐变得简单,系统的失稳区间的数目减少,相应的失稳区间变窄,相应的失稳临界转速提高;找到了三种导致转子系统周期解失稳的方式:倍周期分岔失稳、拟周期分岔失稳和阵发性分岔进入混沌失稳。
     4、陀螺仪转子系统非线性参数、强迫联合振动
     对工程实际中的参数、强迫联合激励的滚动轴承-转子系统,建立了考虑非线性轴承力、径向游隙、变柔度等非线性因素和不平衡力的滚动轴承-转子系统动力学微分方程;利用分岔图、Poincaré映射图和频谱图,分析了参数、强迫联合激励的陀螺仪转子系统的响应、分岔和混沌等非线性动力特性;发现参数、强迫联合激励的陀螺仪转子系统有多种周期和混沌响应形式,其振动频率不仅有参数振动频率成分和强迫振动频率成分,而且有二者的倍频成分和组合频率成分;不平衡力较小时,系统中参数振动占主导地位,增大不平衡力有利于抑制转子系统的不稳定振动。另一方面,随不平衡力的增大,强迫振动逐渐增强,大的不平衡力会诱发系统产生混沌振动。
     5、预紧力对陀螺仪转子系统非线性动力特性及稳定性的影响
     建立了三自由度的滚动轴承-转子系统动力学模型;研究了轴向预紧力对陀螺仪转子系统的非线性响应、分岔和稳定性等动力学行为的影响;进行了预紧力与系统固有频率、预紧力与轴承保持架转速关系的两项试验,验证本文建立的滚动轴承-转子系统动力学模型的合理性;随着轴向预紧力的增大,系统变柔度振动的幅值减小,固有频率增大,陀螺仪转子系统的稳定性提高。
As a key device of inertial navigation system, gyroscope is widely used in satellite and other space craft. The performance of gyroscope largely depends on the performance of gyroscope rotor system. It is necessary to research nonlinear dynamic characteristics of gyroscope rotor system to improve the performance of satellite gyroscope. In this paper, a nonlinear dynamic model of rolling element bearing rotor system is presented and nonlinear dynamic characteristics and stability of gyroscope rotor system is investigated.
     The main research works can be described as follows:
     1. Analysis of nonlinear dynamic characteristics of gyroscope rotor system. With multiple nonlinear factors such as varying compliance and Hertzian elastic contact force considered, a dynamic model of rolling element bearing rotor system is presented. A new method to calculate stiffness of rolling element bearing is proposed, by which the time-varying stiffness matrix can be obtained. The effect of structure and running parameters on nonlinear dynamic characteristics and stability of gyroscope rotor system is studied. Simulation results show that abundant kinds of periodic and non-periodic (quasi-periodic and chaotic) responses exist in the system. The main route to chaos is doubling bifurcation. Instability of the system can be reduced by adopting reasonable structure parameters and running parameters in the system.
     2. Study on nonlinear dynamic characteristics of gyroscope rotor system due to surface defect.
     With the sources of nonlinearity such as inner and outer race surface waviness, Hertzian elastic contact force and localized defect considered, an analytical model of rolling element bearing rotor system is presented. With the aid of numerical algorithm, Poincarémaps, frequency spectrum diagrams, the bifurcation and chaos behaviors of gyroscope rotor system are analyzed. The effect of number and amplitude of waves, impact factor of localized defect on nonlinear response of gyroscope rotor system is studied. Simulation results show that the severe vibration occurs when the number of balls is equal to the number of waves. There is a definitely functional relationship between the number of waves and frequencies of vibration produced by inner race waviness. A method to spot defect by vibration time domain parameters is proposed.
     3. Analysis of nonlinear dynamic stability of gyroscope rotor system.
     The stability of rolling element bearing rotor system is analyzed by means of Floquet theory. With the aid of fixed-point method, numerical algorithm, Poincarémaps and frequency spectrum diagrams, the bifurcation, chaos and stability behaviors of gyroscope rotor system are analyzed. The effect of damping on stability of gyroscope rotor system is investigated. It is found that damping plays a significant role in stability of system. Three routes to unstable periodic solution are found: doubling bifurcation, quasi-periodic bifurcation and intermittent bifurcation.
     4. Analysis of nonlinear vibration of gyroscope rotor system subject to parametrical and external excitations.
     The rolling element bearing rotor system in practice is essentially a nonlinear system under parametrical and external excitations. With unbalance force and the sources of nonlinearity such as Hertzian elastic contact force, internal radial clearance and varying compliance considered, the governing differential equations of motion of a rolling element bearing rotor system are derived first and then solved by numerical algorithm. Meanwhile the nonlinear dynamic behaviors of gyroscope rotor system are illustrated by means of bifurcation diagrams, Poincarémaps and frequency spectrum diagrams. Numerical results show that various periodic responses with frequencies of the external forcing one, the parametrical forcing one, or the linear combinations of them, and even chaotic responses may exist. When the unbalance is weak and the parametrical vibration is the dominating one, proper increase of the unbalance force may relieve the risk of parametrical vibration instability. On the other hand, increase of unbalance force makes forced vibration stronger, and an improper increase of unbalance force may induce chaotic response.
     5. The effect of axial preload on nonlinear dynamic characteristics and stability of gyroscope rotor system.
     A 3-dimention freedom dynamic model of rolling element bearing rotor system is presented and the effect of axial preload on nonlinear response, bifurcation and stability of gyroscope rotor system is analyzed. Experiments have been conducted to study relationship between axial preload and natural frequency of system, and relationship between axial preload and rotating speed of bearing cage. Numerical results are in agreement with experimental ones. It is found that axial preload is an important parameter. It is also shown that increase of axial preload may decrease the amplitude value of varying compliance vibration, increase natural frequency of system, and enhance stability of the system.
引文
[1] Savet P H. Gyroscope theory and design with applications to instrumentation, guidance and control.北京:科学出版社, 1997.
    [2]杨畅.航天惯性仪表40年及未来趋势.导弹与航天运载技术, 2000, 1: 17-20.
    [3] Victory P L. Russian space programs: achievements and prospects of automatic control applications. Annual Reviews in Control, 2005, 19: 1-11.
    [4]刘春浩,顾家铭,周赤忠等.陀螺仪电动机转子轴承研究现状及展望.机械工程学报, 2006, 42(11): 18-25.
    [5] Milloi. Some design criteria of dynamically tuned gyro for space applications. Conference Proceedings-Symposium Gyro Technology. Stuttgart, Germany, 1989.
    [6]夏永江,袁荣钢.卫星长寿命高性能动调陀螺仪研制.上海航天, 2005, 14(3): 52-56.
    [7]阮伟芳.轴连轴承制造关键技术的研究.河南科技大学硕士论文, 2008.
    [8]潘钢锋,程俊景,葛世东等.轴连轴承组件的设计与分析.中国轴承工业协会技术委员会2007年学术年会.洛阳,中国, 2007.
    [9]姜维,靳国栋,潘钢锋.专用电机轴承保持架稳定性试验分析.轴承, 2009, 1: 36-38.
    [10]葛世东,郭金芳,毕先忠.陀螺马达轴承保持架稳定性的试验分析.轴承, 2000, 11: 25-27.
    [11]阮伟芳,邓四二,马万明.高精度微型轴连轴承沟道的磨削.轴承, 2008, 3: 18-21.
    [12] Rankine W M. On the centrifugal force of rotating shafts. The Engineer, 1869, 4: 27-31.
    [13]顾家柳.转子动力学.北京:国防工业出版社, 1985.
    [14] Foppl A. Das problem der lavalschen turbinenwelle. Der Civilingenieur, 1895, 4: 335-342.
    [15] Jeffcott H H. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed. Phil. Mag., 1919, 6(37): 304-314.
    [16] Newkirk B L. Shaft whipping. General Electric Review, 1924, 27: 169-178.
    [17] Lund J W. The stability of elastic rotor in journal bearing with flexible damped supports. ASME Journal of Applied Mechanics, 1965, 32: 911-920.
    [18] Glienicke J. Feder und dampfungskonstanten von gleitlagern fur turbomaschinen und der einfluss auf das schwingungsverhalten eincs einfachen rotors. Diss: TH Karlsruhe, 1966.
    [19] Akford J S. Protecting turbomachinery from self-excited rotor whirl. ASME Journal of Engineering for Power, 1965, 1: 333-334.
    [20] Lund J W. Review of the concept of dynamic coefficient for fluid film journal bearings. Journal of Tribology, 1957, 109: 37-41.
    [21] Myklestad N O. A new method for calculating natural modes of uncoupled bending vibration of airplane wings and other types of beams. Journal of Aero Science, 1944, 2: 153-162.
    [22] Prohl M A. A general method for calculating critical speeds of flexible rotors. ASME Journal of Applied Mechanics, 1945, 12(3): 142-148.
    [23]闻邦椿,顾家柳,夏松波等.高等转子动力学.北京:机械工业出版社, 2000.
    [24]任光明,朱梓根,李其汉.用整体传递矩阵法进行复杂转子机匣系统的应变能分析.航空动力学报, 1997, 12(1): 86-88.
    [25] Ruhl R L., Booker J F. A finite element model for distributed parameter turbo rotor systems. Journal of Engineering for Industry, 1972, 94(1): 126-134.
    [26] Jun Hua, Fangyi Wang, Qingyu Xu. Numerical and experimental studies on nonlinear dynamical behaviors of a rotor-fluid film bearing system with squeeze film dampers. ASME Journal of Vibration and Acoustics, 2001, 123(3): 297-302.
    [27] Niordson F I. Dynamics of rotor. IUTAM Symposium. Copenhagen, Denmark, 1974.
    [28] Messal E E., Bonthron R J. Subharmonic rotor instability due to elastic asymmetry. Journal of Engineering for Industry, 1972, 94(1): 185-192.
    [29] Taylor D L., Kuma B R. Nonlinear responses of short squeeze film dampers. ASME Journal of Lubrication Technology, 1980, 102(5): 51-58.
    [30] Ehrich F F. Some observations of chaotic vibration phenomena in high speed rotor dynamics. ASME Journal of Vibration and Acoustics, 1991, 113(1): 50-57.
    [31] Ishida Y. Nonlinear vibrations and chaos in rotor dynamics. International Journal, Series C: Dynamics Control, Robotics, Design and Manufacturing, 1994, 37(2): 237-245.
    [32] Zhen J B., Meng G. Bifurcation and chaos response of nonlinear crack rotors. International Journal of Bifurcation & Chaos, 1998, 8(3): 597-607.
    [33]虞烈,刘恒.轴承-转子系统动力学.西安:西安交通大学出版社, 2001.
    [34]陈予恕.非线性振动、分岔和混沌最新进展及展望.全国一般力学(动力学、振动及控制)发展与展望学术讨论会.哈尔滨,中国, 1994.
    [35] Childs D W. The space shuttle main engine high-pressure fuel turbopump rotor dynamic instability problem, ASME Journal of Engineering for Power, 1978, 100(1): 48-57.
    [36]陈敏,虞和济,祈尚正.裂纹轴的理论分析、实验研究及诊断.振动与冲击, 1994, 22(4): 46-51.
    [37] Edwards S., Lees A W. Fault diagnosis of rotating machinery. The Shock and Vibration Digest, 1998, 30(1): 4-13.
    [38] Brewe D E. Theoretical modeling of the vapor cavitation in dynamically loaded journal bearing. ASME Journal of Tribology, 1986, 108(2): 628-638.
    [39] Vijayaradhavan D., Brewe D E. Frequency on the stability of a journal bearing for periodicloading. ASME Journal of Tribology, 1992, 114(2): 107-115.
    [40] Palazzolo A B. Piezoelectric pushers for active vibration control of rotating machinery. ASME Journal of Vibration and Acoustics, 1989, 111(2): 298-305.
    [41] Genta G., Delorete C., Busa E. Some consideration on the basic assumptions in rotor dynamics. Journal of Sound and Vibration, 1999, 227(3): 611-645.
    [42]闻邦椿,李以农,徐培民等.工程非线性振动.北京:科学出版社, 2007.
    [43]陈予恕,唐云.非线性动力学中的现代分析方法.北京:科学出版社, 2000.
    [44]胡海岩.应用非线性动力学.北京:航空工业出版社, 2000.
    [45]刘延柱,陈立群.非线性振动.北京:高等教育出版社, 2001.
    [46] Pellicano F., Mastroddi F. Applicability conditions of nonlinear superposition technique. Journal of Sound and Vibration, 1997, 220(1): 3-14.
    [47]周纪卿,朱因远.非线性振动.西安:西安交通大学出版社, 1998.
    [48]廖世俊.超越摄动——同伦分析方法导论.北京:科学出版社, 2006.
    [49] Botman M. Experiments on oil film dampers for turbomachinery. ASME Journal of Enginnering for Power, 1976, 21(4): 393-400.
    [50] Brancati R., Russo M. On the stability of periodic motions of unbalanced rigid rotor on lubricanted journal bearings. Nonlinear Dynamics, 1996, 10: 175-186.
    [51] Zhao J Y., Linnet I W., Mclean L J. Subhamonic and quasi-periodic motions of an eccentric squeeze film damper-mounted rigid rotor. ASME Journal of Tribology, 1994, 116(3): 357-363.
    [52] Zhao J Y., Linnet I W., Mclean L J. Stability and bifurcation of unbanlanced response of a squeeze film dampered felexible rotor. ASME Journal of Tribology, 1994, 116(3): 364-368.
    [53] Adiletta G., Guido A R., Rossi C. Chaotic motions of a rigid rotor in short journal bearings. Nonlinear Dynamics, 1996, 10: 251-269.
    [54]黄文虎,武新华,焦映厚等.非线性转子动力学研究综述.振动工程学报, 2000, 13(4): 497-509.
    [55]袁小阳,朱均.不平衡转子-滑动轴承系统稳定性的非线性研究.振动与冲击, 1996, 15(1): 71-76.
    [56] Kubicev M., Marek M.分岔理论和耗散结构的计算方法(中译本).北京:科学出版社,1990.
    [57] Kumar A S., Sankar T S. A new transfer matrix method for response analysis of large dynamic system. Computers and Structure, 1986, 23(4): 545-552.
    [58] Subbiah R., Rieger N. F. On the transient analysis of rotor bearing systems. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, 110(4): 515-520.
    [59] Saito S. Calculation of nonlinear unbalance response of horizontal Jeffcott rotors supported by ball bearing with radial clearance. ASME Journal of Vibration, Acoustics, Stress andReliability in Design, 1985, 107(4): 416-420.
    [60] Choi Y S., Noah S T. Nonlinear steady-state response of a rotor support system. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1987, 109(3): 255-261 .
    [61] Kim Y B., Noah S T. Quasi-peoridic response and stability analysis for a nonlinear Jeffcott rotor. ASME Journal of Sound and Vibration, 1996, 190(2): 239-253.
    [62] Sundararajan P., Noah S T. Dynamics of forced nonlinear system using shooting/arc-length continuation method—application to rotor systems. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1997, 119(1): 9-20.
    [63] Sundararajan P., Noah S T. An algorithm for response and stability of large order nonlinear systems—application to rotor system. ASME Journal of Sound and Vibration, 1998, 241(4): 695-723.
    [64]傅卫平,徐建学,蒋耀林.高维机电耦合系统Hopf分岔的识别.西安交通大学学报, 1996, 31(6): 89-94.
    [65]陈予恕,孟泉.非线性转子—轴承系统的分岔.振动工程学报, 1996, 9(3): 266-275.
    [66]张家忠,许庆余.具有局部非线性动力系统周期解及稳定性分析.力学学报, 1998, 30(5): 572-579.
    [67]周桐,徐建学.求解非线性动力系统周期解的切比雪夫方法.力学学报, 2001, 33(4): 542-549.
    [68]李德信,徐建学.非线性转子-轴承系统的周期解及近似解析表达式.计算力学学报, 2004, 21 (5): 557-563.
    [69]李立,许庆余,郑铁生.非线性转子—轴承系统瞬态响应求解的分块直接积分法.振动工程学报, 1996, 9(1): 64-68.
    [70]李立,郑铁生,许庆余.求解非线性转子—轴承系统周期响应的一种计算方法.应用力学报, 1995, 12(3): 122-126.
    [71] Tombuyses B., Aldem T. Continuous cell to cell mapping. ASME Journal of Sound and Vibration, 1997, 202(3): 395-415.
    [72]刘桓,陈绍汀.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用.应用力学学报, 1995, 12(3):7-15.
    [73]郭丹,陈绍汀.非线性动力系统全局分析的变胞胞映射法与转子轴承系统的全局稳定性.应用力学学报, 1996, 13(4): 8-15.
    [74]文成秀,姚玉玺,闻邦春.动力系统的点映射胞映射综合法.振动工程学报, 1997, 10(4): 413-419.
    [75]刘桓,虞烈,谢友柏等.非线性周期非自治系统的Poincaré型胞映射方法及其应用.西安交通大学学报, 1998, 32(4): 97-101.
    [76] Hong Ling, Xu Jianxue. Discontinuous bifurcation of chaotic attractors in forced oscillator bygeneral cell mapping digraph method. International Journal of Bifurcation and Chaos, 2001, 11(3): 723-736.
    [77]张文,崔升,徐小峰等.动载轴承非稳态油膜力的一般数学模型.工程力学进展(王大均等主编).北京:北京大学出版社, 1998, 158-167.
    [78]张文,郑铁生,马建敏等.油膜轴承瞬态非线性油膜力建模及其表达式.自然科学进展, 2002, 12(3): 255-259.
    [79] Cheng Zhaobo, Jiao Yinghou. Non-synchronous response bifurcation analysis for a rigid bearing system using oil film force database. Journal of Harbin Institute of Technology, 2000, 7(2): 87-90.
    [80]孟泉,陈予恕.非线性转子轴承系统油膜失稳新机理研究.非线性动力学学报, 1995, 2(3): 189-197.
    [81]孟泉,陈予恕.非线性转子轴承系统1/2亚谐共振全局分岔研究.非线性动力学学报, 1996, 3(2) : 138-144.
    [82]陈予恕,孟泉.非线性转子轴承系统的分岔.振动工程学报, 1996, 9(3): 266-275.
    [83]袁小阳,朱均.滑动轴承转子系统Hopf分岔分析计算方法.航空动力学报, 1999, 14(2): 166-170.
    [84]刘桓,虞烈,谢友柏.非线性不平衡转子轴承系统周期解的预测.航空动力学报, 1999, 14 (1): 74-78.
    [85]刘桓,虞烈,谢友柏.非线性动力系统多重周期解的伪不动点追踪法.力学学报, 1999, 31(2): 222-229.
    [86] Chong W L., Jong S Y. Modeling of a simple rotor with switching crack and its experimental verification. ASME Journal of Vibration and Acoustics, 1992, 114(1): 217- 225.
    [87] Gasch R. A survey of the dynamic behavior of a simple rotating shaft with a transverse crack. Journal of Sound and Vibration, 1993, 156(2): 313-332.
    [88]高建民,朱晓梅.转轴上裂纹开闭模型的研究.应用力学学报, 1992, 9(1): 108-112.
    [89]高建民,朱晓梅.裂纹转子的动力特性研究.西北工业大学学报, 1994, 10(4): 434-439.
    [90] Sekhar A S., Prabhu B S. Transient analysis of a cracked rotor passing through critical speed. Journal of Sound and Vibration, 1994, 173(3): 415-421.
    [91] Sekhar A S., Prabhu B S. Condition monitoring of a cracked rotor passing through transient response. Mechanics and Machinery Theory, 1998, 33(8): 1167-1175.
    [92] Sekhar A S. Condition monitoring of a rotor system having a slant crack in shaft. Noise and Vibration Worldwide, 1999, 30(3): 23-31.
    [93]郑吉兵,孟光.考虑非线性涡动时裂纹转子的分岔与混沌特性.振动工程学报, 1997, 10(2): 190-197.
    [94]郑吉兵,孟光.用切比雪夫多项式方法分析支承在颈轴承上的裂纹转子的稳定性.西北工业大学学报, 1997, 15(3): 383 -388.
    [95]郑吉兵,孟光.一种确定非线性裂纹转子解的形式的新方法.力学学报, 1998, 30(1): 51-57.
    [96] Muller P C., Bajkowski J., Soffker D. Chaotic motion and fault detection in a cracked rotor. Nonlinear Dynamics, 1994, 5: 233-254.
    [97] Tsai T C., Wang Y Z. Vibration analysis and diagnosis of a cracked shaft. Journal of Sound and Vibration, 1996, 192(2): 607-620.
    [98] Tsai T C., Wang Y Z. The vibration of a multi-crack rotor. International Journal of Mechanics Science. 1997, 39(9): 1037-1053.
    [99] Seibold S, Weinet K. A time domain method for the localization of cracks in rotor. Journal of Sound and Vibration, 1996, 195(1): 57-73.
    [100]褚福磊,李贵三,张正松.旋转机械常见故障的振动三维频谱特征及其识别.清华大学学报, 1996, 36(7): 86-91.
    [101]陈予恕,田家正.非线性动力学理论与大型火电机组振动故障综合治理技术.中国机械工程, 1999, 10(9): 1063-1068.
    [102] Goldman P., Muszyska A. Chaotic behavior of rator-station systems with rubs. ASME Journal of Engineering for Gas Turbine and Power, 1994, 116(4): 692-701.
    [103] Ehrich F. Observation of subcritical superharmonic and chaotic response in rotor dynamics. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1992, 114(1): 93-100.
    [104] Ehrich F. Nonlinear phenomena in dynamic response of rotor in anisotropic mounting system. ASME Journal of Mechanical Design, 1995, 117(1): 154-161.
    [105] Ganesan R. Nonlinear vibration and stability of a rotor bearing system with nonsymmetric clearances. ASME Journal of Engineering for Gas Turbine and Power, 1997, 119(2): 418-423.
    [106]陆启韶,张思进,王士敏.转子弹性机壳系统碰摩的分段光滑模型分析.振动工程学报, 2000, 13(2): 179-197.
    [107]刘献栋,李其汉.转静件碰摩模型及不对中转子局部碰摩的混沌特性.航空动力学报, 1998, 13(4): 361-365.
    [108]刘献栋,李其汉.质量偏心旋转机械整圈碰摩的稳定性及其Hopf分岔.振动工程学报, 1999, 12(1): 40-46.
    [109]张家忠,许庆余,郑铁生.具有局部非线性动力系统周期解及稳定性方法.力学学报, 1998, 30(5): 572-579.
    [110]郑铁生.高维局部非线性转子-轴承动力系统的稳定性和分岔.航空学报, 1998, 19(3): 284-292.
    [111]张家忠,许庆余,郑铁生.一种分析具有局部非线性多自由度动力系统动力特性的方法.计算力学学报, 1999, 16(1): 74-78.
    [112] Wang Y. Prediction of periodic response of rotor dynamic systems with nonlinear supports. Journal of Sound and Vibration, 1997, 119(2): 346-353.
    [113] Chen C L., Yau H T. Chaos in the imbalance response of a flexible rotor supported by oil film bearings with nonlinear suspension. Nonlinear Dynamics, 1998, 16(1): 71-90.
    [114]张欢,陈绍汀.转子-轴承系统的分岔行为研究.应用力学学报, 1994, 11(3): 33-41.
    [115]陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析.应用力学学报, 1998, 15(1): 113-117.
    [116]沐华平.转子-轴承系统油膜失稳机制的研究.清华大学博士论文, 1994.
    [117]张学延,冠胜利,孙岱霞.国产200MW汽轮发电机油膜振荡的现场测试与分析.动力工程, 1992, 12(5): 32-37.
    [118] Muszynska A. Whirl and whip rotor bearing stability problems. Journal of Sound and Vibration, 1986, 110(3): 443-462.
    [119] Muszynska A. Stability of whirl and whip rotor bearings systems. Journal of Sound and Vibration, 1988, 127(1): 49-64.
    [120] Adiletta G, Guido A R., Rossi C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearing. PartⅠ: Theoretic Analysis. Nonlinear Dynamics, 1997, 14: 57-87.
    [121] Adiletta G, Guido A R., Rossi C. Nonlinear dynamics of a rigid unbalanced rotor in journal bearing. PartⅡ: Experimental Analysis. Nonlinear Dynamics, 1997, 14: 157-189.
    [122] Deepak J C., Noah S T. Experimental verification of sub-critical whirl bifurcation of a rotor supported on a fluid film bearing. Journal of Tribology, 1998, 120(2): 605-609.
    [123] Perret H. Elastische spielschwingungen konstant belasteter w?lzlager. Werkstatt und Betrieb, 1950, 83(3): 354-358.
    [124] Meldau E., Die bewegung. Der achse von w?lzlagern bei geringen drehzahlen. Werkstatt und Betrieb, 1951, 84(7): 308-313.
    [125] Fukata S., Gad E H., Tamura H. On the radial vibration of ball bearings(computer simulation). Bulletin of the JSME, 1985, 28(3): 899-904.
    [126] Mevel B., Guyader J L. Routes to chaos in ball bearings. Journal of Sound and Vibration, 1993, 162(2): 471-487.
    [127]袁茹,赵凌燕,王三民.滚动轴承—转子系统的非线性动力学特性分析.机械科学与技术, 2004, 23(10): 1175-1233.
    [128]白长青,许庆余,张小龙.考虑径向内间隙的滚动轴承平衡转子系统的非线性动力稳定性.应用数学与力学, 2006, 27(2): 159-169.
    [129] Tiwari M., Gupta K. Effect of radial internal clearance of a ball bearing on the dynamics of a balanced horizontal rotor. Journal of Sound and Vibration, 2000, 238(5): 723-756.
    [130] Tiwari M., Gupta K.M. Dynamic response of an unbalanced rotor supported on ball bearings. Journal of Sound and Vibration, 2000, 238(5): 757-779.
    [131] Harsha S P. The effect of speed of balanced rotor on nonlinear vibrations associated with ball bearings. International Journal of Mechanical Sciences, 2003, 45(2): 725-740.
    [132] Kim Y B., Noah S T. Bifurcation analysis for a modified Jeffcott rotor with bearing clearance. Nonlinear Dynamics, 1990, 1: 221-241.
    [133] Childs D W. The space shuttle main engine high-pressure fuel turbopump rotor dynamic instability problem. ASME Journal of Engineering for Power, 1978, 100(1): 48-57.
    [134]唐云冰,高德平,罗贵火.滚动轴承非线性轴承力及其对轴承系统振动特性的影响.航空动力学报, 2006, 21(2): 365-373.
    [135] Villa C., Sinou J., Thouverez F. Investigation of a rotor bearing system with bearing clearance and Hertz contact by using a harmonic balance method. Journal of the Brazilian Society of Mechanical Science and Engineering, 2007, 29(1): 14-20.
    [136] Kim Y. B., Noah S.T. Steady-state analysis of a nonlinear rotor-housing system. ASME Journal of Engineering for Gas Turbine and Power, 1991, 113(2): 550-556.
    [137]白长青,许庆余,张小龙.火箭发动机液氢涡轮泵转子-密封系统的非线性动力稳定性.西安交通大学学报, 2005, 39(9): 1016-1020.
    [138]白长青,许庆余,张小龙.滚动轴承-火箭发动机液氢涡轮泵转子系统的动力特性分析.航空学报, 2006, 27(2): 258-261.
    [139] Jang G H., Jeong S W. Vibration analysis of a rotating system due to the effect of ball bearing waviness. Journal of Sound and Vibration, 2004, 269(3): 709-726.
    [140] Jang G H., Jeong S W. Stability analysis of a rotating system due to the effect of ball bearing waviness. Journal of Tribology, 2003, 125(1): 91-101.
    [141] Harsha S P. Stability analysis of a rotor bearing system due to surface waviness and number of balls. International Journal of Mechanical Science, 2004, 46(4): 1057-1081.
    [142] Harsha S P., Sandeep K., Prakash R. Nonlinear dynamic behaviors of rolling element bearings due to surface waviness. Journal of Sound and Vibration, 2004, 272(2): 557-580.
    [143] Harsha S P., Sandeep K., Prakash R. Nonlinear dynamic response of a rotor bearing system due to surface waviness. Nonlinear Dynamics, 2004, 37(1): 91-114.
    [144]朱因远,周纪卿.非线性振动与运动稳定性.西安:西安交通大学出版社, 1992.
    [145]陆启韶.分岔与奇异性.上海:上海科技出版社, 1995.
    [146]杨绍普,申永军.滞后非线性系统的分岔和奇异性.北京:科学出版社, 2003.
    [147]刘宗华.混沌动力学基础及其应用.北京:高等教育出版社, 2006.
    [148]高普云.非线性动力学.长沙:国防科技大学出版社, 2005.
    [149] Jones A B. A general theory of elastically constrained ball and radial roller bearings underarbitrary load and speed conditions. ASME Basic Engineering, 1960, 82: 309-320.
    [150] Harris T A. Rolling bearing analysis, 4th edition. New York: John Wiley & Sons, 2001.
    [151] Eschmann K. Ball and roller bearings—theory, design and application. New York: Willey, 1985.
    [152] E.Kramer. Dynamics of rotors and foundations. New York: Springer-Verlag, 1993.
    [153] Garguilo E P. A simple way to estimate bearing stiffness. Machine Design, 1980, 52: 107-110.
    [154] Tamura H., Tsuda Y. On the static running accuracy of ball bearing. Bulletin of the JSME, 1985, 26: 1240 -1246.
    [155] Jang G H., Jeong S W. Analysis of a ball bearing with waviness considering the centrifugal force and gyroscopic moment of the ball. Journal of Tribology, 2003, 125(3): 487-498.
    [156] Wardle F P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearing, PartⅠ: Thoery. Proceeding of the Institute of Mechanical Engineering, 1988, 202c: 305-312
    [157] Wardle F P. Vibration forces produced by waviness of the rolling surfaces of thrust loaded ball bearing, PartП: Experimental validation. Proceeding of the Institute of Mechanical Engineering, 1988, 202c: 313-319.
    [158] Ono K., Okada Y.Analysis of ball bearings vibrations caused by outer race waviness. Journal of Vibration and Acoustics, 1998, 120(4): 901-908.
    [159]汪久根,王庆九,薛峥等.表面波纹度对轴承振动的影响.第八届全国摩擦学大会论文集,2007, 430-433.
    [160] Tandon N., Choudhury A. Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings. Tribology International, 1999, 32(8): 469-480.
    [161] McFadden P D., Smith J D. Model for the vibration produced by a single point defect in a rolling element bearing. Journal of Sound and Vibration, 1984, 96(1): 69-82.
    [162] McFadden P D., Smith J D. The vibration produced by multiple point defects in a rolling element bearing. Journal of Sound and Vibration, 1985, 98(2): 263-273.
    [163] Tandon N., Choudhury A. An analytical model for predict of the vibration response of rolling element bearings due to a localized defect. Journal of Sound and Vibration, 1997, 205(3): 275-292.
    [164] Choudhury A., Tandon N. Theoretical model to predict vibration response of rolling bearings to distributed defects under radial load. Journal of Vibration and Acoustics, 1998, 120(1): 214-229.
    [165] Tandon N., Choudhury A. Theoretical model to predict the vibration response of rolling bearings in a rotor bearing system to distributed defects under radial load. Journal ofTribology, 2000, 122(3): 609-615.
    [166] Kiral Z., Karagülle H. Vibration analysis of rolling element bearing with various defects under the action of an unbalanced force. Mechanical Systems and Signal Processing, 2006, 20(8): 1967-1991.
    [167]杨将新,曹冲锋,曹岩龙等.内圈局部损伤滚动轴承系统动态特性建模及仿真.浙江大学学报, 2007, 41(4): 551-555.
    [168] Abdullah M, Al-Ghamd, David Mba. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size. Mechanical Systems and Signal Processing, 2006, 20(7): 1537-1571.
    [169] Ghafari S H., Golnaraghi F., Ismail F. Effect of localized faults on chaotic vibration of rolling element bearings. Nonlinear Dynamics, 2008, 53: 287-301.
    [170]应桂炉.氢涡轮泵试验振动分析.导弹与航天运载技术, 1995, 5: 40-46.
    [171] Nayfeh A H., Mook D T. Nonlinear oscillations. New York: John Wiley & Sons, 1979.
    [172]陈予恕,梅林涛.非线性参数系统的共振分岔解.中国科学(A), 1990, 9: 938-945.
    [173]詹凯君,陈予恕.一类非线性参数振动系统亚分岔理论的某些新结果.全国第五届非线性振动会议.天津,中国, 1989.
    [174]詹凯君,陈予恕.一类非线性参数激励系统退化分岔理论的若干问题.全国第五届非线性振动会议.天津,中国, 1989.
    [175]张伟.含有参数激励的非线性系统的高余维和复杂动力学.天津大学博士论文, 1997.
    [176] Aktürk N., Gohar R. Effect of ball size variation on vibrations associated with ball bearings. Proceeding of the Institution of Mechanical Engineers, 1998, 212(2): 101-110.
    [177]陈恩利,王洪礼,何田.转子系统支承松动的分岔特性与故障诊断.机械强度, 2007, 29(3): 387-389.
    [178] Jang G H., Jeong S W. Nonlinear excitation model of ball bearing waviness in a rigid rotor supported by two or more ball bearings considering five degrees of freedom. Journal of Tribology, 2002, 124(1): 82-90.
    [179] Choudhury A., Tandon N. Vibration response of rolling element bearings in a rotor bearing system due to a local defect under radial load. Journal of Tribology, 2006, 128(2): 252-261.
    [180] Child D W. Turbomachinery rotordynamics: phenomena, modeling and analysis. New York: Wiley-Interscience, 1993.
    [181]杨学智.滚珠轴承陀螺马达轴承预载测量技术的现状及发展.航天工艺, 1999, 5:43-48.
    [182]刘小凤,苏廷铭.航空发动机轴承预载的加载方法与工程实践.燃气涡轮试验与研究, 2010, 23(2): 35-37.
    [183]吴超,刘晓华.空间滚动轴承预载能动可调技术研究.科学技术与工程, 2007, 17(7): 4538-4539.
    [184]赵小明,周灏,毛佳珍,靳世久.球轴承陀螺电机预载荷的影响分析.机械设计, 2007, 24(6): 68-70.
    [185]岳纪东,杨虎,李鸿亮.温度变化对成对角接触球轴承定位预载的影响.轴承, 2009, 5: 27-29.
    [186] Aktürk N., Uneeb M., Gohar R. The effect of number of balls and preload on vibrations associated with ball bearings. Journal of Tribology, 1997, 119(4): 747-753.
    [187] Bai Changqing, Xu Qingyu. Dynamic model of ball bearings with internal clearance and waviness. Journal of Sound and Vibration, 2006, 294(1): 23-48.
    [188] Alfares A., Elsharkawy A. Effects of axial preloading of angular contact ball bearings on the dynamics of a grinding machine spindle system. Journal of Materials Processing Technology, 2003, 136(1): 48-59.
    [189] Aktürk N. Dynamics of a rigid shaft supported by angular contact ball bearing. Ph.D thesis, Imprial College of Science, Technology and Medicine, London, U. K., 1993.
    [190] Lewis, S D. Development of an adjustable bearing preload enabled-optical terminal. Proceedings of ESMATS-13th European Space Mechanics and Tribology Symposium. Vienna, Australia, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700