用户名: 密码: 验证码:
二氧化碳微通道气体冷却器的流动传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳作为自然工质替代CFCs和HCFCs一直是人们研究的热点。在汽车空调及热泵技术领域,二氧化碳跨临界循环系统的应用取得了很大的进展。本文针对微通道气体冷却器在二氧化碳汽车空调系统中的应用展开研究,以一种整体翅片式微通道换热器为研究对象,采用试验及数值模拟手段对其流动传热特性进行深入的分析。
     与传统的微通道换热器相比,整体翅片式微通道换热器的翅片和微通道扁管是一体的,翅片是间断的平翅片形式。这种新型微通道换热器的局部流动换热特性亟待研究。另外,微通道气体冷却器二氧化碳制冷系统中的性能研究及模型的建立是本文的主要研究内容。
     整体翅片微通道换热器与传统微通道换热器的主要区别在空气侧,而空气侧的热阻是整个换热器换热过程中热阻的主要组成部分。用CFD方法对换热器空气侧流动换热特性进行了模拟,考查了翅片长度、高度、间距以及厚度对换热性能的影响,得出翅片长度和翅片间距对换热性能的影响较大。分析了翅片强化传热的机理,对翅片尺寸参数进行了优化,总结出了整体翅片的流动传热经验关联式。
     微通道内,超临界二氧化碳的流动换热则比较复杂,这方面的研究还比较少。本文用数值模拟的方法,对微通道内超临界二氧化碳的流动换热的机理进行了深入分析,得出了超临界二氧化碳的流动换热的一些现象,分析了影响超临界二氧化碳换热的主要因素,包括运行压力、质量流量、流体流动方向、壁面温度等参数的影响。认为影响超临界二氧化碳换热特性的主要因素可以归结为流动边界层内物性的急剧变化。
     在对微通道换热器空气侧及微通道内的流动传热特性的基础上,对整体翅片式气体冷却器进行了试验研究。考查了高压侧压力、制冷剂质量流量及空气的进口温度和迎面风速等因素对微通道气体冷却器的影响,分析了整体翅片式气体冷却器的换热量及压降等性能参数。从系统COP角度分析了整体翅片式气体冷却器的性能。
     最后建立了跨临界CO_2制冷系统中微通道气体冷却器数值模型,与试验数据点进行比较,表明该模型能很好的预测微通道气体冷却器的流动传热性能。利用该模型,对流路设计及迎面空气速度分布进行了研究,为跨临界CO_2制冷系统中微通道气体冷却器的优化设计提出了指导作用。同时比较了整体翅片式微通道换热器同传统的微通道换热器的传热性能,发现整体翅片式微通道换热器具有很好的传热性能。
     本文以二氧化碳汽车空调整体翅片式微通道气体冷却器为研究对象,分析了二氧化碳微通道气体冷却器的流动传热特性。开展了二氧化碳跨临界循环中微通道换热器的理论分析,为整体翅片式微通道换热器在二氧化碳汽车空调系统中的应用打下了基础。
As a natural substitution working fluid for CFCs and HCFCs, carbon dioxide is always the research hot spot. The carbon dioxide transcritical cycle has been successfully applied in automobile air conditioning and heat pump system. Using an integrated fin and micro-channel gas cooler as the research object, its heat transfer and flow characteristics is studied by both experimental and numerical method in present work, aiming to provide theory support to the application of micro-channel heat exchanger in CO_2 automobile air conditioning system.
     Compared with the traditional micro-channel heat exchanger, the fins are integrated with micro-channel for the integrated fin and micro-channel gas cooler. The local heat transfer and flow characteristics should be understood on one hand. On the other hand, research of CO_2 micro-channel gas cooler performance in refrigerant system and the model is also the focus of this paper.
     The main difference between integrated fin and micro-channel heat exchanger and traditional micro-channel heat exchanger is air-side, and the air-side heat resistance occupied a great part of the total heat resistance. By CFD method, the air-side heat transfer and flow characteristic is simulated to investigate the effect of fin length, fin height, fin pitch and fin thickness. It is found that fin length and fin pitch have great effect on heat transfer performance. The enhanced heat transfer enhancement mechanism is analyzed and optimal fin parameters are obtained. The heat transfer and flow empirical correlations are summed up to give guidance to heat exchanger design.
     The heat transfer and flow characteristics of supercritical carbon dioxide in the micro-channel are complex and few research have been done. In this work, CFD method is used to study in depth the heat transfer and flow mechanism of supercritical carbon dioxide in the micro-channel. The mainly parameters that affect the supercritical carbon dioxide heat transfer such as operation pressure, mass flow, flow direction and wall temperature are investigated in detail. .It is suggested the factors that affect the heat transfer characteristics of supercritical carbon dioxide in micro-channel can be attributed to the dramatic changes of physical properties.
     Based on the CFD research of local heat transfer and flow characteristics, experiment is carried out to study the performance of integrated fin and micro-channel heat exchanger in CO_2 refrigerant system. The effects of working pressure, refrigerant mass flow rate, air inlet temperature and velocity on heat capacity and pressure drop are investigated. COP of the system is also analyzed to research the heat exchanger performance.
     Finally, the numerical model of CO_2 micro-channel gas cooler is developed. Compared with the experiment results, the model predicted the gas cooler heating capacity within 5% and pressure drop on the refrigerant-side within 8% at the range of experimental error. It shows the model is accurate enough to predict performance of the heat exchanger. The validated model is used to investigate the impact of the flow setting and airside mal-distribution on the performance of the heat exchanger give guidance to heat exchanger design. Based on the model, the heat transfer performance of the integrated fin and micro-channel gas cooler is compared with traditional micro-channel gas cooler. It indicates that the integrated fin and micro-channel gas cooler has good performance.
     The present work researches on the integrated fin and micro-channel gas cooler and analyzes the heat transfer and flow characteristics of CO_2 micro-channel gas cooler. The theory of CO_2 micro-channel gas cooler is carried out to establish the basis of integrated fin and micro-channel gas cooler using in CO_2 automotive air conditioning.
引文
[1] Banks R.E. Scepticism about R134a justified[J]. Refrig, Air Condit., 1993, 96.
    [2] Lorentzen G. The use of natural refrigerants: a complete solution to the CFC/HCFC predicament[J]. Int. J. Refrig., 1995, 18: 190-197.
    [3] Riffat S.B., Afonso C.F., Oliveira A.C., et al. Natural Refrigerants for Refrigeration and Air-Conditioning Systems [J]. Applied Thermal Engineering, 1997, 17: 33-42.
    [4] Lorentzen G.. Revival of carbon dioxide as a refrigerant [J]. Part 1.H&V Engineer, 1993, 66(721): 9-14
    [5] Lorentzen G.. Revival of carbon dioxide as a refrigerant [J]. Part 2.H&V Engineer, 1993, 66(722): 10-12
    [6]马一太,魏东等.国内外自然工质研究现状与发展趋势[J].暖通空调, 2003,1: 41-46.
    [7] Lorentzen G., Pettersen J. A new efficient and environmentally benign system for car air conditioning[J]. Int. J. Refrig, 1993, 16 (1): 4-12
    [8] Halozan H., Rieberer R. CO2 as Refrigerant-Possible Applications[C]. Proceeding of 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue University, 2000: 43-50.
    [9]丁国良. CO2制冷技术新发展[J].制冷空调与电力机械,2002, 2: 1-6.
    [10]陈江平.新型高效的跨临界二氧化碳汽车空调系统[J].制冷技术, 2002, 3: 58-62.
    [11] Brown J. Steven, et al. Comparitive analysis of an automotive air operating with CO_2 and R134a [J]. Int. J. Refrig, 2002, 25: 19-32.
    [12] Ward A. SAE Automotive Alternate Refri System Symposium[C]. 4thⅡR Gastav Lorentzen on Nature Working Fulids, USA, 2000: 719-728.
    [13] Lorentzen G. and Pettersen J. New possibilities for non-CFC refrigeration[C]. Proceedings of IIR International Symposium on Refrigeration, Energy and Environment, Trondheim, Norway, 1992, 147-163.
    [14] Jostein Pettersen. An efficient new automobile air-conditioning system based on CO_2 vapor compression[J]. ASHRAE Transations, 1994, 16: 226-234.
    [15] Wertenbach J., Kauf F. High pressure refrigeration system with CO_2 in automobile air-conditioning[C]. Proceedings of IEA&IIR Workshop on CO_2 Technology in Refrigeration, Heat Pump &Air-Conditioning System, Trondheim, Norway.
    [16] Host J. Test rig for CO2 automotive air conditioning compressor[C]. InternationalConference CFCs, Meeting of IIR Commission B1, B2, E1, E2. Arhus, Denmark, 1996
    [17] Kohler J., Sonnekalb M. A High-pressure Transcritical refrigeration Cycle with Carbon Dioxide for Vehicle air conditioning[J]. Proceeding of International Conference on Ozone Protection Technologies, Baltimore, 1997: 375-384.
    [18] Kohler J.,Sonnekalb M., Kaise H., Kocher W. Carbon dioxide as a refrigerant for vehicle air conditioning with application to bus air conditioning[C]. International CFC and Halon Alternatives Conference, Washington 1995, 376-385.
    [19] Sonnekalb M., Kohler J. Air Conditioning Unit using CO_2 as Refrigerant Installed in a Bus[C]. International Conference on Ozone Protection Technologies,Conference Proceedings, Washington, 1996, 825-834.
    [20] Kohler J., Sonnekalb M., Kaise H., et al. CO_2 as refrigerant for bus air conditioning and transport refrigeration[C]. IEA Heat Pump Centre IIIR Workshop on CO_2 technology in refrigeration, heat pumps and air conditioning systems, Trondheim, Norway, 1997.
    [21] Sonnekalb M., Kohler J. Transport refrigeration with a transcritical cycle using carbon dioxide as refrigerant[C]. International Conference on Ozone Protection Technologies, Baltimore, 1997.
    [22] Quack H., Kraus W.E. Carbon dioxide as a refrigerant for railway refrigeration and air conditioning[C]. IIR Commission B2, Hannover, 1994, 489-494
    [23] Preissner M., Cutler B. Comparison of automotive air-conditioning systems operating with CO_2 and R134a[C]. Proceeding of the 4th IIR-Gustav Lorentzen Conference on Natural Working Fluids, Purdue University, USA. July 2000, 279-284.
    [24] Preissner M., Cutler B., Rad ermacher R., et al. Suction line heat exchangerfor R134a automotive air-conditioning system[C]. Proceedings of 2000 International Refrigeration Conference at Purdue, West Lafayette, Indiana, 2000, 289–94
    [25] Ying J., Park Y.C., Boewe D., et al. Experimental and model comparison of transcritical CO_2 versus R134a and R410A system performance[C]. Joint Meeting of the IIR, section B and E, 1998, 331-340.
    [26] Boewe D., Ying J., Park Y.C., et al. The role of suction line heat exchanger in transcritical R744 mobile A/C system[C]. SAE Technical Paper Series, 1999, 1-8
    [27] Bulard C.W., et al. Transcritical CO_2 Mobile Heat Pump and A/C System Experimental and Model Results[C]. IEA Heat Pump Center/)IRR Workshop on CO_2 Technology in Refrigeration, Heat Pump&Air Conditioning Systems, Norway, 2000
    [28] Yoshioka T., et al. Development of Air Conditioning System Using CO_2 forAutomobile[C]. 4th IIR Gastav Lorentzen Conference on Nature Working Fluids, USA, 2000.
    [29]丁国良,黄冬平,张春路.跨临界二氧化汽车空调稳态仿真[J].工程热物理学报,2001,22(3): 272-274.
    [30]丁国良,黄冬平,张春路.跨临界二氧化汽车空调特性分析[J].制冷学报,2001,3: 17-23
    [31]“二氧化碳超临界循环汽车空调装置研究”项目通过鉴定[J].制冷空调与电力机械,2002, 8: 4-32.
    [32]梁贞潜,丁国良,张春路等.二氧化碳汽车空调器仿真与优化[J].上海交通大学学报,2002, 3(10):1396-1400
    [33]陈江平,穆景阳等.二氧化碳超临界汽车空调系统开发[J].制冷学报,2002.3:14-17
    [34]方贵银,李辉.汽车空调技术[M].机械工业出版社, 2002.
    [35]陈江平.汽车空调实用技术[M].机械工业出版社, 2003.
    [36]梁荣光.现代汽车空调技术[M].华南理工大学出版社, 2003年
    [37]凯斯,伦敦.紧凑热交换器(第三版)[M].北京,科学出版社, 1997
    [38] Leu J.S., Liu M.S., Liaw J.S., et al. A numerical investigation of louvered fin-and-tube heat exchangers having circular and oval tube configurations[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4235-4243.
    [39] Liu M.S., Liaw J.S., Leu J.S., et al. 3-D simulation of thermal-hydraulic characteristics of louvered fin-and-tube heat exchangers with oval tubes[J]. ASHRAE Transactions, 2000, 14: 849-855
    [40] Kim M.H., Bullard C.W. Air-Side thermal hydoulic performance of multi-louvered fin aluminum heat exchangers[J]. International Journal of Refrigeration, 2002, 25: 390-400.
    [41] Ha M.Y., Kim Y.C., Koak S.H., et al. Fluid flow and heat transfer charactersitic in multi-louvered fin heat exchangers[J]. SAE 950115, 1995, 258-265.
    [42]朱恂,廖强.管带式汽车散热器流动阻力与传热性能分析[J].重庆大学学报(自然科学版), 2002, 25(8): 40-43
    [43] Erek A., Ozerdem B., Bilir L., et al. Effect of parameters on the heat transfer and pressure drop characteristics of plate fin and tube heat exchangers[J]. Applied Thermal Engineering, 2005, 25: 2421-2431.
    [44] Webb Ralph L., Paul Trauger. Flow structure in the louvered fin heat exchanger geometry[J]. Experimental Thermal and Fluid Science, 1991, 26: 205-217.
    [45] Bouzida S., Mignot C. Optimization of fin louver design based on CFD[J]. SAE 970832, 1997: 1351-1361
    [46] Liu M.S., Shyu R.J., Leu J.S., et al. Effect of successively variable louver angle on the air-side performance of fin-and-tube heat exchangers[J]. ASHRAE Transactions, 2001, CI-01-4-2: 10-516.
    [47] Davenport C.J. Correlations for heat transfer and flow friction characteristics of louvered fin[C]. AICHE Symposium Series, 1983, 79(25): 19-27
    [48] Achaichia A., Cowell T.A. Heat transfer and pressure drop characteristics of flat tube and louvered plate fin surface[J]. Experimental Thermal and Fluid Science, 1988, 11: 147-157
    [49] Sahnoun A., Webb R.L. Prediction of heat transfer and friction for louver fin geometry[J]. Journal of Heat Transfer, 1992, 25: 893-900
    [50] Chang Y.J., Wang C.C. A generalized heat transfer correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 1997, 18: 533-544
    [51] Chang Y.J., Hsu K.C., Lin Y.T., et al. A generalized friction correlation for louver fin geometry[J]. International Journal of Heat and Mass Transfer, 2000, 43(12): 2237-2243.
    [52] Beauvais F.N. An Aerodynamic Look at Automobile Radiator[J]. SAE 650470, 1965: 181-189.
    [53] Davenport C.J. Heat transfer and fluid flow in the louvered triangular ducts[J]. Lanchester Polytechnic Institute, 1980.
    [54] Howard P. Preliminary report on flow visualization studies on a two-dimensional model of a louvered fin heat exchanger[J]. Penn State Project Report, 1987
    [55] Ralph L.W. The flow structure in the louvered fin heat exchanger geometry[J]. SAE 900722, 1990: 1592-1603
    [56] DeJong N.C., Jacobi A.M. Flow heat transfer and pressure drop in the near-wall region of louvered-fin arrays[J]. Experimental Thermal and Fluid Science, 2003, 27: 237-250
    [57] Zhang X., Tafti D.K. Flow efficiency in multi-louvered fins[J]. International Journal of Heat and Mass Transfer, 2003, 46: 1737-1750
    [58] Tafti D.K., Wang G., Lin W. Flow transition in a multilouvered fin array[J]. International Journal of Heat and Mass Transfer, 2000, 43: 901-919.
    [59] Zhang X., Taffi D.K. Classification and effects of thermal wakes on heat transfer inmulti-louvered fins[J]. International Journal of Heat and Mass Transfer, 2001, 44: 2461-2473.
    [60] Tafti D.K., Cui J. Fin-tube junction effects on flow and heat transfer in flat tube multilouvered heat exchangers[J]. International Journal of Heat and Mass Transfer, 2003, 46: 25-32.
    [61] Lyman A.C., Stephan R.A., Thole K.A., et al. Scaling of heat transfer coefficients along louvered fins[J]. Experimental Thermal and Fluid Science, 2002, 26: 547-563
    [62] DeJong N.C., Jacobi A.M. Heat transfer and pressure drop in the near-wall region of louvered-fin arrays[J]. Experimental Thermal and Fluid Science, 2003, 27: 237-250
    [63] Jacobi A.M., Shah R.K. Heat transfer surface enhancement through the use of longitudinal vortices: a review of recent progress[J]. Experimental Thermal and Fluid Science, 1995, 11:295~309
    [64] Krasnoshellekov E.A., Kuraeva L.V., Protopopov V.S. Local heat transfer of carbon dioxide at supercritical pressure under cooling conditionings [J]. TeplofizikaVysokikh TemPratur, 1969, 7: 922-930
    [65] Shiralkar B. S., Griffith P. Deterioration in heat transfer to fluids at supercritical pressure and high heat fluxes [J]. Transactions, American Society of Mechanical Engineers, Journal of Heat Transfer, 1969, 11: 238-245.
    [66] Shiralkr B. The effect of swirl inlet conditions flow direction and tube diameter on the heat transfer to fluids at supercritical pressure [J]. Journal of Heat Transfer, Transactions of the ASME, 1970, 14: 465-474.
    [67] Bourke P.J. Forced convective heat transfer of turbulent CO_2 flowing in the supercritical region [J]. Heat Mass Transfer, 1970, 13: 1339-1348
    [68] Olson D.A. Heat transfer of supercritical carbon dioxide flowing in a cooled horizontal tube [C]. 4th Gustav Lorentzen Conference at Purdue University, 2000: 251~258
    [69] Pitla S.S., et al. New correlation for heat transfer coefficient during in-tube cooling of super critical carbon dioxide [C]. 4th Gustav Lorentzen Conference at Purdue University, 2000: 259~267
    [70] Ikryannikov N.P., Petukhov B.S. Calculation of heat transfer in the single-phase near-critical region in the case of a viscosity-intertia-gravity flow [J]. Institute of High Temperature Academy of Sciences of USSR, Teplofizika Vysokikh Temperature, 1973, 11: 1068-1075
    [71] Petukhov B.S. Heat transfer and flow resistance in the turbulent pipe flow of a fluidwith near-critical state prameters[J]. Institute of High Temperature Academy of Sciences of USSR, Teplofizika Vysokikh Temperature, 1983, 21: 92-100
    [72] Petukhov B.S, Polyakov A.V. Boundaries of regimes with worsened/heat transfer for supercritical pressure of coolant [J]. Teplofizika Vysokikh Temperature, 1974, 12(1): 221~224.
    [73] Kim H.Y., Kim H., Song J.H. Heat transfer test in a tube using CO_2 at supercritical pressures[C]. KAERI Proceeding of GLOBAL, Tsukuba, Japan, 2005, No.103.
    [74] Kim H.Y., Kim H., Kang D.J. Heat transfer experiments for an upward flow of supercritical pressure CO_2 in a narrow annulus[C]. KAERI 3rd Int. Symposium on SCWR-Design and Technology Paper No. SCWR2007-P049, Shanghai, China, March 12-15, 2007
    [75] Bae Y.Y., Kim H.Y. Convective heat transfer to CO_2 at a supercritical pressure flowing vertically upward in tubes and an annular channel [J]. Experimental Thermal and Fluid Science, 2009, 33(2): 329-339.
    [76] Bae Y.Y. , Kim H.Y, Kang D.J. Forced and mixed convection heat transfer to supercritical CO_2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 34(8): 1295-1308.
    [77] Bae Y.Y., Kima H.Y., Yooa T. H. Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures[J]. International Journal of Heat and Fluid Flow, 2011, 34: 340-351
    [78] Kim J.K., Jeon H.K., Lee J.S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide [J]. Heat and mass transfer, 2007, 50: 4908-4911
    [79] Kim J.K., Jeon H.K., Lee J.S. Wall temperature measurement and heat transfer correlation of turbulent supercritical carbon dioxide flow in vertical circular/non-circular tubes [J]. Nuclear engineering and design, 2007, 237: 1795-1802
    [80] Dang C.B., Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide [J]. Lnt. J. Refrig., 2004, 27: 736-747.
    [81] Dang C.B., Hihara E. In-tube cooling heat transfer of supercritical carbon dioxide Part 2. Comparison of numerical calculation with different turbulence models [J]. International Journal of Refrigeration, 2004, 27(7): 748-760.
    [82] Dang C.B., Hihara E. Numerical study on in-tube laminar heat transfer of supercritical fluids [J]. Applied Thermal Engineering, 2010, 30(13): 1567-1573.
    [83] Liao S.M., Zhao T.S., Jakobsen A. A correlation of optimal heat rejection pressures in trans-critical carbon dioxide cycles [J]. Applied Thermal Engineering, 2000, 20(9): 831-841.
    [84] Liao S.M., Zhao T.S. Measurements of heat transfer coefficients from supercritical carbon dioxide flowing in horizontal of mini/micro channels [J]. Transactions of the ASME, Journal of Heat Transfer, 2002, 124: 413-420.
    [85] Liao S.M., Zhao T.S. A numerical investigation of laminar convection of supercritical carbon dioxide in vertical mini/micro tubes [J]. Progress in Computational Fluid Dynamics, 2002, 2: 144-152.
    [86] Jiang, P.X., et al. Experimental and numerical investigation of convection heat transfer of CO_2 at supercritical pressures in a vertical tube at low Reynolds numbers [J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011.
    [87] Jiang P. X., Zhang Y., Shi R. F. Experimental and numerical investigation of convection heat transfer of CO_2 at supercritical pressures in a vertical mini-tube [J]. International Journal of Heat and Mass Transfer, 2008, 51(11-12): 3052-3056.
    [88] Jiang P. X., et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low Reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1628-1637.
    [89] Jiang P. X., et al. Experimental and numerical study of convection heat transfer of CO2 at super-critical pressures during cooling in small vertical tube[J]. International Journal of Heat and Mass Transfer, 2009, 52(21-22): 4748-4756.
    [90]徐轶君,姜培学等.竖直细圆管中超临界对流换热实验研究[J].工程热物理学报, 2004, 25(增刊):87-90.
    [91]魏东等. CO_2超临界流体的管内对流换热研究[J].工程热物理学报, 2002, 23(1): 85-88.
    [92] Ma Y.T., Yan J.L., et al. Application of micro-channel heat exchanger intrans-critical CO2 refrigeration system [J]. ACRA, 2004: 341-348
    [93]杨亮,丁国良,黄冬平等.超临界二氧化碳流动和换热研究进展[J].制冷学报,2003, 2: 51-56.
    [94]饶正华,廖胜明.超临界CO2管内湍流流动和传热的数值模拟[J].流体机械, 2005, 33(1): 48~53
    [95]饶正华,廖胜明.超临界CO2在水平三角细微管内层流对流换热的数值模拟[J].制冷学报, 2005, 5: 43-47
    [96]淮秀兰, Shigeru Koyama.微通道内超临界二氧化碳的压降与传热特性[J].工程热物理学报, 2004, 5: 843-845
    [97] Garimella S. Micro-channel gas cooler for carbon dioxide air-conditioning systems [J]. ASHRAE Transction, 2002, 108: 492-498.
    [98] Garimella, S. Conduction effects in cross-counterflow Supercritical gas coolers for natural refrigerants [C]. International Congress of Refrigeration, 2003, Washington DC.
    [99] Hwang Y., Jin D.H., Radermacher R.H., et al. Performance measurement of CO_2 heat exchangers[J]. ASHRAE Transactions, 2005, 111: 306-316.
    [100] Zilio C.C., Cecchinato L., Corradi M., et al. An assessment of heat transfer through fins in a fin-and-tube gas cooler for trans-critical carbon dioxide cycles [J]. HVAC&R Research, 2007, 13: 457-469.
    [101] Chang Y.S., Kim M.S. Modeling and performance simulation of a gas cooler for a CO_2 heat pump system[J]. HVAC&R Research, 2007, 13: 45-456.
    [102] Wu Z.G., Zhang J.Z., Tao Y.B., et al. Application of artificial neural network method for performance prediction of a gas cooler in a CO_2 heat pump[J]. International Journal of Heat and Mass Transfer, 2008, 51: 5459-5464.
    [103] Ge Y.T., Cooper R.T. Simulation and performance evaluation of finned-tube CO_2 gas coolers for refrigeration systems[J]. Applied Thermal Engineering 2009, 29: 957-965.
    [104] Pettersen J., Hafner A., Skaugen G., et al. Development of compact heat exchangers for CO_2 air-conditioning systems[J]. Int J Refrig., 1998, 21(3): 180–93.
    [105] Pettersen J. CO_2 as a primary refrigerant[C]. Institute of Refrigeration Centenary conference, 1999, London.
    [106] Pettersen J., Rieberer R., Munkejord S.T. Heat transfer and pressure drop for flow of supercritical and subcritical CO_2 in microchannel tubes. SINTEF Energy Research, Norwegian University of Science and Technology, Department of Refrigeration and Air Conditioning, Kolbjorn Hejes vei 1D, N-7465 Trondheum, Norway, 2000.
    [107] Giannavola M., Yin J.M., Bullard C.W., et al. Contribution of heat exchangers in improved performance of new generation automotive air-conditioning system with R-744[J]. ASHRAE Trans, 2003, 109: 542-554.
    [108] Kim M.H., Pettersen J., Bullard C.W. Fundamental process and system design issues in CO_2 vapor compression systems [J]. Progress in Energy and Combustion science, 2004, 30: 119-174.
    [109] Yin J.M., Bullard C.W., Hrnjak P. R-744 gas cooler model development and validation[J]. International Journal of Refrigeration, 2001, 24: 692-701.
    [110] Fang X., Bullard, C.W., Hrnjak, P. Modeling and analysis of gas coolers[J]. ASHRAE Trans, 2001, 107: 4–13.
    [111] Fang X., Bullard C.W., Hrnjak P. Heat transfer and pressure drop of gas coolers[J]. ASHRAE Trans, 2001, 107: 255–66.
    [112] Yin J.M., Bullard C.W., Hrnjak P. Design strategies for R744 gas coolers[C]. Proceedings of the International Refrigeration Conference at Purdue, West Lafayette, 2002: 315-322.
    [113] Bullard C.W., Yin J.M., Hrnjak P. Compact counterflow gas cooler for R-744[J]. ASHRAE Trans, 2002, 108(1): 487–91.
    [114] Asinari P.,Cecchinato L., Fornasieri E. Effects of thermal conduction in microchannel gas coolers for carbon dioxide[J]. International Journal of Refrigeration, 2004, 27:577-586.
    [115] Zhao Y.O., Michael M. Experimental Study of Supercritical CO2 Gas Cooling in a Micro-channel Gas Cooler[J]. ASHRAE Transactions, 2004, 110: 291-300.
    [116] Zhao Y., Ohadi M.M., Radermacher R. Micro channel heat exchangers with carbon dioxide[J]. American Refrigeration Technology Institute Final Report, ARTI-21CR/605-10020-01, 2001.
    [117] Chang Y., Park P.H. Effect of heat conduction through the fins of a micro-channel serpentine gas cooler of transcritical CO2 system[J]. International Journal of Refrigeration, 2007, 30: 389-397.
    [118] Kim S.C., Won J.P., Kim M.S. Effects of operating parameters on the performance of a CO2 air conditioning system for vehicles[J]. Applied Thermal Engineering 2009, 29: 2408-2416.
    [119] Fronk B. M., Garimella S. Water-coupled carbon dioxide micro-channel gas cooler for heat pump water heaters[J]. International Journal of Refrigeration, 2010, 34:7-16.
    [120] Fronk B. M., Garimella S. Water-Coupled Carbon Dioxide Micro-channel Gas Cooler for Heat Pump Water Heaters[J]. International Journal of Refrigeration, 2010, 34:17-28.
    [121]黄冬平等.基于模型的二氧化碳微通道气体冷却器性能分析[J].化工学报, 2002, 53: 832-836.
    [122]饶政华,廖胜明.二氧化碳微通道气体冷却器的数值仿真与性能优化[J].化工学报, 2005, 56: 1721-1726.
    [123]林华和,梁荣光.超临界CO2微通道气体冷却器传热特性数值模拟[J]. 2007,华南理工大学硕士论文.
    [124]何冰强,梁荣光.二氧化碳平行流气体冷却器建模与特性试验研究[J]. 2010,华南理工大学博士论文.
    [125] He Y.L., Tao W.Q. , Song F.Q., et al. Three-dimensional numerical study of heat transfer characteristics of plain plate fin-and-tube heat exchangers from view point of field synergy principle[J]. International Journal of Heat and Fluid Flow, 2005, 26: 459-473
    [126] Tao Y.B., He Y.L., Huang J., et al. Three-dimensional numerical study of wavy fin-and-tube heat exchangers and field synergy principle analysis[J].International Journal of Heat and Mass Transfer, 2007, 50: 1163-1175
    [127] Qu Z.G., Tao W.Q., He Y. L. Three-Dimensional Numerical Simulation on Laminar Heat Transfer and Fluid Flow Characteristics of Strip Fin Surface with X-Arrangement of Strips [J]. Journal of Heat Transfer, 2004, 126: 697-706
    [128] Peláez R.B., Casanova J.O., López J.M. A three-dimensional numerical study and comparison between the air side model and the air/water side model of a plain fin-and-tube heat exchanger[J]. Applied Thermal Engineering, 2010, 30: 1608-1615
    [129] Xie G.N., Wang Q.W. Parametric study and multiple correlations on air-side heat transfer and friction characteristics of fin-and-tube heat exchangers with large number of large-diameter tube rows[J]. Applied Thermal Engineering, 2009, 29: 1–16.
    [130] Wu J.M., Tao W.Q. Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle[J]. Applied Thermal Engineering, 2007, 27: 2609–2617
    [131] Guo Z.Y., Tao W.Q., Shah R.K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48: 1797–1807
    [132]过增元等.场协同原理及强化传热新技术[M].北京,中国电力出版社, 2004.
    [133] Tao W.Q., He Y.L., Li Z.Y., et al. Some recent advances in finite volume approach and their applications in the study of heat transfer enhancement[J]. International Journal of Thermal Sciences, 2005, 44: 623-643
    [134] Dong J.Q., Chen J.P., Chen Z.J., et al. Heat transfer and pressure drop correlations forthe wavy fin and flat tube heat exchangers[J]. Applied Thermal Engineering, 2007, 27: 2066-2073.
    [135]林秀雄等.田口方法实战技术[M].深圳,海天出版社,2008.
    [136] Qi Z.G., Chen J.P., Chen Z.J. Parametric study on the performance of a heat exchanger with corrugated louvered fins[J] Applied Thermal Engineering, 2007, 27: 539–544.
    [137] Ding Z.L. Error Theory and Data Processing[M]. Harbin Institute of Technology, 2002.
    [138] Span R.W. A new equation of state for carbon dioxide covering the fluid region from the tri-point temperature to 1100K at pressure up to 800MPa[J]. Journal of Physics Chemistry Reference Data, 1996, 25(6): 1509-1597.
    [139] Vesovic V., Wakeham W.A., Olchowy G.A., et al. The transport properties of carbon dioxide[J]. Journal of Physics Chemistry Reference Data, 1990, 19(3): 763-802.
    [140] Asinari P. Numerical prediction of turbulent convective heat transfer in mini/micro channels for carbon dioxide at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2005, 48(18): 3864-3879.
    [141] He S., Kim W.S., Bae J.H. Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(19-20): 4659-4675.
    [142] Wen, Q.L., Gu H.Y. Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube[J]. Annals of Nuclear Energy, 37(10): 1272-1280.
    [143] Bazargan M., Mohseni M. The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid[J]. The Journal of Supercritical Fluids, 2009, 51: 221-229.
    [144] Abe K., Kondoh T., Nagano Y. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows-I: Flow field calculations[J]. Int. J. Heat Mass Transfer, 1994, 37: 139-151
    [145] Menter F.R. Zonal two equation k–x turbulence models for aerodynamic flows[C]. AIAA 24th Fluid Dynamics Conference, Orlando, Florida USA, 1993.
    [146] Abid R. Evaluation of two-equation turbulence models for predicting transitional flows[J]. Int. J. Eng. Sci., 1993, 31: 831-840.
    [147] Chang K.C., Hsieh W.D., Chen C.S. A modified low-Reynolds number turbulence model applicable to recirculating flow in pipe expansion[J]. Trans. ASME J. Fluid Eng.,1995, 117: 417–423.
    [148] Yang Z., Shih T.H. New time scale based k–e model for near-wall turbulence[J]. AIAA J., 1993, 31: 1191–1198.
    [149] Behnia M., Parneix S., Durbin P.A. Prediction of heat transfer in an axisymmetric turbulent jet impinging on a flat plate[J]. Int. J. Heat Mass Transfer, 1998, 41: 1845–1855.
    [150] REFPROP. NIST Standard Reference Database 23, Version 7.0.
    [151] Cheng X., Yang Y.H., Huang S.F. A simplified method for heat transfer prediction of supercritical fluids in circular tubes[J]. Annals of Nuclear Energy, 2009, 36(8): 1120-1128.
    [152] Dittus F.W., Boelter L.M. Heat transfer in automobile radiators of tubular type[J]. Univ. Calif. Publ. Eng. 1930, 2: 443–461.
    [153] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. Int. Chem. Eng., 1976, 16(2): 359–368
    [154] Yoon S.H., Kim J.H., Hwang Y.W., et al. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region[J]. Int. J. Refrig., 2003, 26: 857–864.
    [155] Huai X.L., Koyama S., Zhao T.S. An experimental study of flow and heat transfer of supercritical carbon dioxide in multi-port mini channels under cooling conditions[J]. Chemical Engineering Science, 2005, 60(12): 3337-3345.
    [156] ASHRAE, ASHRAE Handbook-Foudamentals[M]. American Society of heating refrigerant and air-conditioning engineera. Inc., Atlanta, 2005
    [157] ANSI/ASME, Measurement uncertainty, ANSI/ASME PTC 19.1, 1985, Part 1.
    [158] Shao L. L., Yang L., Zhang C.L., et al. Numerical modeling of serpentine microchannel condensers[J]. International Journal of Refrigeration, 2009, 32: 1162-1172.
    [159] Yin J. M., Bullard C. W., Hrnjak P. Pressure drop measurements in micro-channel heat exchanger[J]. University of Illinois at Urbana-Champaign, CR-40
    [160]Churchill S.W. Friction-factor equation spans all fluid flow regimes[J]. Chemical Engineering, 1977, 7: 91–92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700