用户名: 密码: 验证码:
新型固态薄膜电池及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路(IC)和微机电系统(MEMS)产业的不断发展,电子器件的小型化对电源的尺寸和兼容性提出了新的要求,迫切要求开发与此相匹配的微型电源。而薄膜电池以其超薄,可集成,可弯曲等特性,成为了目前最优的选择。
     与粉体电极不同,薄膜电极由于不含导电剂和粘合剂,可以被视为一种仅含有被研究材料的“纯物质”体系,因此特别适用于研究电极材料的本征性质和反应机理。本文利用脉冲激光沉积技术制备了异质纳米复合物薄膜和双阴离子化合物薄膜材料作为锂离子电池的电极材料,测试了其电化学性能,利用各种材料表征手段探索了其反应机理,对理解复杂物质作为锂离子电池电极材料的反应特性有一定帮助,并对探索性能更好的电极材料提供了指导。
     此外,无论是薄膜电池还是常规大小的电池,其离子传导机理几乎都是基于阳离子的移动,本文以金属-卤素电池体系为对象,研究了主要由阴离子负责电池内部离子传导的电池体系的电化学特征,设计并组装了全固态薄膜铝-碘电池和用液体作为电解液的常规金属-卤素电池,并加以比较,澄清了其离子传导的机理在不同条件下的变化。这项研究证明了阴离子传导的电池体系无论是作为薄膜电池还是常规大小的电池,均可以拥有较好的电化学性能,为寻找性能更好的储能体系提供了一个新的方向。
     目前技术最为成熟的薄膜电池就是全固态薄膜锂离子电池,有可能作为下一代微电子和信息产业的能源,因此它的发展受到特别地关注。本文成功制备了大面积的全固态薄膜锂离子电池,并将其与RFID集成,提升了其识别性能,而且与射频充电设备进行集成,实现了非接触式充电,对于拓展薄膜电池的应用范围有一定的意义。
     论文的第一部分是对于脉冲激光沉积技术制备的纳米薄膜材料的研究。用真空脉冲激光沉积制备的薄膜电极与金属锂片组装成电池,通过恒电流充放电和循环伏安法测量这些薄膜电极的充放电性能和电化学反应特性。利用X射线衍射(XRD),高分辨电子显微镜(HRTEM),选区电子衍射(SAED)以及X射线光电子能谱(XPS)等多种手段对其电化学过程中物质的组成和结构进行了测试和表征,从而探讨其电化学反应机理。主要包括以下体系:
     一.异质纳米混合物Li2Se-MSex (M=Cu、Sb)薄膜的制备及其电化学性能研究(正文第三章,第四章)。我们首次采用脉冲激光沉积技术,通过调节靶的组成与脉冲激光沉积的参数,制备颗粒在纳米尺度的Li2Se-MSex (M=Cu、Sb)储锂薄膜电极。通过对其电化学过程的表征和充放电过程中薄膜组分和结构的变化,发现该类纳米薄膜在充放电循环过程中都包含了含锂惰性基质Li2Se可逆的分解和生成的过程。充放电反应机理有别于传统的锂离子脱嵌过程,而是一种可逆转换反应,主要包含了金属硒化物MSex和Li2Se的可逆转换反应。在研究Li2Se-Sb2Se3体系的过程中还意外的发现了在充电之后的产物中有Sb2Se5的生成,这是首次合成出这个物质,说明电化学合成是一种可行的合成手段,可用于合成一些常规手段不易合成的高价金属化合物。
     二.双阴离子型化合物FeOF薄膜电极的的制备及其电化学性能研究(正文第五章)。首次采用脉冲激光沉积法制备了FeOF纳米复合薄膜电极。电化学表征结果显示其首次放电可得到884mAh/g的比容量,随后的可逆容量为约为629mAh/g,平均每次循环容量衰减小于0.1%。研究发现其在充放电过程中发生的电化学反应,既包括FeOF放电生成Fe、Fe2O3、LiF的不可逆转化反应,也包括Fe和Fe2O3的可逆转化反应。
     本论文对异质纳米混合物Li2Se-MSex (M=Cu、Sb)薄膜的研究为在电势驱动下含锂惰性基质被金属化合物可逆的分解和生成提供了直接的证据,将转化机理引入了正极材料的设计,并通过电化学合成法首次成功制备了Sb2Se5,提供了一条合成高价金属化合物的途径。对FeOF薄膜电极的研究首次将双阴离子化合物作为薄膜锂离子电池负极材料,证明了在转化机理中,两种含锂惰性基质之间存在电化学反应选择性,这对制备和研究新型的高性能储锂材料具有一定的指导意义。
     论文的第二部分是对于M/Xn(M=Al、Mg,X=Br、I)型电池体系的研究(正文第六章)。将铝片作为负极,将碘和乙炔黑混合压片作为正极,直接组装成薄膜电池,测试结果发现此种电池体系有着较高的能量密度,且有着价格低廉,无环境污染等优秀的特性。将铝片或镁片作为工作电极,石墨作为对电极,以碘或溴的乙腈溶液作为电解液,组装成常规液相电池,发现同样有着较好的放电特性,说明M/Xn(M=Al、Mg, X=Br、I)型电池体系适用于薄膜电池及常规电池。在薄膜电池的正负极间加入一层碘离子传导物质LiI(HPN)4-20 wt% 15nm SiO2,电化学测试的结果说明显示其性能和未加碘离子传导电解质之前相差不大,说明M/I2(M=Al、Mg)电池内部的导电机理是以阴离子传导为主。又将电解液中的乙腈换成水,组装成电池进行在线的交流阻抗以及放电性能测试的对比,结果显示不同类型的电解液的离子传导机理是不同的。又对放电结束后的铝电极作了SEM、TEM、XPS、XRD等测试,结果说明水溶液体系中放点结束后的铝没有任何物质在表面生成,而在非离子极性溶剂体系中生成了一层无定型的AlI3,说明在非离子极性溶剂体系中是阴离子传导为主的导电机理,而水体系中是阴阳离子共同传导的,这与电化学的特性是吻合的。
     本论文对于M/Xn(M=Al、Mg, X=Br、I)类电池的研究拓展了薄膜电池的种类,证明了基于阴离子传导的电池体系应用于薄膜电池也能获得较好的电化学性能,澄清了阴离子传导型电池体系的电化学反应机理及离子传导机理,对选择合适的正负极材料、电解液体系及其改性方法都有一定的参考价值。
     论文的第三部分是大面积的全固态薄膜锂离子电池的制备并应用(正文第七章)。用直流溅射在洁净的玻璃或硅片表面沉积一层金属作为集电极,用射频溅射在其上沉积一层LiMn2O4或LiFe(WO4)2作为正极材料,用磁控溅射的方式在其上制备一层LiPON作为电解质,用热蒸发的方式在其上蒸镀一层金属锂作为负极,通过调节各步靶材成分和成膜条件,成功制备了有效正对面积超过4cm2的全固态薄膜锂离子电池。在应用方面,通过设计全固态薄膜锂离子电池的形状,与RFID标签集成,制备了有源远程可识别标签,测试结果表明,相对于未集成内置电池的无源标签而言,其识别性能有所提升。另一方面,将射频充电设备与全固态薄膜锂离子电池集成,实验结果显示,在距离4.2cm的距离处,可以产生5微安的充电电流,充电后的薄膜电池可正常放电使用,成功实现了非接触式充电。本文这部分的研究改善了全固态薄膜电池的性能,研究了薄膜电池与其他用电及充电设备的集成,拓展了其应用范围。
With the development of IC and MEMS industry, it is urgent to develop the compatible power source. Thin film batteries proved to be the best choice because the quality of ultrathin, compatible and flexible.
     It is well known that thin film electrodes are free of additives and binders used in powder-based electrodes and can be employed as an "ideal" system for the fundamental studies because they could yield greater insight into the intrinsic properties of the electrode materials. In this thesis, pulsed laser deposition (PLD) was utilized to prepare the heterogeneous mixture of nano-material thin-film and double-anion material thin-film, used as electrode material for Li-ion battery.The structure, composition, surface morphology, electrochemical properties and lithium reaction mechanism of the materials were examined.
     Besides, either thin-film batteries or normal sized batteries, the electric charge transfer within batteries are based on the movement of cations. Here, we studied on the Metal-Halides battery system, which is proved to be based on anion transport mechanism. Both all-solid-state and liquid electrolyte batteries are designed and constructed, and its electrochemistry performance is tested. By comparing with each other, we found the ion-transfer mechanism altered within different condition. This proved anion transparent battery system possesses good electrochemical performance, either as all-solid-state or normal sized batteries provide a novel case of design energy storage devices.
     Today the preferred thin-film battery is the all-solid-state thin film Li-ion battery. It is the most developed candidate of the power source for the next generation microchips and industry of information. Here, we successfully prepared the large sized all-solid-state thin film Li-ion batteries, and integrated with RFID devices to raised its performance of recognition. Besides, we also realized "non-contactable"charging of thin film batteries by integrating with radio-frequency charging device. It is meaningful to expand the application of thin-film batteries.
     The first part of the thesis is studying on thin-film electrode material prepared by PLD technique. Use PLD instrument to deposit electrode material on stainless steel substrate, assemble a battery with Li metal as counter electrode and reference electrode. Characterizecharging-discharging performance and electrochemical feature. Using physical characterization method to identify the change of composition and status of the electrode material during electrochemical reaction, such as X-Ray diffraction (XRD), high-resolution transparent electroscope (HRTEM), selected area electronic diffraction (SAED) and X-Ray spectroscopy, to explore the electrochemical reaction mechanism. Following materials have been studied:
     1. Heterogeneous mixture nanocomposite. Altering the composition of the target and other parameter of PLD to prepare the Li2Se-MSex (M= Cu, Sb) thin-film electrode. By characterize the electrochemical performance and the composition and structure during charging-discharging process, we found Li2Se has been decomposed and produced reversely when cycling. The electrochemical reaction mechanism is not insertion/deinsertion, but the conversion mechanism, mainly concluding reversible conversion reaction of MSex and Li2Se.
     2. Double anion material. This is first time to use double anion material as thin-film electrode material. The electrochemical performance suggest the capacity of initial discharging can reach 884mAh/g, and in the following cycle drop down to 629 mAh/g. The average capacity fading except the first cycle is less than 0.1%. It is found that the electrochemical reaction during charging-discharging process including the decomposition of FeOF to produce Fe, Fe2O3 and LiF, also the conversion reaction between Fe and Fe2O3.
     The research on heterogeneousmixture of Li2Se-MSex (M= Cu, Sb) nanocomposite provide the direct prove that the inertia containing lithium can be decomposed and reproduced reversibly, showed possibility of cathode based on conversion mechanism. Sb2Se5 is successfully synthesized by electrochemical oxidation for the first time, providing a strategy to prepare high oxidation-state metal compound.Study on FeOF thin-film electrode material employed double anion compound as anode material for thin-film lithium-ion batteries for the first time, which proved that there is electrochemical selectivity between different matrixes containing lithium in conversion reaction mechanism. It will guild us in the exploration of new high capacity lithium-storage material.
     The second part of this paper is the study on M/Xn(M=Al、Mg, X=Br、I) battery.The metal/iodine thin-film battery can operate with solid electrolyte showing high voltage and moderate rate performances. The regular cell based on organic liquid electrolyte also showed similar electrochemical performance, in which Al or Mg sheet was used as a work electrode and a carbon sheet was used as a counter electrode.
     As a comparison, the aqueous electrolyte based battery is assembled. Ac impedance spectra indicated that the resistance of the Al/I2 cell in water solution reduced during discharging process gradually, while the resistance of the Al/I2 cell in the acetonitrile solution increased during discharging process. This could be due to the formation of a layer of amorphous AlI3 on the surface of aluminum anode, which was confirmed by the scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy and selected area electron diffraction measurements.
     An I- conductor, LiI(HPN)4 with 20 wt% 15nm SiO2 was employed as solid electrolyte between Al and 12 electrode to assemble the solid-state Al-I2 cell for further clarifying the transport mechanism. Our results demonstrated that the transport mechanism of Al-I2 cell in the water may be involved in both cation and anion transport mechanism, but in non-aqueous solution, it may be involved in cation transport mechanism. So the anion-conducting electrochemical batteries can be also promising for energy storage compared to cation-conducting systems in current batteries.
     The last part of this paper is preparing and application of large-sized all-solid-state thin-film lithium ion batteries. Deposited a layer of metal on clean surface of glass or Si-sheet as electric charge collector employing DC-sputtering, a layer of LiMn2O4 or LiFe(WO4)2 as cathode material by RF-sputtering, a layer of LiPON as electrolyte by RF-sputtering, and a layer of lithium metal as anode by thermal vaporization to assembling an all-solid-state thin-film lithium ion batteries. By adjusting and controlling the target composition and preparing condition, the battery, effective area of which is larger than 4 cm2, is successfully prepared. For application, we've integrated the large area thin-film battery with RFID tag to assemble an active RFID tag by designing the shape of the battery and the antenna. The result showed the improvement of performance on recognition comparing with passive RFID tag. On the other hand, the experiment result of integrating RF-charging devices with thin-film battery shows the charging current larger than 5μA is produced when distance between the charging device and the battery is 4.2cm, and the battery after charging shows regular discharging performance, realized the "none-contactable" charging. This technique is useful for expanding the applicant of all-solid-state thin-film batteries.
引文
[1]P. B. Koeneman, I. J. Buschvishniac, K. L. Wood. Feasibility of Micro Power Supplies for Mems [J]. J Microelectromech S,1997,6:355-362.
    [2]S. D. Jones, J. R. Akridge, F. K. Shokoohi. Thin-Film Rechargeable Li Batteries [J]. Solid State Ionics,1994,69:357-368.
    [3]S. D. Jones, J. R. Akridge. A Thin-Film Solid-State Microbattery [J]. Solid State Ionics, 1992,53-6:628-634.
    [4]J. B. Bates, G. R. Gruzalski, N. J. Dudney, C. F. Luck, X. H. Yu. Rechargeable Thin-Film Lithium Batteries [J]. Solid State Ionics,1994,70:619-628.
    [5]P. Birke, W. F. Chu, W. Weppner. Materials for Lithium Thin-Film Batteries for Application in Silicon Technology [J]. Solid State Ionics,1996,93:1-15.
    [6]J. Yamaki, H. Ohtsuka, T. Shodai. Rechargeable Lithium Thin Film Cells with Inorganic Electrolytes [J]. Solid State Ionics,1996,86-8:1279-1284.
    [7]M. Balkanski. Solid-State Microbatteries for Electronics in the 21st Century [J]. Sol Energ Mat Sol C,2000,62:21-35.
    [8]J. B. Bates, N. J. Dudney, B. Neudecker, A. Ueda, C. D. Evans. Thin-Film Lithium and Lithium-Ion Batteries [J]. Solid State Ionics,2000,135:33-45.
    [9]M. Duclot, J. L. Souquet. Glassy Materials for Lithium Batteries:Electrochemical Properties and Devices Performances [J]. J. Power Sources,2001,97-8:610-615.
    [10]J. L. Souquet, M. Duclot. Thin Film Lithium Batteries [J]. Solid State Ionics,2002,148: 375-379.
    [11]K. Kanehori, K. Matsumoto, K. Miyauchi, T. Kudo. Thin-Film Solid Electrolyte and Its Application to Secondary Lithium Cell [J]. Solid State Ionics,1983,9-10:1445-1448.
    [12]K. Kanehori, Y. Ito, F. Kirino, K. Miyauchi, T. Kudo. Titanium Disulfide Films Fabricated by Plasma Cvd [J]. Solid State Ionics,1986,18-9:818-822.
    [13]F. Kirino, Y. Ito, K. Miyauchi, T. Kudo. Electrochemical-Behavior of Amorphous Thin-Films of Sputtered V2o5-Wo3 Mixed Conductors [J]. Nippon Kagaku Kaishi,1986: 445-450.
    [14]X. H. Yu, J. B. Bates, G. E. Jellison, F. X. Hart. A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorus Oxynitride [J]. J Electrochem Soc,1997,144:524-532.
    [15]B. Wang, J. B. Bates, F. X. Hart, B. C. Sales, R. A. Zuhr, J. D. Robertson. Characterization of Thin-Film Rechargeable Lithium Batteries with Lithium Cobalt Oxide Cathodes [J]. J Electrochem Soc,1996,143:3203-3213.
    [16]B. J. Neudecker, N. J. Dudney, J. B. Bates. "Lithium-Free" Thin-Film Battery with in Situ Plated Li Anode [J]. J Electrochem Soc,2000,147:517-523.
    [17]J. F. Whitacre, W. C. West, B. V. Ratnakumar. A Combinatorial Study of Liymnxni2-Xo4 Cathode Materials Using Microfabricated Solid-State Electrochemical Cells [J]. J Electrochem Soc,2003,150:A1676-A1683.
    [18]W. C. West, J. F. Whitacre, B. V. Ratnakumar. Radio Frequency Magnetron-Sputtered Licopo4 Cathodes for 4.8 V Thin-Film Batteries [J]. J Electrochem Soc,2003,150: A1660-A1666.
    [19]Y. S. Park, S. H. Lee, B. I. Lee, S. K. Joo. All-Solid-State Lithium Thin-Film Rechargeable Battery with Lithium Manganese Oxide [J]. Electrochem. Solid State Lett., 1999,2:58-59.
    [20]E. J. Jeon, Y. W. Shin, S. C. Nam, W. I. Cho, Y. S. Yoon. Characterization of All-Solid-State Thin-Film Batteries with V2o5 Thin-Film Cathodes Using Ex Situ and in Situ Processes [J]. J Electrochem Soc,2001,148:A318-A322.
    [21]MEMS & Nanotechnology, http://www.cymbet.com,2004.
    [22]Thin Film Batteries, http://www.excellatron.com,2006.
    [23]Thinergy Mecs http://www.infinitepowersolutions.com/product/thinergy,2011.
    [24]Z. W. Fu, Q. Z. Qin. Pulsed Laser Deposited Ta2o5 Thin Films as an Electrochromic Material [J]. Electrochem. Solid State Lett.,1999,2:600-601.
    [25]W. J. Li, Z. W. Fu. Nanostructured Wo3 Thin Film as a New Anode Material for Lithium-Ion Batteries [J]. Appl Surf Sci,2010,256:2447-2452.
    [26]J. J. Ding, Q. A. Sun, Z. W. Fu. Layered Li(Ni1/4mn1/2co13)O-2 as Cathode Material for All-Solid-State Thin-Film Rechargeable Lithium-Ion Batteries [J]. Electrochem. Solid State Lett.,2010,13:A105-A108.
    [27]Y. H. Cui, M. Z. Xue, K. Hu, D. Li, X. L. Wang, W. Su, X. J. Liu, F. M. Meng, Z. W. Fu. Electrochemical Properties of Mnf2 Films Fabricated by Pulsed Laser Deposition [J]. J Inorg Mater,2010,25:145-150.
    [28]Y. N. Zhou, X. J. Wu, Z. W. Fu. Electrochemical Characterization of Li3n-Si Nanocomposite Thin Films by Pulsed Laser Deposition [J]. J Electrochem Soc,2009,156: A425-A429.
    [29]H. Zhang, Y. N. Zhou, X. J. Wu, Z. W. Fu. Electrochemical Properties of Cuf2 Films Fabricated by Pulsed Laser Deposition [J]. Acta Phys.-Chim. Sin.,2008,24:1287-1291.
    [30]M. Z. Xue, Z. W. Fu. Pulsed Laser Deposited Sb2se3 Anode for Lithium-Ion Batteries [J]. J Alloy Compd,2008,458:351-356.
    [31]Q. Sun, B. Zhang, Z. W. Fu. Lithium Electrochemistry of Sio2 Thin Film Electrode for Lithium-Ion Batteries [J]. Appl Surf Sci,2008,254:3774-3779.
    [32]Q. Sun, Z. W. Fu. Vanadium Nitride as a Novel Thin Film Anode Material for Rechargeable Lithium Batteries [J]. Electrochim Acta,2008,54:403-409.
    [33]M. Z. Xue, Y. N. Zhou, B. Zhang, L. Yu, H. Zhang, Z. W. Fu. Fabrication and Electrochemical Characterization of Copper Selenide Thin Films by Pulsed Laser Deposition [J]. J Electrochem Soc,2006,153:A2262-A2268.
    [34]M. Z. Xue, Z. W. Fu. Fabrication and Electrochemical Characterization of Zinc Selenide Thin Film by Pulsed Laser Deposition [J]. Electrochim Acta,2006,52:988-995.
    [35]M. Z. Xue, J. Yao, S. C. Cheng, Z. W. Fu. Lithium Electrochemistry of a Novel Snse Thin-Film Anode [J]. J Electrochem Soc,2006,153:A270-A274.
    [36]S. L. Zhao, Z. W. Fu, Q. Z. Qin. A Solid-State Electrolyte Lithium Phosphorus Oxynitride Film Prepared by Pulsed Laser Deposition [J]. Thin Solid Films,2002,415:108-113.
    [37]S. L. Zhao, Q. Z. Qin. Li-V-Si-O Thin Film Electrolyte for All-Solid-State Li-Ion Battery [J]. J. Power Sources,2003,122:174-180.
    [38]B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou. Electrochemical Intercalation of Single-Walled Carbon Nanotubes with Lithium [J]. Chem Phys Lett,1999,307:153-157.
    [39]M. Hess, E. Lebraud, A. Levasseur. Graphite Multilayer Thin Films:A New Anode Material for Li-Ion Microbatteries Synthesis and Characterization [J]. J. Power Sources, 1997,68:204-207.
    [40]T. Abe, K. Takeda, T. Fukutsuka, Y. Iriyama, Z. Ogumi. Electrochemical Properties of Graphitized Carbonaceous Thin Films Prepared by Pacvd [J]. J Electrochem Soc,2004, 151:C694-C697.
    [41]N. Kuwata, J. Kawamura, K. Toribami, T. Hattori, N. Sata. Thin-Film Lithium-Ion Battery with Amorphous Solid Electrolyte Fabricated by Pulsed Laser Deposition [J]. Electrochem. Commun.,2004,6:417-421.
    [42]I. A. Courtney, J. R. Dahn. Electrochemical and in Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites [J]. J Electrochem Soc,1997,144: 2045-2052.
    [43]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-Sized Transition-Metaloxides as Negative-Electrode Materials for Lithium-Ion Batteries [J]. Nature,2000,407:496-499.
    [44]F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci. Carbon Metal Fluoride Nanocomposites:High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries [J]. J Electrochem Soc,2003,150: A1318-A1327.
    [45]S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, J. M. Tarascon. Synthesis and Electrochemical Properties of Numerous Classes of Vanadates [J]. J. Power Sources,1999, 81:79-84.
    [46]Z. W. Fu, C. L. Li, W. Y. Liu, J. Ma, Y. Wang, Q. Z. Qin. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J Electrochem Soc,2005,152: E50-E55.
    [47]H. Li, G. Richter, J. Maier. Reversible Formation and Decomposition of Lif Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater.,2003,15:736-739.
    [48]M. N. Obrovac, J. R. Dahn. Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites [J]. Electrochem. Solid State Lett.,2002,5:A70-A73.
    [49]M. N. Obrovac, R. A. Dunlap, R. J. Sanderson, J. R. Dahn. The Electrochemical Displacement Reaction of Lithium with Metal Oxides [J]. J Electrochem Soc,2001,148: A576-A588.
    [50]N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, G. G. Amatucci. Electrochemistry of Cu3n with Lithium - a Complex System with Parallel Processes [J]. J Electrochem Soc, 2003,150:A1273-A1280.
    [51]V. Pralong, D. C. S. Souza, K. T. Leung, L. F. Nazar. Reversible Lithium Uptake by Cop3 at Low Potential:Role of the Anion [J]. Electrochem. Commun.,2002,4:516-520.
    [52]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. Lixcoo2 "(Oless-Thanxless-Than-or-Equal-Tol) - a New Cathode Material for Batteries of High-Energy Density [J]. Mater Res Bull,1980,15:783-789.
    [53]M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough. Lithium Insertion into Manganese Spinels [J]. Mater Res Bull,1983,18:461-472.
    [54]M. G. S. R. Thomas, P. G. Bruce, J. B. Goodenough. Lithium Mobility in the Layered Oxide Lil-Xcoo2 [J]. Solid State Ionics,1985,17:13-19.
    [55]J. B. Bates, N. J. Dudney, B. J. Neudecker, F. X. Hart, H. P. Jun, S. A. Hackney. Preferred Orientation of Polycrystalline Licoo2 Films [J]. J Electrochem Soc,2000,147:59-70.
    [56]R. Koksbang, J. Barker, H. Shi, M. Y. Saidi. Cathode Materials for Lithium Rocking Chair Batteries [J]. Solid State Ionics,1996,84:1-21.
    [57]A. Urbano, F. F. Ferreira, S. C. Decastro, R. Landers, M. C. A. Fantini, A. Gorenstein. Electrochromism in Lithiated Nickel Oxide Films Deposited by Rf Sputtering [J]. Electrochim Acta,2001,46:2269-2273.
    [58]K. F. Chiu. In Situ Modification of Rf Sputter-Deposited Lithium Nickel Oxide Thin Films by Plasma Irradiation [J]. J Electrochem Soc,2004,151:A1865-A1869.
    [59]C. Julien, E. Haro-Poniatowski, M. A. Camacho-Lopez, L. Escobar-Alarcon, J. Jimenez-Jarquin. Growth of Limn2o4 Thin Films by Pulsed-Laser Deposition and Their Electrochemical Properties in Lithium Microbatteries [J]. Mat Sci Eng B-Solid,2000,72: 36-46.
    [60]K. A. Striebel, C. Z. Deng, S. J. Wen, E. J. Cairns. Electrochemical Behavior of Limn2o4 and Licoo2 Thin Films Produced with Pulsed Laser Deposition [J]. J Electrochem Soc, 1996,143:1821-1827.
    [61]Z. Takehara. Future Prospects of the Lithium Metal Anode [J]. J. Power Sources,1997,68: 82-86.
    [62]D. Singh, R. Houriet, R. Giovannini, H. Hofmann, V. Craciun, R. K. Singh. Challenges in Making of Thin Films for Lixmnyo4 Rechargeable Lithium Batteries for Mems [J]. J. Power Sources,2001,97-8:826-831.
    [63]G. S. Chen, G. S. Chen, H. H. Hsiao, R. F. Louh, C. J. Humphreysc. Improving Thermal Stability of Limn2o4 Thin Films by in Situ Coating of Alpha-Mno2 Using High-Pressure and High-Temperature Sputtering [J]. Electrochem. Solid State Lett.,2004,7: A235-A238.
    [64]M. Yoshio, H. Noguchi, J. Itoh, M. Okada, T. Mouri. Preparation and Properties of Licoymnxni1-X-Yo2 as a Cathode for Lithium Ion Batteries [J]. J. Power Sources,2000, 90:176-181.
    [65]M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai. Characterization of Lifepo4 as the Cathode Material for Rechargeable Lithium Batteries [J]. J. Power Sources,2001,97-8: 508-511.
    [66]S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes [J]. Nat. Mater.,2002,1:123-128.
    [67]F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati. A Novel Concept for the Synthesis of an Improved Lifepo4 Lithium Battery Cathode [J]. Electrochem. Solid State Lett.,2002,5:A47-A50.
    [68]F. Sauvage, E. Baudrin, L. Gengembre, J. M. Tarascon. Effect of Texture on the Electrochemical Properties of Lifepo4 Thin Films [J]. Solid State Ionics,2005,176: 1869-1876.
    [69]J. Barker, M. Y. Saidi, J. L. Swoyer. Electrochemical Insertion Properties of the Novel Lithium Vanadium Fluorophosphate, Livpo4f [J]. J Electrochem Soc,2003,150: A1394-A1398.
    [70]J. Barker, R. K. B. Gover, P. Burns, A. Bryan, M. Y. Saidi, J. L. Swoyer. Structural and Electrochemical Properties of Lithium Vanadium Fluorophosphate, Livpo4f [J]. J. Power Sources,2005,146:516-520.
    [71]T. N. Ramesh, K. T. Lee, B. L. Ellis, L. F. Nazar. Tavorite Lithium Iron Fluorophosphate Cathode Materials:Phase Transition and Electrochemistry of Lifepo4f-Li2fepo4f [J]. Electrochem. Solid State Lett.,2010,13:A43-A47.
    [72]Y. Makimura, L. S. Cahill, Y. Iriyama, G. R. Goward, L. F. Nazar. Layered Lithium Vanadium Fluorophosphate, Li5v(Po4)(2)F-2:A 4 V Class Positive Electrode Material for Lithium-Ion Batteries [J]. Chem Mater,2008,20:4240-4248.
    [73]S. Licht. A Novel Aqueous Aluminum Vertical Bar Permanganate Fuel Cell [J]. Electrochem. Commun.,1999,1:33-36.
    [74]S. Licht. Novel Aluminum Batteries:A Step Towards Derivation of Superbatteries [J]. Colloid Surface A,1998,134:241-248.
    [75]S. Licht, J. R. Jeitler, J. H. Hwang. Aluminum Anodic Behavior in Aqueous Sulfur Electrolytes [J]. J Phys Chem B,1997,101:4959-4965.
    [76]S. Z. El Abedin, A. O. Saleh. Characterization of Some Aluminium Alloys for Application as Anodes in Alkaline Batteries [J]. J Appl Electrochem,2004,34:331-335.
    [77]X. X. Zeng, J. M. Wang, Q. L. Wang, D. S. Kong, H. B. Shao, J. Q. Zhang, C. N. Cao. The Effects of Surface Treatment and Stannate as an Electrolyte Additive on the Corrosion and Electrochemical Performances of Pure Aluminum in an Alkaline Methanol-Water Solution [J]. Mater Chem Phys,2010,121:459-464.
    [78]X. Y. Wang, J. M. Wang, H. B. Shao, J. Q. Zhang, C. N. Cao. Influences of Zinc Oxide and an Organic Additive on the Electrochemical Behavior of Pure Aluminum in an Alkaline Solution [J]. J Appl Electrochem,2005,35:213-216.
    [79]M. Galinski, A. Lewandowski, I. Stepniak. Ionic Liquids as Electrolytes [J]. Electrochim Acta,2006,51:5567-5580.
    [80]S. Licht, G. Levitin, R. Tel-Vered, C. Yarnitzky. The Effect of Water on the Anodic Dissolution of Aluminum in Non-Aqueous Electrolytes [J]. Electrochem. Commun.,2000, 2:329-333.
    [1]高国棉,陈长乐,王永仓,陈钊,李谭.脉冲激光沉积(PLD)技术及其应用研究[J].空军工程大学学报(自然科学版),2005,6(3):77-81.
    [2]余平,任雪勇,肖清泉,张晋敏.磁控溅射真空制膜技术[J].贵州大学学报(自然科学版),2007,24(1):68-70.
    [3]李云奇.真空镀膜技术与设备[M].沈阳:东北工学院出版社,1989:10.
    [4]周玉,武高辉.材料分析测试技术[M].哈尔滨:哈尔滨工业大学出版社,1998: 102.
    [5]王建祺,吴文辉,电子能谱学引论[M].北京:国防工业出版社,1992:55.
    [6]刘世宏,王当感,潘承磺.X-射线射线光电子能谱分析[M].北京:科学出版社,1988:111.
    [7]范康年.谱学导论[M].北京:高等教育出版社,2002:85.
    [8]周伟舫.电化学测量[M].上海:上海科技出版社,1985:78.
    [9]柳厚田,徐品弟.电化学测量方法[M].上海:复旦大学出版社,1992:133.
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-Sized Transition-Metaloxides as Negative-Electrode Materials for Lithium-Ion Batteries [J]. Nature, 2000,407:496-499.
    [2]S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, J. M. Tarascon. Synthesis and Electrochemical Properties of Numerous Classes of Vanadates [J]. J. Power Sources,1999,81: 79-84.
    [3]Z. W. Fu, C. L. Li, W. Y. Liu, J. Ma, Y. Wang, Q. Z. Qin. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J Electrochem Soc,2005,152:E50-E55.
    [4]N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, G. G. Amatucci. Electrochemistry of Cu3n with Lithium-a Complex System with Parallel Processes [J]. J Electrochem Soc,2003,150: A1273-A1280.
    [5]F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci. Carbon Metal Fluoride Nanocomposites: High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries [J]. J Electrochem Soc,2003,150:A1318-A1327.
    [6]M. N. Obrovac, R. A. Dunlap, R. J. Sanderson, J. R. Dahn. The Electrochemical Displacement Reaction of Lithium with Metal Oxides [J]. J Electrochem Soc,2001,148:A576-A588.
    [7]M. N. Obrovac, J. R. Dahn. Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites [J]. Electrochem. Solid State Lett.,2002,5:A70-A73.
    [8]H. Li, G. Richter, J. Maier. Reversible Formation and Decomposition of Lif Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater.,2003,15:736-739.
    [9]V. Pralong, D. C. S. Souza, K. T. Leung, L. F. Nazar. Reversible Lithium Uptake by Cop3 at Low Potential:Role of the Anion [J]. Electrochem. Commun.,2002,4:516-520.
    [10]M. Z. Xue, S. C. Cheng, J. Yao, Z. W. Fu. Fabrication and Lithium Electrochemistry of Ag2se Thin Film Anode [J]. Electrochim Acta,2006,51:3287-3291.
    [11]M. Z. Xue, J. Yao, S. C. Cheng, Z. W. Fu. Lithium Electrochemistry of a Novel Snse Thin-Film Anode [J]. J Electrochem Soc,2006,153:A270-A274.
    [12]M. Lakshmi, K. Bindu, S. Bini, K. P. Vijayakumar, C. S. Kartha, T. Abe, Y. Kashiwaba. Chemical Bath Deposition of Different Phases of Copper Selenide Thin Films by Controlling Bath Parameters [J]. Thin Solid Films,2000,370:89-95.
    [13]E. P. Domashevskaya, V. V. Gorbachev, V. A. Terekhov, V. M. Kashkarov, E. V. Panfilova, A. V. Shchukarev. Xps and Xes Emission Investigations of D-P Resonance in Some Copper Chalcogenides [J]. J. Electron Spectrosc. Relat. Phenom.,2001,114:901-908.
    [1]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. Lixcoo2 "(Oless-Thanxless-Than-or-Equal-To I) - a New Cathode Material for Batteries of High-Energy Density [J]. Mater Res Bull,1980,15:783-789.
    [2]Mgsr Thomas, W. I. F. David, J. B. Goodenough, P. Groves. Synthesis and Structural Characterization of the Normal Spinel Li Ni2 04 [J]. Mater Res Bull,1985,20:1137-1146.
    [3]M. M. Thackeray, P. J. Johnson, L. A. Depicciotto, P. G. Bruce, J. B. Goodenough. Electrochemical Extraction of Lithium from Limn2o4 [J]. Mater Res Bull,1984,19:179-187.
    [4]A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-Olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. J Electrochem Soc,1997, 144:1188-1194.
    [5]K. Amine, H. Yasuda, M. Yamachi. Olivine Licopo4 as 4.8 V Electrode Material for Lithium Batteries [J]. Electrochem. Solid State Lett.,2000,3:178-179.
    [6]S. Y. Chung, J. T. Bloking, Y. M. Chiang. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes [J]. Nat. Mater.,2002,1:123-128.
    [7]A. Nyten, A. Abouimrane, M. Armand, T. Gustafsson, J. O. Thomas. Electrochemical Performance of Li2fesio4 as a New Li-Battery Cathode Material [J]. Electrochem. Commun., 2005,7:156-160.
    [8]R. Dominko, M. Bele, M. Gaberscek, A. Meden, M. Remskar, J. Jamnik. Structure and Electrochemical Performance of Li2mnsio4 and Li2fesio4 as Potential Li-Battery Cathode Materials [J]. Electrochem. Commun.,2006,8:217-222.
    [9]Z. L. Gong, Y. X. Li, Y. Yang. Synthesis and Electrochemical Performance of Li2cosio4 as Cathode Material for Lithium Ion Batteries [J]. J. Power Sources,2007,174:524-527.
    [10]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-Sized Transition-Metaloxides as Negative-Electrode Materials for Lithium-Ion Batteries [J]. Nature, 2000,407:496-499.
    [11]S. Denis, E. Baudrin, F. Orsini, G. Ouvrard, M. Touboul, J. M. Tarascon. Synthesis and Electrochemical Properties of Numerous Classes of Vanadates [J]. J. Power Sources,1999,81: 79-84.
    [12]M. Z. Xue, J. Yao, S. C. Cheng, Z. W. Fu. Lithium Electrochemistry of a Novel Snse Thin-Film Anode [J]. J Electrochem Soc,2006,153:A270-A274.
    [13]M. Z. Xue, S. C. Cheng, J. Yao, Z. W. Fu. Fabrication and Lithium Electrochemistry of Ag2se Thin Film Anode [J]. Electrochim Acta,2006,51:3287-3291.
    [14]Z. W. Fu, C. L. Li, W. Y. Liu, J. Ma, Y. Wang, Q. Z. Qin. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J Electrochem Soc,2005,152:E50-E55.
    [15]N. Pereira, L. C. Klein, G. G. Amatucci. The Electrochemistry of Zn3n2 and Liznn-a Lithium Reaction Mechanism for Metal Nitride Electrodes [J]. J Electrochem Soc,2002,149: A262-A271.
    [16]N. Pereira, L. Dupont, J. M. Tarascon, L. C. Klein, G. G. Amatucci. Electrochemistry of Cu3n with Lithium-a Complex System with Parallel Processes [J]. J Electrochem Soc,2003,150: A1273-A1280.
    [17]F. Badway, F. Cosandey, N. Pereira, G. G. Amatucci. Carbon Metal Fluoride Nanocomposites: High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li Batteries [J]. J Electrochem Soc,2003,150:A1318-A1327.
    [18]M. N. Obrovac, R. A. Dunlap, R. J. Sanderson, J. R. Dahn. The Electrochemical Displacement Reaction of Lithium with Metal Oxides [J]. J Electrochem Soc,2001,148:A576-A588.
    [19]M. N. Obrovac, J. R. Dahn. Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites [J]. Electrochem. Solid State Lett.,2002,5:A70-A73.
    [20]H. Li, G. Richter, J. Maier. Reversible Formation and Decomposition of Lif Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater.,2003,15:736-739.
    [21]L. Yu, Z. W. Fu. Electrochemical Reactivity of Heterogeneous Nanocomposite Li2se-Cu3se2 [J]. Electrochem. Solid State Lett.,2007,10:A146-A150.
    [22]M. Z. Xue, Z. W. Fu. Pulsed Laser Deposited Sb2se3 Anode for Lithium-Ion Batteries [J]. J Alloy Compd,2008,458:351-356.
    [23]Q. Z. Qin, Z. W. Fu. Processing and Characterization of Ta2o5 Films Deposited by Pulsed Laser Ablation [J]. Adv. Mater.,1999,11:1119-+.
    [24]J. W. Wang, Z. X. Deng, Y. D. Li. Synthesis and Characterization of Sb2se3 Nanorods [J]. Mater Res Bull,2002,37:495-502.
    [25]D. B. Wang, D. B. Yu, M. S. Mo, X. M. Liu, Y. T. Qian. Preparation and Characterization of Wire-Like Sb2se3 and Flake-Like Bi2se3 Nanocrystals[J]. J Cryst Growth,2003,253: 445-451.
    [26]X. W. Zheng, Y. Xie, L. Y. Zhu, X. C. Jiang, Y. B. Jia, W. H. Song, Y. P. Sun. Growth of Sb2e3 (E=S, Se) Polygonal Tubular Crystals Via a Novel Solvent-Relief-Self-Seeding Process [J]. Inorg. Chem.,2002,41:455-461.
    [27]D. Larcher, A. S. Prakash, L. Laffont, M. Womes, J. C. Jumas, J. Olivier-Fourcade, M. S. Hedge, J. M. Tarascon. Reactivity of Antimony Oxides and Msb2o6 (M=Cu,Ni,Co), Trirutile-Type Phases with Metallic Lithium[J]. J Electrochem Soc,2006,153:A1778-A1787.
    [1]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon. Nano-Sized Transition-Metaloxides as Negative-Electrode Materials for Lithium-Ion Batteries [J]. Nature, 2000,407:496-499.
    [2]F. Badway, N. Pereira, F. Cosandey, G. G. Amatucci. Carbon-Metal Fluoride Nanocomposites: Structure and Electrochemistry of Fef3:C [J]. J Electrochem Soc,2003,150:A1209-A1218.
    [3]H. Li, G. Richter, J. Maier. Reversible Formation and Decomposition of Lif Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries [J]. Adv. Mater.,2003,15:736-739.
    [4]N. Pereira, M. Balasubramanian, L. Dupont, J. Mcbreen, L. C. Klein, G. G. Amatucci. The Electrochemistry of Germanium Nitride with Lithium [J]. J Electrochem Soc,2003,150: A1118-A1128.
    [5]J. M. Tarascon, S. Grugeon, M. Morcrette, S. Laruelle, P. Rozier, P. Poizot. New Concepts for the Search of Better Electrode Materials for Rechargeable Lithium Batteries [J]. C. R. Chim., 2005,8:9-15.
    [6]A. Debart, L. Dupont, P. Poizot, J. B. Leriche, J. M. Tarascon. A Transmission Electron Microscopy Study of the Reactivity Mechanism of Tailor-Made Cuo Particles toward Lithium [J]. J Electrochem Soc,2001,148:A1266-A1274.
    [7]B. T. Hang, T. Doi, S. Okada, J. I. Yamaki. Effect of Carbonaceous Materials on Electrochemical Properties of Nano-Sized Fe2o3-Loaded Carbon as a Lithium Battery Negative Electrode [J]. J. Power Sources,2007,174:493-500.
    [8]B. T. Hang, S. Okada, J. Yamaki. Effect of Binder Content on the Cycle Performance of Nano-Sized Fe2o3-Loaded Carbon for Use as a Lithium Battery Negative Electrode [J]. J. Power Sources,2008,178:402-408.
    [9]B. T. Hang, I. Watanabe, T. Doi, S. Okada, J. I. Yamaki. Electrochemical Properties of Nano-Sized Fe2o3-Loaded Carbon as a Lithium Battery Anode [J]. J. Power Sources,2006, 161:1281-1287.
    [10]N. Yanna, P. Zhang, Z. Guo, P. Munroe, H. Liu. Preparation of Alpha-Fe2o3 Submicro-Flowers by a Hydrothermal Approach and Their Electrochemical Performance in Lithium-Ion Batteries [J]. Electrochim Acta,2008,53:4213-4218.
    [11]G. D. Du, Y. N. Nuli, J. Yang, J. L. Wang. Fluorine-Doped Lini0.5mnl.5o4 for 5 V Cathode Materials of Lithium-Ion Battery [J]. Mater Res Bull,2008,43:3607-3613.
    [12]K. Matsumoto, T. Fukutsuka, T. Okumura, Y. Uchimoto, K. Amezawa, M. Inaba, A. Tasaka. Electronic Structures of Partially Fluorinated Lithium Manganese Spinel Oxides and Their Electrochemical Properties [J]. J. Power Sources,2009,189:599-601.
    [13]Y. S. He, L. Pei, X. Z. Liao, Z. F. Ma. Synthesis of Linil/3col/3mnl/3o2-Zfz, Cathode Material from Oxalate Precursors for Lithium Ion Battery [J]. J. Fluor. Chem.,2007,128: 139-143.
    [14]L. Croguennec, J. Bains, M. Menetrier, A. Flambard, E. Bekaert, C. Jordy, P. Biensan, C. Delmas. Synthesis of "Li-1.1(Ni0.425mn0.425co0.15)(0.9)O1.8f0.2" Materials by Different Routes:Is There Fluorine Substitution for Oxygen? [J]. J Electrochem Soc,2009,156: A349-A355.
    [15]J. G. Li, L. Wang, Q. Zhang, X. M. He. Electrochemical Performance of Srf2-Coated Linil/3col/3mnl/3o2 Cathode Materials for Li-Ion Batteries [J]. J. Power Sources,2009,190: 149-153.
    [16]J. Barker, M. Y. Saidi, J. L. Swoyer. A Carbothermal Reduction Method for the Preparation of Electroactive Materials for Lithium Ion Applications [J]. J Electrochem Soc,2003,150: A684-A688.
    [17]Meay De Dompablo, U. Amador, J. M. Tarascon. A Computational Investigation on Fluorinated-Polyanionic Compounds as Positive Electrode for Lithium Batteries [J]. J. Power Sources,2007,174:1251-1257.
    [18]Y. Makimura, L. S. Cahill, Y. Iriyama, G. R. Goward, L. F. Nazar. Layered Lithium Vanadium Fluorophosphate, Li5v(Po4)(2)F-2:A 4 V Class Positive Electrode Material for Lithium-Ion Batteries [J]. Chem Mater,2008,20:4240-4248.
    [19]F. Zhou, X. M. Zhao, J. R. Dahn. Reactivity of Charged Livpo4f with 1 M Lipf6 Ec:Dec Electrolyte at High Temperature as Studied by Accelerating Rate Calorimetry [J]. Electrochem. Commun.,2009,11:589-591.
    [20]S. Cordier, T. Roisnel, M. Poulain. Synthesis and Characterization of the Novel Nb3o5f5 Niobium Oxyfluoride:The Term N=3 of the Nbno(2n-1)F(N+2) Series [J]. J Solid State Chem, 2004,177:3119-3126.
    [21]L. S. Du, F. Wang, C. P. Grey. High-Resolution F-19 Mas and F-19-Cd-113 Redor Nmr Study of Oxygen/Fluorine Ordering in Oxyfluorides [J]. J Solid State Chem,1998,140:285-294.
    [22]J. Ravez. The Inorganic Fluoride and Oxyfluoride Ferroelectrics [I]. J. Phys.Ⅲ,1997,7: 1129-1144.
    [23]T. Vogt, P. M. Woodward, B. A. Hunter, A. K. Prodjosantoso, B. J. Kennedy. Sr3mo4f (M=Al, Ga)-a New Family of Ordered Oxyfluorides [J]. J Solid State Chem,1999,144:228-231.
    [24]M. Bervas, L. C. Klein, G. G. Amatucci. Reversible Conversion Reactions with Lithium in Bismuth Oxyfluoride Nanocomposites [J]. J Electrochem Soc,2006,153:A159-A170.
    [25]C. Bohnke, J. L. Fourquet, N. Randrianantoandro, T. Brousse, O. Crosnier. Electrochemical Intercalation of Lithium into the Perovskite-Type Nbo2f:Influence of the Nbo2f Particle Size [J]. J. Solid State Electrochem.,2001,5:1-7.
    [26]P. Hagenmuller, J. Portier, J. Cadiou, R. Depape. [J]. C. R. Acad. Sci.,1965,260:4768.
    [27]N. Pereira, F. Badway, M. Wartelsky, S. Gunn, G. G. Amatucci. Iron Oxyfluorides as High Capacity Cathode Materials for Lithium Batteries [J]. J Electrochem Soc,2009,156: A407-A416.
    [28]Z. W. Fu, C. L. Li, W. Y. Liu, J. Ma, Y. Wang, Q. Z. Qin. Electrochemical Reaction of Lithium with Cobalt Fluoride Thin Film Electrode [J]. J Electrochem Soc,2005,152:E50-E55.
    [29]J. J. Wu, Z. W. Fu. Pulsed-Laser-Deposited Sn4p3 Electrodes for Lithium-Ion Batteries [J]. J Electrochem Soc,2009,156:A22-A26.
    [30]M. Z. Xue, Z. W. Fu. Electrochemical Reaction of Lithium with Nanostructured Thin Film of Antimony Trioxide [J]. Electrochem. Commun.,2006,8:1250-1256.
    [31]Y. N. Zhou, X. J. Wu, Z. W. Fu. Electrochemical Characterization of Li3n-Si Nanocomposite Thin Films by Pulsed Laser Deposition [J]. J Electrochem Soc,2009,156:A425-A429.
    [32]A. N. Banerjee, S. Kundoo, P. Saha, K. K. Chattopadhyay. Synthesis and Characterization of Nano-Crystalline Fluorine-Doped Tin Oxide Thin Films by Sol-Gel Method [J]. J. Sol-Gel Sci. Technol.,2003,28:105-110.
    [33]E. Hosono, S. Fujihara, T. Kimura. Fabrication of Nanoparticulate Porous Laof Films through Film Growth and Thermal Decomposition of Ion-Modified Lanthanum Diacetate Hydroxide [J]. Langmuir,2004,20:3769-3774.
    [34]E. A. Reyes-Garcia, Y. P. Sun, D. Raftery. Solid-State Characterization of the Nuclear and Electronic Environments in a Boron-Fluoride Co-Doped Tio2 Visible-Light Photocatalyst [J]. J Phys Chem C,2007,111:17146-17154.
    [35]L. Armelao, G. Bottaro, L. Bovo, C. Maccato, M. Pascolini, C. Sada, E. Soini, E. Tondello. Luminescent Properties of Eu-Doped Lanthanum Oxyfluoride Sol-Gel Thin Films [J]. J Phys Chem C,2009,113:14429-14434.
    [36]R. J. Deokate, S. M. Pawar, A. V. Moholkar, V. S. Sawant, C. A. Pawar, C. H. Bhosale, K. Y. Rajpure. Spray Deposition of Highly Transparent Fluorine Doped Cadmium Oxide Thin Films [J]. Appl Surf Sci,2008,254:2187-2195.
    [37]S. S. Shinde, P. S. Shinde, S. M. Pawar, A. V. Moholkar, C. H. Bhosale, K. Y. Rajpure. Physical Properties of Transparent and Conducting Sprayed Fluorine Doped Zinc Oxide Thin Films [J]. Solid State Sci.,2008,10:1209-1214.
    [38]F. J. Brink, R. L. Withers, L. Noren. Nonstoichiometric, Rutile-Type, Solid Solutions in the (Fef2)-F-Ii-(Feof)-O-Iii System [J]. J Solid State Chem,2001,161:31-37.
    [1]D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi. Prototype Systems for Rechargeable Magnesium Batteries [J]. Nature,2000,407: 724-727.
    [2]T. D. Gregory, R. J. Hoffman, R. C. Winterton. Nonaqueous Electrochemistry of Magnesium-Applications to Energy-Storage [J]. J Electrochem Soc,1990,137:775-780.
    [3]L. Jarvis. The Beneficial Effect of Increased Cathode Water-Content on Mg/Mno2 Battery Performance [J]. J. Power Sources,1990,32:271-276.
    [4]D. Peramunage, S. Licht. A Solid Sulfur Cathode for Aqueous Batteries [J]. Science,1993, 261:1029-1032.
    [5]K. Y. Chan, R. F. Savinell. Modeling Calculations of an Aluminum-Air Cell [J]. J Electrochem Soc,1991,138:1976-1984.
    [6]S. Licht, N. Myung. A High-Energy and Power Novel Aluminum/Nickel Battery [J]. J Electrochem Soc,1995,142:L179-L182.
    [7]S. Licht, N. Myung, D. Peramupage. Ultrahigh Specific Power Electrochemistry, Exemplified by Al/Mno4-and Cd/Ago Redox Chemistry [J]. J Phys Chem B,1998,102:6780-6786.
    [8]S. Licht. A Novel Aqueous Aluminum Vertical Bar Permanganate Fuel Cell [J]. Electrochem. Commun.,1999,1:33-36.
    [9]Q. F. Li, N. J. Bjerrum. Aluminum as Anode for Energy Storage and Conversion:A Review [J]. J. Power Sources,2002,110:1-10.
    [10]R. Udhayan, D. P. Bhatt, P. B. Mathur. Investigations on N-Halogen Cyclic Ureide Based Magnesium Primary-Cell System at Various Temperatures [J]. J Appl Electrochem,1992,22: 285-292.
    [11]R. Udhayan, N. Muniyandi, P. B. Mathur. Performance-Characteristics of Magnesium-N,N'-Dichlorodimethylhydantoin Primary-Cell [J]. J. Power Sources,1991,34:303-312.
    [12]R. Udhayan, D. P. Bhatt. Corrosion of Magnesium Alloy in Aqueous Magnesium Perchlorate Battery Electrolyte-a Gasometry Study [J]. J. Power Sources,1992,39:107-112.
    [13]L. Bai, B. E. Conway. Complex Behavior of A1 Dissolution in Nonaqueous Medium as Revealed by Impedance Spectroscopy [J]. J Electrochem Soc,1990,137:3737-3747.
    [34]K. V. Rybalka, L. A. Beketaeva. Anodic-Dissolution of Aluminum in Nonaqueous Electrolytes [J]. J. Power Sources,1993,42:377-380.
    [15]S. Licht, G. Levitin, C. Yarnitzky, R. Tel-Vered. The Organic Phase for Aluminum Batteries [J]. Electrochem. Solid State Lett.,1999,2:262-264.
    [16]S. Licht, R. Tel-Vered, G. Levitin, C. Yarnitzky. Solution Activators of Aluminum Electrochemistry in Organic Media [J]. J Electrochem Soc,2000,147:496-501.
    [17]B. F. Xue, Z. W. Fu, H. Li, X. Z. Liu, S. C. Cheng, J. Yao, D. M. Li, L. Q. Chen, Q. B. Meng. Cheap and Environmentally Benign Electrochemical Energy Storage and Conversion Devices Based on Ali3 Electrolytes [J]. J. Am. Chem. Soc,2006,128:8720-8721.
    [18]Z. W. Fu, L. Yu, S. C. Cheng, J. Yao, H. Li. M/X-N (M=Al, Mg; X=Br, I) Batteries Based on Anion Transport Mechanism [J]. Electrochem. Commun.,2007,9:1-5.
    [19]S. Chaudhuri, D. Guha. Exploratory Studies on Some Electrochemical-Cell Systems [J]. J. Power Sources,1991,34:71-75.
    [20]Q. B. Meng, K. X. Li, H. Li, Y. Z. Fan, Z. X. Yu, D. M. Li, Y. H. Luo, L. Q. Chen. A New Method for Generating Hydrogen from Water [J]. Chin. Phys. Lett.,2008,25:3482-3484.
    [21]J. F. Moulder, W. F. Stickie, P. E. Sobol, K. D. Bomben. Handbook of X-Ray Photoelectron Spectroscopy Minnesota:Perkin-Elmer Corporation,1992:127.
    [22]H. X. Wang, H. Li, B. F. Xue, Z. X. Wang, Q. B. Meng, L. Q. Chen. Solid-State Composite Electrolyte Lil/3-Hydroxypropionitrile/Sio2 for Dye-Sensitized Solar Cells [J]. J. Am. Chem. Soc.,2005,127:6394-6401.
    [23]S. Q. Shi, L. F. Xu, C. Y. Ouyang, Z. X. Wang, L. Q. Chen. Iodine Ion Transport in Solid Electrolyte Lii(C3h5no)2:A First-Principles Identification [J]. Ionics,2006,12:343-347.
    [1]Klaus Finkenzeller著,陈大才编译射频识别(RFID)技术[M],广州,电子工业出版社,2006年。
    [2]RF-id tags, http://www.excellatron.com/RF-IDtags.htm,2010.
    [3]Active RFID/RTLS Applications, http://www.infinitepowersolutions.com/applications, 2010.
    [4]孙跃,杜雪飞,戴欣,苏玉刚.非接触式移动电源新技术[J]电气自动化,2003,5:11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700