用户名: 密码: 验证码:
某战车炮自动机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自动机技术是战车炮系统的关键技术之一。某新型战车炮系统采用了新型特种弹药及转膛技术,在提高射速、增大威力的同时,也带来了相应的技术问题,诸如自动机总体匹配问题及弹药的定位问题等。本文以“十一五”研究课题为背景,应用自动武器动力学、多体系统动力学、优化设计、概率分布、机械可靠性等理论对某战车炮自动机及其关键技术进行了深入的研究,为工程实际提供理论依据和决策参考。主要研究内容如下:
     (1)分析了新型战车炮自动机总体结构和工作原理,对供弹机构动作、击发动作等进行了运动学匹配分析,提出了新型自动机总体的关键技术为新型特种弹药的输弹定位技术。
     (2)通过分析卡弹定位机构中各构件的受力状况,利用自动武器动力学理论建立了卡弹定位机构在强制输弹阶段的全系统运动微分方程式,并以此为基础进行了数值模拟。方程式中各项具有清晰的意义,这为分析理解系统的动力学响应打下了理论基础。
     (3)利用多体系统动力学理论,在现代多体动力学软件平台上建立了基于第-类拉格朗日方程的输弹定位系统的导轨链式输弹机和卡弹定位机构虚拟动力学仿真模型。通过对这两个动力学仿真模型进行合并获得了输弹定位系统的动力学模型,并对模型进行了仿真分析。最后,通过对卡弹定位机构中关键构件的柔性化获得了刚柔耦合动力学模型,并就其仿真结果和多刚体动力学模型进行了比较,结果显示两者是基本一致的。动力学模型中的链节等效弹簧刚度和各构件之间的接触碰撞刚度通过有限元法获得,使得虚拟样机和真实的物理样机更加一致。
     (4)本文基于多学科集成优化平台,以缓冲簧、卡弹簧、挡弹簧的弹簧刚度和预变形量为设计变量,以正确卡弹定位为约束条件,对卡弹定位机构进行了以动力学匹配为目的的试验设计。通过匹配试验设计,获取了可行的设计变量向量,并获知弹药位移的概率密度图呈现3个“岛屿”状态。这种方法克服了以往传统手段无法对弹性元件多、接触碰撞复杂的机械系统进行动力学匹配设计。
     (5)为了降低卡弹爪、挡块与弹药之间的接触力,延长构件的使用寿命,以缓冲簧、卡弹簧、挡弹簧的弹簧作用力最小为目标函数,以3个弹簧的弹簧刚度和预变形量为设计变量,以正确卡弹定位为约束条件进行了多目标动力学匹配优化设计,获得了相应的弹簧刚度和预变形量值。在此基础上,考虑弹簧的设计问题,用分层优化的策略对卡弹定位机构弹簧设计参数进行了基于动力学匹配的多目标优化设计。第一层为全局层面上的,考虑正确卡弹定位的优化设计问题。第二层为局部层面上的,考虑弹簧的优化设计问题。这种分层优化策略既降低了各构件间较小的接触力,减少了设计变量,节约了设计时间,而且考虑了更多的设计因素具有更强的工程实用意义。
     (6)利用截尾分布基本理论,提出了常用的4种截尾分布密度函数、累积分布函数的一般表达式及相应截尾分布的期望和方差。在此基础上,根据各个截尾分布的累积分布函数推导了截尾分布随机变量随机数的抽样方法,并推广到一般典型分布随机数的抽样方法。截尾分布及其抽样方法的讨论为机构运动可靠性分析中设计变量的有效处理打下了基础。
     (7)讨论了精确分析方法(应力—强度干涉模型)、近似方法(均值一次二阶矩法、JC法)、数值模拟法(蒙特卡罗法)理论及其在机构可靠性分析中的应用。在精确分析方法中证明了截尾正态分布不具有叠加性。
     (8)针对卡弹定位机构这一多维、强非线性系统的机构运动可靠性问题,建立了可靠性准则,用数值模拟法分别以随机变量服从一般分布和截尾分布进行了机构运动可靠度分析。对两者结果进行了比较,结果显示计算运动可靠度时随机变量选择截尾分布比一般分布更加精确。
Automatic mechanism technology is one of combat vehicle gun's key Technologies.Because a new-type special ammuniton and rotating chamber technology have been used in a combat vehicle gun, while enhancing firing frequency, increasing the power, but also brings the corresponding technical problems, such as collectivity match, shell loading and positioning, etc. Based on the key beforehand project of the "eleventh five-year", the research is developed and aims at the automatic mechanism of a combat vehicle gun and its key technology using the theory of automatic weapon dynamics, multi-body dynamics, optimization design, probability distribution and mechanical reliability, which can provide theoretical foundation and design decision for engineering practice of such weapon systems. The main research content is as follows:
     (1) Collectivity structure and its working principle of this new type automatic mechanism of a combat vehicle gun are discussed. And then the shell loading and positioning movement, the firing movement and so on has carried on the kinematics match analysis. The shell loading and positioning technology is a key technology in this automatic mechanism.
     (2) Through load analysis of every part in cartridge retaining mechanism, motion differential equations of shell are built during its feeding and positioning time via dynamics theory of automatic weapons. And then numerical simulation is done base on this differential equations. Each item has its meaning; this builds theoretical foundation for understanding the dynamic response of mechanism system.
     (3) Virtual dynamic models of cartridge retaining mechanism and guided-chain ramming mechanism are built in multi-body system dynamic software based on the first kind of Lagrange equation via multi-body system dynamics theory.Through merging both dynamic models, the dynamic model of the shell loading and positioning system is acquired. Finally, rigid-flexible coupling dynamic model is builted via replacing some key parts with their flexible parts in dynamic model of cartridge retaining mechanism.And its simulation results and multi-body dynamics model are compared, results show that the two are basically the same. Equivalent spring stiffness of chain links and stiffness of all contact pairs in those dynamic models are calculated using finite element method. This will make virtual prototype and real physical prototype more consistent.
     (4) Based on the multidisciplinary integrated optimization platform, with buffer spring, braking spring, positioning spring's stiffness and pre-deformation as design variables, with proper positioning as constraint conditions, an experimental design is carried out on cartridge retaining mechanism for dynamic matching of three springs. Through dynamic matching experimental design, several groups of feasible design variables are obtained, and the preliminary design variables, and the probability density of shell displacement presents in three "island" state. For complex mechanical system with many elastic components and contact collisions, this method overcomes the disadvantage of the traditional methods which can hardly do dynamic matching design.
     (5) To reduce the contact forces between shell and retaining pawl, shell and hold down plate in the cartridge retaining mechanism, and prolong the life of those parts, with stiffness minimums of buffer spring, braking spring, positioning spring as objective functions, with three spring's stiffness and pre-deformation as design variables, with proper positioning as constraint conditions, multi-objective dynamic matching optimization design is conducted. And spring stiffness and pre-deformation are obtained. Based on this, considering the design problem of springs, multi-objective dynamic matching optimization design is conducted using hierarchical optimization design. The first layer is a global level, mainly consider the optimal design of shell proper positioning. The second layer is the local level, considering the optimal design of the spring.This kind of hierarchical optimization strategy can not only reduce the contact forces, design time cost,the number of design variables, but also consider more design factors. Hence, it has more practical meaning.
     (6) Using truncation distribution theory, the paper derives four kind of truncated distribution density functions and cumulative distribution functions of commonly used typical distributions and corresponding means, variances. On this basis, according to cumulative distribution functions of various truncation distributions, the sampling method of random variables is deduced, which is available for non-truncated distribution. The discussion of truncated distribution and sampling method is foundation for design variables in mechanism motion reliability analysis.
     (7) Discussing theory and its application of accurate analysis method (stress-strength interference model), approximate method (mean first-order second-moment method, JC method), and the numerical simulation method (Monte Carlo method) are discussed in motion reliability analysis. And then it is proved that trucated normal distribution don't have superposition in accurate analysis method.
     (8) Aiming at cartridge retaining mechanism which is multi-dimensional, strong nonlinear systems, with some motion reliability rules built, mechanism motion reliability analysis are done via numerical simulation method when random variables obey general distribution and truncated distribution respectively. At last, the data is compared with both,and the results show that random variables which obey truncated distribution is more accurate than the other when mechanism motion reliability analysis is done.
引文
[1]张相炎编著.火炮自动机设计[M].北京:北京理工大学出版社,2010.
    [2]李补莲.轮式装甲车现状及发展预测[J].国外坦克,2009,(12):17-30.
    [3]袁常卿,苏铁熊.未来坦克装甲车辆技术的发展趋势[J].机械管理开发,2007,(1) :11-12.
    [4]夏梅芳.步兵战车的未来发展[J].国外坦克,2003,(4):2-8.
    [5]丁卉,黄春芳,陈来.步兵战车全球大扫描[J].国外坦克,2006,(2):31-37.
    [6]张晓玲,赵玉玲.更轻、更快、更强——轮式装甲战车的未来[J].国外坦克,2005,(5) :11-14.
    [7]东烨.新加坡“特瑞克斯”新型轮式步兵战车[J].兵工科技,2009,(12):44-46.
    [8]张卫东.取消FCS装甲战车发展展望[J].国外坦克,2010,(2):25-28.
    [9]张卫东.“后FCS”时代装甲战车研制需求要素剖析[J].2010,(2):33-35.
    [10]袁常卿,苏铁熊.未来坦克装甲车辆技术的发展趋势[J].机械管理开发,2007,(1) :11-12.
    [11]杜志岐.轮式装甲车总体设计的概念、思路与特点[J].兵工学报,1999,20(4):351-356.
    [12]刘立明.8轮式装甲车发展趋势[J].国外坦克,2006,(10):7-12.
    [13]曾山.世纪回眸看现代国外轮式装甲车的发展特点[J].国防科技,2006,(7):13-16.
    [14]袁常卿,苏铁熊.未来坦克装甲车辆技术的发展趋势[J].机械管理开发,2007,(1) :11-12.
    [15]盛大帅,杜宪生,赖利中.论轮式装甲车辆的可持续发展[J].兵工学报,1999,(4) :50-54
    [16]宇恒大成.21世纪的步兵战车[J].国外坦克,1997,(10):16-21
    [17]丁卉,黄春芳,陈来.步兵战车全球大扫描[J].国外坦克,2006,(2):31-37.
    [18]冀恒.标新立异更上一层楼——俄罗斯步兵战车发展新趋势[J].国外坦克,2005,(7) :12-18.
    [19]谢国华.步兵战车的发展概况与特点[J].国外坦克,2003,(2):6-11.
    [20]Rolf Hilmes.步兵战车向何处去?[J].国外坦克,1999,(10):2-7.
    [21]李补莲.国外步兵战车最新发展[J].国外坦克,2009,(1):22-31.
    [22]步建兴.从英国视角看装甲战车发展[J].国外坦克,2007,(7):12-13.
    [23]马福球,陈运生,朵英贤.火炮与自动武器[M].北京:北京理工大学出版社, 2003.
    [24]谈乐斌,等.火炮概论[M].北京:北京理工大学出版社,2005.
    [25]张相炎,郑建国,杨军荣.火炮设计理论[M].北京:北京理工大学出版社,2005.
    [26]王靖军,赫信鹏.火炮概论[M].北京:兵器工业出版社,1991.
    [27]于道文,涂光苏,殷仁龙.自动武器学[M].北京:国防工业出版社,1992.
    [28]程尔康.自动武器学(结构动力学分册)[M].北京:国防工业出版社,1994.
    [29]石明全.某火炮自动供弹系统和全炮耦合的发射动力学研究[D].南京:南京理工大学,2003.
    [30]李继科.火炮供输弹系统虚拟样机研究[D].南京:南京理工大学,2004.
    [31]Minami NA, Madnick S. Dynamic analysis of combat vehicle accidents [J]. System Dynamics Review,2009,25 (2):79-100.
    [32]Feickert A, Lucas NJ. Army Future Combat System (FCS)'Spin-Outs' and Ground Combat Vehicle (GCV):Background and Issues for Congress [R]. Updated November 30,2009 Congressional Research Service, Washington DC,2009.
    [33]Balasubramanian V, Sharma S. Biomechanical analysis of main gun loader in an armoured combat vehicle [J]. International Journal of Industrial and Systems Engineering,2009,4 (1) :46-59.
    [34]Sathyamurthy S, Sheerlarani B, Sundaresh S. Optimum location and system engineering of high power, high frequency transmitter-receiver in combat vehicles[J]. Defence Science Journal,2010,60 (3):302-306.
    [35]Xu HJ, Yan LX, Zhang SC, Zhang CR. Analysis of the Design Principles on Combat Resilience of Vehicle Equipment[J]. Journal of the Academy of Equipment Command & Technology,2009,20 (5):37-40.
    [36]梁世瑞.现代火炮自动机技术[M].北京:兵器工业出版社,1995.
    [37]罗阿妮.舰炮敏捷供弹系统设计及虚拟样机研究[D].哈尔滨:哈尔滨工程大学,2005.
    [38]Ahmed A Shabana. Flexible Multibody Dynamics:Review of Past and Recent Developments[J]. Multibody System Dynamics 1,1997, (2):189-222.
    [39]洪嘉振著.计算多体系统动力学[M].北京:高等教育出版社,1999.
    [40]张延教.高等动力学(上、下)[M].南京:南京理工大学印刷厂,2003.
    [41]袁士杰,吕哲勤.多刚体系统动力学[M].北京:北京理工大学出版社,1992
    [42]刘延柱,洪嘉振,杨海兴著.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [43]J. Witenburg. Dynamics of Systems of Rigid Bodies[M]. Stuttgrt,1977.
    [44]Yen J. Constrained equations of motion in multibody dynamics as ODEs on manifolds[J]. SIAM J.Numer. Anal.,1993,30 (2):553-568
    [45]Potra F A. Implementation of linear multistep methods for solving constrained equations of motion[J]. SIAM J. Numer. Anal.,1993,30 (3):774-789.
    [46]LANGLOIS RG, ANDERSON RJ. Multibody dynamics of very flexible damped systems[J]. Multibody System Dynamics 3,1999, (2): 109-136
    [47]陆佑方著.柔性多体系统动力学[M].北京:高等教育出版社,1996.
    [48]Lankarani H M, Nikravesh P E. A Contact Force Model With Hysteresis Damping for Impact Analysis of Multibody Systems[J]. Journal of Mechanical Design.1990,112 (3) :369-376.
    [49]Sam McDonald. Three—Dimensional Surfaee Contact[M]. MDI,1995.
    [50]Sam McDonald. Developments in Penalty Based Analytical Contact Forces [C]. ADAMS User's Conference,1997.
    [51]刘惟信.机械最优化设计[M].北京:清华大学出版社,1993.
    [52]Xue XD, Cheng KW, Cheung NC. Multi-objective optimization design of in-wheel switched reluctance motors in electric vehicles[J]. IEEE Transactions on Industrial Electronics,2010,57 (9):2980-2987.
    [53]Taboada HA, Espiritu JF, Coit DW. MOMS-GA:a multi-objective multi-state genetic algorithm for system reliability optimization design problems[J]. IEEE Transactions on Reliability,2008,57 (1):182-191.
    [54]Hashimoto Kenji, Sugahara Yusuke, Lim Hun, etc. Optimization design of a Stewart platform type leg mechanism for biped walking vehicle[J]. Springer Tracts in Advanced Robotics,2010,66 (10):169-178.
    [55]Chiou DY, Chen MY, Chang MW, etc. Finite element modeling, characterization, and optimization design for the polymer-typed capacitive micro-arrayed ultrasonic transducer[J]. Microsystem Technologies,2008,14 (6):78-88.
    [56]Lin JZ, Luo Z, Tong LY. A new multi-objective programming scheme for topology optimization of compliant mechanisms[J]. Structural and Multidisciplinary Optimization,2010,40 (1) : 241-255.
    [57]Ejday M, Fourment L. Metamodel assisted evolutionary algorithm for multi-objective optimization of non-steady metal forming problems[J]. International Journal of Material Forming,2010,3 (1):5-8.
    [58]Best C, Che XD, Reynolds RG, Liu DP. Multi-objective Cultural Algorithms[C].2010 IEEE Congress on Evolutionary Computation,2010.1-9.
    [59]Ramabalan S, Saravanan R, Balamurugan C. Multi-objective dynamic optimal trajectory planning of robot manipulators in the presence of obstacles[J]. International Journal of Advanced Manufacturing Technology,2009,41 (5):580-594.
    [60]Sung-Pil Jung, Tae-Won Park, etc. Design optimization of spring of a locking nut using design of experiments [J]. International Journal of Precision Engineering and Manufacturing.2009, (10) :77-83.
    [61]Kolahan Farhad, Tavakoli Ahmad, etc. Simulated annealing and ant colony optimization for static and dynamic design of helical compression springs [J]. WSEAS Transactions on Computers,2007, (6): 907-912.
    [62]韩晓明,薄玉成,李强.内能源转管武器曲柄连杆机构优化设计[J].火炮发射与控制学报,2010,(1):39-42.
    [63]韩若飞.舰炮供弹系统模块化设计及其轻量化技术研究[D].哈尔滨:哈尔滨工程大学,2009.
    [64]赵俊严,毛保全,杨明华,赵富全.基于虚拟样机的火炮系统建模仿真与优化研究[J].系统仿真学报,2009,21(21):6901-6909.
    [65]李庆国,曾庆良,范文慧.多体动力学优化方法[J].煤矿机电,2007,(3):89-90.
    [66]李庆国,曾庆良,范文慧.一种多体动力学优化方法的研究与实现[J].煤矿机电,2007,45(515):4-6.
    [67]穆歌,毛保全,闫述军.动力学优化设计的发展综述[J].火炮发射与控制学报,2003,增刊:100-102.
    [68]毛保全,杨振军.遗传算法在动力学优化中的应用[J].装甲兵工程学院学报,1999,13(2):34-36.
    [69]张京军,王南,陈宝政.遗传算法在机械系统动力学优化设计的应用[J].2002,19(2) :102-107.
    [70]毛保全.一种基于GA的动力学优化方法[J].兵工学报,1999,20(3):286-288.
    [71]黄席樾 等著.现代智能算法理论及应用[M].北京:科学出版社,2005.
    [72]邱宣怀,等编著.机械设计[M].北京:高等教育出版社,1997.
    [73]Jung S P, Park T W. Design optimization of spring of a locking nut using design of experiments [J]. International Journal of Precision Engineering and Manufacturing, 2009,10 (4):77-83.
    [74]孙志礼,陈良玉.实用机械可靠性设计理论与方法[M].北京:科学出版社,2003.
    [75]李业农,施祖康.机构运动可靠度的研究[J].兵工学报,2003,24(1):93-96.
    [76]张春宜,白广忱.运动机构强度可靠性优化设计[J].机械强度,2009,31(3): 396-400.
    [77]陈鹏霏,孙志礼,滕云楠.往复式压缩机活塞杆可靠性分析与参数化设计[J].东北大学学报(自然科学版),2009,30(9):1310-1313.
    [78]罗继曼,孙志礼.对曲柄滑块机构运动精度可靠性模型的研究[J].机械科学与技术,2002,21(6):959-962.
    [79]陈建军,陈勇,高伟,等.平面四杆机构运动精度可靠性分析与数字仿真[J].西安电子科技大学学报,2001,28(6):71-75.
    [80]纪玉杰,孙志礼,李良巧.典型机构运动可靠性的仿真研究[J].机械与电子,2005,(12):69-73.
    [81]师忠秀,王锋.机构运动精度可靠性分析方法的研究[J].机械科学与技术,1997,(1) :116-122.
    [82]李业农,施祖康.火箭炮某千斤顶动作可靠性研究[J].兵工学报,2001,22(4)437-440.
    [83]段启骏.机械系统动作可靠度计算方法[J].兵工学报,1998,19(3):251-254.
    [84]王亚平,聂宏,王永娟.步枪三发点射机构的运动可靠性研究[J].南京理工大学学报,2008,32(6):686-689.
    [85]何恩山,孙志礼,李良巧.动作可靠性分析评价方法[J].东北大学学报(自然科学版),2009,30(4):589-592.
    [86]何恩山,钱云鹏,李良巧.基于动作可靠性仿真的评价方法[J].机械制造,2009,47(1):4-7.
    [87]Kawada Y. On the relation between the probability of failure and the factor of safety in the designing of machine parts under repeated load[J]. Journal of JSME,1977, (20):142-145.
    [88]Lee S J. The determination of the probabilistic properties of velocities and accelerations in kinematics chain with uncertainty [J]. ASME Journal of Mechanisms Transmissions in Design,1991(13):21-24.
    [89]季佳佳,冯蕴雯,冯元生.滚轮滑轨运动机构磨损可靠性分析[J].机械强度,2010,32(4):591-594.
    [90]于霖冲.柔性机构动态性能可靠性分析方法研究[J].机床与液压,2010,38(23):141-147.
    [91]马超.结构可靠性若干专题研究[D].西安:西北工业大学,2007
    [92]宋军.基于矩方法的可靠性及可靠性灵敏度研究[D].西安:西北工业大学,2007.
    [93]袁修开.结构可靠性与可靠性灵敏度分析的数字模拟方法研究[D].西安:西北工业大学,2007.
    [94]张建国,白广臣.机构运动功能可靠性分析方法[J].机械工程师,1999,(11):45-46.
    [95]刘成立.复杂结构可靠性分析及设计研究[D].西安:西北工业大学,2006.
    [96]张峰.结构可靠性的优化算法研究[D].西安:西北工业大学,2007.
    [97]Christian P. Robert. Simulation of truncated normal variables[J]. Statistics and Computing,1995,5 (2):121-125.
    [98]孙志礼,何雪宏.两端截尾分布下可靠度计算方法[J].机械设计与制造,1997,(4):10-12.
    [99]王丹,张钰,张风和,孙志礼.两端截尾分布理论及其在应力-强度干涉模型中的应用[J].机械科学与技术,2000,19(5):689-693.
    [100]崔利杰,吕震宙,王奇.概率密度演化方法在机构运动精度可靠性中的应用研究[J].机械科学与技术,2010,29(5):690-700.
    [101]Saliby E. Descriptive sampling:An improvement over Latin hypercube sampling[C]. Proceedings of the 1997 Winter Simulation Conference, San Diego, CA:The Society for Computer Simulation International (SCS),1997.230-233.
    [102]李杰仁,马吉胜,郑海起,于立帝.某高炮自动机虚拟样机仿真[J].四川兵工学报,2009,30(6):69-71.
    [103]曾晋春,杨国来,王晓锋.某火炮自动机虚拟样机建模与仿真[J].火炮发射与控制学报,2008,(1):42-45.
    [104]曾晋春,杨国来,王晓锋.考虑轴承接触/碰撞的某火炮动力学数值仿真[J].火炮发射与控制学报,2010,(1):30-33.
    [105]李德胜.自动装弹系统的运动实现与传动性能研究[D].天津:天津理工大学,2009.
    [106]郑志峰主编.链传动设计与应用手册[M].北京:机械工业出版社,1992.
    [107]王义行,李欣欣.工业链条的应用与发展[J].新技术新工艺,1993,(6):18-19.
    [108]荣长发.链传动的振动和噪声研究现状与发展[J].机械传动,2004,(2):63-66.
    [109]王晓东,代小辉.链传动的等效机构模型及计算[J].煤矿机械,2007,28(3):17-18.
    [110]Wang.K.W., Liu S.P.,Hayek S.I.. On the Impact Intensity of Vibrating Axially Moving Roller Chains [J]. ASME Journal of Vibration and Acoustics,1992, (114): 397-403.
    [111]S.P.Liu, K.W.Wang, S.I.Hayek. A Global-local Integrated Study of Roller Chain Meshing Dynamics [J]. Journal of Sound and Vibration,1997,203 (1):41-62.
    [112]Lankarani, H.M.Nikravesh, P.E.. Continuous Contact Force Models for Impact Analysis in Multibody Systems[J]. Nonlinear Dynamics,1994,5 (2):193-207.
    [113]Shabana A.A, Nakanishi, Toshikazu. Contact Forces in the Non-linear Dynamic Analysis of Tracked Vechicles[J]. International Journal for Numerical Methods in Engineering,1994,37 (8): 1251-1275.
    [114]S.P.Liu, K.W.Wang, S.I.Hayek. A Global-local Integrated Study of Roller Chain Meshing Dynamics[J]. Journal of Sound and Vibration,1997,203 (1):41-62.
    [115]James C.Conwell, G.E. Johnson. Experimental Investigation of Link Tension and Roller-Sprocket Impact in Roller Chain Drives[J]. Mech. Mach Theory,1996,31 (4):533-544.
    [116]H.Zheng, Y.Y.Wang, G.R.Liu, K.Y.Lam. Efficient Modelling and Prediction of Meshing Noise from Chain Drives[J]. Journal of Sound and Vibration,2001,245 (1):133-150.
    [117]M.Kim. Dynamic Behavior of Roller Chain Drives at Moderate and High Speeds[D]. Ann Arbor : The university of Michigan,1990.
    [118]徐诚,王亚平主编.火炮与自动武器动力学[M].北京:北京理工大学出版社,2006.
    [119]刘书,刘晶波.动接触问题及其数值模拟的研究进展[J].工程力学,1999,16(6):23—27.
    [120]Christian P. Robert. Simulation of truncated normal variables[J]. Statistics and Computing,1995,5 (2):121-125.
    [121]陈立平.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [122]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社,2006.
    [123]曾晋春.车载式火炮刚柔耦合发射动力学研究[D].南京:南京理工大学,2010.
    [124]闫纯亮,潘宏侠,刘广璞.某火炮自动装填机构参数测试技术研究[J].机械工程与自动化,2009,(6):32-34.
    [125]李杰仁,马吉胜,陈明,郑海起.基于ADAMS的自动机动力学建模与仿真[J].计算机仿真,2010,(10).
    [126]张军挪,李进东,程军.基于虚拟样机的某型速射迫击炮自动机运动学仿真研究[J].兵工自动化,2010,29(7):4-8.
    [127]郑秋,吴永军.基于ADAMS的某榴弹发射器动力学仿真分析[J].兵工自动化,2010,29(7):28-39.
    [128]侯健,可学为,魏平,樊龙龙.大口径舰炮摆弹机构的动态设计[J].南京理工 大学学报(自然科学版),2010,34(4):528-532.
    [129]张庆.组合柔性机械臂动力学特性与振动抑制性能的研究[D].南京:南京理工大学,2010.
    [130]李强.某新型自动武器的动力学建模与仿真[D].南京:南京理工大学,2008.
    [131]唐文献,袁海波,李虎.基于ADAMS的某舰炮供弹系统仿真研究[J].江苏科技大学学报(自然科学版),2010,24(1):61-65.
    [132]张子丘,孙正民,王国辉,黄海亮.基于虚拟样机技术的抛壳过程动力学仿真[J].火炮发射与控制学报,2009,(1):43-46.
    [133]肖国伟,李光.柔性杆件系统虚拟样机设计及其动力学仿真分析[J].湖南工业大学学报,2009,23(4):62-64.
    [134]贾智宏,葛藤,周克栋.基于ADAMS的自动武器虚拟样机研究[J].系统仿真学报,2008,20(3):648-650.
    [135]张春宜,白广忱,向敬忠.基于极值响应面法的柔性机构可靠性优化设计[J].哈尔滨工程大学学报,2010,31(11):1503-1508.
    [136]王钢,王立权,孟祥伟,胡胜海.某火炮供弹系统的设计研究[J].兵工学报,2009,30(5):518-524.
    [137]Farhad K, Ahmad T, etc. Simulated annealing and ant colony optimization for static and dynamic design of helical compression springs [J]. WSEAS Transactions on Computers,2007, (6):907-912.
    [138]毛保全,邵毅编著.火炮自动武器优化设计[M].北京:国防工业出版社,2007.
    [139]程刚,张相炎,董志强,张俊.偏离运动仿真在供弹机构故障分析和优化设计中的应用[J].火炮发射与控制学报,2010,(1):64-66.
    [140]张世隆,薄玉成,高健,韩世俊.输弹簧设计[J].火炮发射与控制学报,2010,(3) :35-38.
    [141]刘久富,沈春林,王宁生.圆柱螺旋弹簧刚度的稳健性设计[J].中国机械工程,2003,14(5):389-391.
    [142]Kolahan F, Tavakoli A, Abachizadeh M, et al. Simulated annealing and ant colony optimization for static and dynamic design of helical compression springs [J]. WSEAS Transactions on Computers,2007,6 (6) :907-912.
    [143]闻新,周露,李翔.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [144]孙益军.结构/机构可靠性分析研究[J].航空科学技术,2010,(5):25-27.
    [145]同长虹,黄建龙.曲柄滑块机构中滑块输出位移的可靠性分析[J].上海交通大学学报,2010,44(12):1716-1726.
    [146]袁修开.结构可靠性与可靠性灵敏度分析的数字模拟方法研究[D].西北工业大学,2007.
    [147]张峰.结构可靠性的优化算法研究[D].西北工业大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700