用户名: 密码: 验证码:
中矿选择性分级再磨新技术磨—浮新工艺机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十一世纪人类面临资源紧缺、环境污染、生态破坏等一系列严峻的挑战。其中资源问题已成为人类社会可持续发展的主要瓶颈。有色矿山矿产资源日趋贫、细、杂,选矿作业难度增加,随着我国经济的不断发展,对高品质矿产原料的需求量不断增加,提高矿产资源回收利用率至关重要。
     文章在中矿选择性分级再磨新技术的基础上提出最大可浮粒度(Dfmax)、粗磨放粗、精细分级等选矿技术来解决当前矿山资源回收率下降,磨矿效率偏低,球磨机排矿粒度组成不合理等现实问题。粗磨放粗技术可较大幅度提高磨矿效率、磨机台时处理量,降低磨矿能耗;Dfmax、Dfmax准确分级、精细分级技术可提高分级效率,降低单位矿量的磨矿能耗,减少颗粒过粉碎,优化粒度组成,使浮选流程更加通畅,较好的解决了粗粒欠磨和细粒过磨等问题,有利于后序浮选作业。
     对球比、磨矿浓度、磨矿时间等影响因素进行探索,发现应用Dfmax准确分级做粗磨放粗和精细分级技术的闭路磨矿产品的中间粒级的含量要比相应的开路磨矿产品的中间粒级含量多,并显著减少粗粒级的含量。连续磨矿试验表明采用Dfmax、Dfmax准确分级、粗磨放粗、精细分级技术后磨矿细度从原工艺要求的-0.074mm含量65%降到60%,磨机生产能力由113公斤/小时提高到142公斤/小时,磨机生产能力相对提高25.67%。2#磨矿流程采用新技术后比1#磨矿流程分级效率相对提高104.48%;返砂比相对减少15.36%;对于大于0.25mm的粗颗粒部分减少93.75%,-0.25+0.019mm增加7.61%,-0.019mm减少8.29%,总体上能够较为显著的改善浮选的给矿粒度。
     对闭路磨矿的动力学进行研究,用磨矿动力学分析分级效率对返砂组成的影响,推导并绘制Dfmax准确分级技术下闭路磨矿的各物料粗粒级和细粒级数量图。实际矿物连续闭路磨矿表明了数据的正确性与准确性,通过与实际情况的对比和计算绘制了Dfmax=0.30mm闭路磨矿下的各物料粗粒级和细粒级数量图。引出凯索尔提出的模型,进一步针对铜矿物浮选推导了概率模型,比较ε=ε∞(1-e-Kt)与W=W0(1-P)N,发现动力学模型和概率模型归结的浮选动力具有相似性,但表述方式不一样。对浮选动力学模型进行研究,用两个数学函数拟合浮选时间和回收率的关系,发现双曲线函数拟合相关程度较好,负指数函数拟合效果次之。进一步推导n级浮选动力学反应模型,模型的公式表述如式:
     对青海省某铜矿进行浮选测定,浮选条件:pH=10,黄药浓度加入50g/t,2#油31g/t。当n=2时,t与相关系数R2=0.9988,此浮选过程遵守二级浮选动力学,K=0.0206。
     采用Dfmax、Dfmax准确分级、粗磨放粗、精细分级等技术对湖北省某铜矿安徽省某铜矿进行浮选中矿选择性分级再磨试验研究,试验结果表明:(1)湖北省某铜矿工业试验中,新流程原药剂比原流程原药剂回收率提高2.43%,新流程新药剂比原流程原药剂回收率提高4.99%。工艺矿物学研究表明新流程新药剂I系统扫选精矿黄铜矿单体解离度比原流程原药剂增加了15.00%。新流程新药剂II系统扫选精矿黄铜矿单体解离度比原流程原药剂增加了7.10%。中矿再磨后(分级溢流)比中矿再磨前(再磨给矿)黄铜矿单体解离度增加36.54%。黄铁矿、辉钼矿等解离度也有较大程度增加,新流程的中矿解离度增加是取得好的回收率的关键。拉曼光谱分析表明通过中矿再磨,使得中矿连生矿物能够有效被“打开”,中矿的解离度大大增加。红外光谱分析表明在新药剂PLQ作用下,应用中矿选择性分级再磨新技术进行浮选,矿石的表面化学成分有所改变,生成金属-硫化物螯合物,从机理上说明矿物的可浮性增强是化学螯合与物理吸附的协同作用的结果。(2)安徽省某铜矿试验中,闭路磨矿原药剂流程浮选精矿铜品位为21.59%,回收率为90.73%,比原流程开路磨矿浮选回收率提高1.44%;半优先“闭路磨矿+中矿再磨”原药剂流程浮选精矿铜品位为22.86%,回收率为92.73%,比原流程开路磨矿浮选铜品位提高0.71%,铜回收率提高3.44%;半优先“闭路磨矿+中矿再磨”新药剂PLQ-4流程浮选精矿铜品位为22.80%,回收率为94.89%,比原流程开路磨矿浮选铜品位提高0.70%,铜回收率提高5.60%。
Mankind is faced with problems of environment and resources, and ecological damage in the 21st century. The shortage of resources has become main bottlenecks of sustainable development. Under the background of available nonferrous metal mineral resources apt to poor、tiny and complex, beneficiation process became more and more difficult, as economic development and demand of high quality mineral resources, It is highly important to increase recovery of mineral resources.
     To solve current realistic issues such as declining recovery in resources, lower grinding efficiency, unreasonable grain sizes of milling discharged particles, the paper proposed technology concepts based on selective regrinding of flotation middling(SRFM) including flotation maximum diameter (Dfmax), coarser milling, fine classification, etc.. Dfmax and fine classification could improve separation efficiency, reduce energy consumption of unit ore; decrease amount of more shattered particles. It could be beneficial to following flotation because the new process markedly decrease amount of coarse particles, optimize grain size, settle the problem of coarse particles without crushing and fine coarsely milled particles by adopting above new technology.
     Exploring the ball ratio, ground pulp density, grinding time, etc., it was found that intermediate size minerals were shut down by flotation maximum diameter(Dfmax), coarser milling, fine classification technology than in the corresponding open-circuit grinding process. Continuous grinding test shown that milling size -0.074mm was reduced from 65% to 60% in original flowsheet by using new technology; Milling production capacity from 113 to 142 kilograms per hour, production capacity is relatively higher 25.67%; in 2# milling process, the separation efficiency was relatively higher 104.48% in 1# milling process, and the returning sand ratio was relatively less than 15.36%, than 3% about 25mm; the amount of particles reduced 93.75% for greater than 0.25mm size, increased 7.61% for between 0.25 and 0.019mm size, reduced 8.29% for less than 0.019mm size. New milling technology could improved feeding granularity overall.
     It was researched that separation efficiency influenced on returning sand ratio in closed-circuit, moreover formulated number assigned formula between coarse and fine particles, continuous grinding test shown the results were correct and accuracy, with the experiment contrast and draw up number assigned figure when Dfmax was 0.30mm. Introduced Kelsall model, and further deduced flotation model for copper ore, the paper comparedε=(1-e-Kt) with W=W0(1-P)N, and found flotation power was affinities between kinetic model and probabilistic model. Two mathematical functions were fitted to flotation time and recovery in the flotation kinetic model research, it was found that hyperbolic function was better than exponential function, the N—level flotation kinetic model formula as:
     For QINGHAI copper, flotation conditions was pH equal 10, and sodium butyl xanthates concentration 50g/t, abies oil 31g/t. When N equal 2, the correlation coefficient R2=0.9988, and K=0.0206.
     The paper made use of technology including flotation maximum diameter(Dfmax), coarser milling, fine classification, based on SRFM to investigate and analyze HUBEI copper mine, ANHUI copper mine. It were shown that as following, (1) in HUBEI copper mine experiment, the recovery of copper in new technology and original reagent parameter process was higher 2.43% than in old technology and original reagent parameter process, moreover the recovery in new technology and new reagent parameter process was higher 4.99% than in old technology and original reagent parameter process. (2) in ANHUI copper mine experiment, the grade of copper in closed-circuit milling with original reagent parameter process was 21.59%, recovery was 90.73%, the recovery was higher 1.44% than in old technology with open-circuit milling. The grade 22.86% and recovery 92.73% were achieved in Partly prior flotation with original reagent parameter process, the recovery was higher 3.44% than in old technology. The grade 22.80% and recovery 94.89% were achieved in Partly prior flotation with new reagent parameter process, the recovery was higher 5.60% than in old technology.
引文
[1]王淀佐.硫化矿浮选与矿浆电位(中国工程院院十文库)[M].北京:高等教育出版社,2008:1-2
    [2]胡岳华,孙伟,王淀佐.硫化矿浮选电化学[M].北京:清华大学出版社,2009:2-3
    [3]王淀佐,孙水裕,李柏淡.硫化矿电化学调控浮选及无捕收剂浮选的理论与应用(II)从硫化矿浮选的发展方向看电化学调控浮选[J].国外金属矿选矿,1992,29(2):9-13
    [4]王淀佐,孙水裕,李柏淡,硫化矿电化学调控浮选及无捕收剂浮选的理论与应用(I)总论[J].国外金属矿选矿,1992,29(2):1-8
    [5]D·W·富尔斯特瑙,魏明安,李长根.浮选百年[J].国外金属矿选矿,2001,39(3):2-9
    [6]Barsky G. Principles of flotation[J]. Trans. Am. Inst.Min. Metal,1934,112:236-262
    [7]Radyushkina K.A., VigdergauzV.E., Tarasevich M.R., et al. Electrotchemistry of sulphide minerals. Surfaceredox transformations of chalcopyrite and chalcocite in aqueous solutions of electrolytes[J]. Electrokhimiya,1936,22 (11):1491-1496
    [8]王淀佐.浮选理论的新进展[M].北京:科学出版社,1992:79-90,128-135
    [9]王淀佐,龙翔云,孙水裕.硫化矿的氧化于浮选机理的量子化学研究[J].中国有色金属学报,1991,1(1):15-23
    [10]Salamy S G, Nixon J G. The application of electrochemical methods to flotation research In: Recent developments in mineral dressing[M]. London:Institution of Mining and Metallurgy, 1953:503-516
    [11]Salamy S G, Nixon J G. Reaction between mercury surface and some flotation reagents: on electrochemieal study [J]. Aust. J. Ch-em.,1954,7:146-156
    [12]北京正点国际投资咨询有限公司.2010-2015年中国铜行业投资分析及前景预测报告[R].2010
    [13]匿名.我国矿产资源供需形势及发展趋势[EB/OL]. 2007-07-25 [2010-06-06].http://www.jzfyhg.com/html/16/221.html.
    [14]匿名.中国金属矿产储量及世界排名情况-深度分析[EB/OL]. 2010-01-18[2010-06-03].http://www.chinacir.com.cn/ywzx/2010118100657.shtml.
    [15]陈家模.多金属硫化矿浮选分离[M].贵阳:贵州科技出版社,2001:1
    [16]王资.浮游选矿技术[M].北京:冶金工业出版社,2006:126
    [17]许时.矿石可选性研究(第二版)[M].北京:冶金工业出版社,1989:49
    [18]《选矿手册》编辑委员会.选矿手册(第一卷)[M].北京:冶金工业出版社,1991:17
    [19]魏德洲.固体物料分选学(第二版)[M].北京:冶金工业出版社,2009:3
    [20]段希祥.选择性磨碎及其在选矿上的意义[J].金属矿山I,1986,21(4):28-33
    [21]段希祥.选择性磨矿的应用研究[J].云南冶金,1990,19(3):21-24
    [22]段希祥,周平,潘新潮.球磨机精确化装补球方法[J].有色金属,2004,56(3):75-78
    [23]肖庆飞,李桂海,石贵明,等.精确化补球法在狮子山铜矿的应用[J].金属矿山,2007,42(12):68-71
    [24]王春,马丽珍.精确化装补球方法在大红山铜矿选矿厂的应用研究[J].云南冶金,2005,34(1):16-20
    [25]潘新潮,段希祥,范勇.精确化装补球制度在金平镍矿磨矿中的应用[J].有色金属(选矿部分),2003,55(5):37-40
    [26]段希祥.球磨机钢球尺寸的理论计算研究[J].中国科学A辑,1989,19(8):856-863
    [27]段希祥.钢球直径半理论公式的修正研究[J].中国科学E辑,1997,57(12):510-515
    [28]冯其明.硫化矿物浮选电化学[M].长沙:中南工业大学出版社,1992:1-5
    [29]冯其明.硫化矿物浮选矿浆电化学理论及工艺研究[D].中南工业大学博十学位论文,1990
    [30]R. Woods, C. A. Young, R. H. Yoon. Ethyl xanthate chemisorption isotherms and Eh-pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems[J]. International Journal of Mineral Processing,1990,30 (1-2):17-33
    [31]R. Woods. Electrochemical potential controlling flotation[J]. International Journal of Mineral Processing,2003,72 (1-4):151-162
    [32]J.A. Kitchener, R.J. Gochin. The mechanism of dissolved air flotation for potable water: basic analysis and a proposal[J]. Water Research,1981,15 (5):585-590
    [33]顾帼华.硫化矿磨矿-浮选体系中的氧化-还原反应与原生电位浮选[D].中南工业大学博十学位论文,1998
    [34]王淀佐.新世纪的有色金属选冶科技(中国有色金属学会第三届学术会议论文集)[c].长沙:中南工业大学出版社,1997:53-59
    [35]覃文庆,邱冠周,徐竞,等.磨矿过程硫化矿物表面电化学性质及其对浮选的影响[J].矿产综合利用,1999,20(3):6-10
    [36]Erdemoglu M, Sarkaya M. The effect of grinding on pyrophyllite flotation[J]. Minerals Engineering,2002,1 (10):723-725
    [37]Ekmekci Z, Buswell M A, Bradshaw D J. The value and limitations of electrochemical measurements in flotation of precious metal ores[J]. Minerals Engineering,2005,18 (8): 825-831.
    [38]GU Guo-hua, DAI Jing-pin, WANG Hui, et al. Galvanic coupling and its effect on origin potential flotation system of sulfide minerals[J]. J Cent South Univ Technol,2004, 11 (3):275-279
    [39]李柏淡,孙水裕,王云楚.硫化铜矿石诱导浮选新工艺的设计和研究[J].江西有色金属,1991,5(3):151-155
    [40]冯其明,陈草.硫化矿物浮选电化学[M].长沙:中南工业大学出版社,1992:1-2,84-85,77-79
    [41]王淀佐,胡岳华,李柏淡.硫化矿物无捕收剂浮选对经典浮选理论的挑战[J].有色金属,1992,44(1):22-27
    [42]卢寿慈.矿物浮选原理[M].北京:冶金工业出版社,1988
    [43]孙水裕,王淀佐,李柏淡.砷黄铁矿硫化钠诱导浮选的研究[J].中南矿冶学院学报,1993,24(2):187-192
    [44]孙水裕,李柏淡,王淀佐.硫化矿无捕收剂浮选,[J]中南矿冶学院学报,1990,21(5):473-478
    [45]孙水裕,王淀佐,李柏淡.硫化钠电化学调控浮选的研究[J].有色矿冶,1993,9(2)15-18
    [46]孙水裕,李柏淡,王淀佐.硫化矿浮选抑制的电化学研究[J].有色矿冶,1990,6(2):16-19
    [47]孙水裕,王淀佐,李柏淡.硫化矿物表面氧化的研究[J].有色金属,1993,45(14):32-37
    [48]孙水裕,王淀佐,李柏淡.砷黄铁矿自诱导浮选的研究[J].中南矿冶学院报,1993,24(2):181-186
    [49]胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988
    [50]Gardner J.R., Woods R.. A study of the surface oxidation of galena usingcyclic voltammeter[J]. electroanal. Chem. Interfacial. Electrochem,1979,100:447-459
    [51]G.H. Kellsall, W.Dage. Aspects of chalcopyrite electrochemistry. In:P.E.Richardson (editor). Electrochemistry in Mineral and Metal Processing[J]. The Electrochemical Society,1984, 303-320
    [52]Biegler T., Home M.D.. The electrochemistry of surface oxidation of chalcopyrite[J]. Journal of the Electrochemical Society,1985,132:1363-1369
    [53]R.Woods. The oxidation of etheylxanthate to the mechanism of mined flotation[J]. Phs. Chem.,1971,75:354-362
    [54]J.P. Friend, J.A. Kitchener. Some physico-chemical aspects of the separation of finely-divided minerals by selective flocculation[J]. Chemical Engineering Science,1973, 28 (4):1071-1080
    [55]J.Ralston. The chemistry of galena flotation: Principles&Practice[J]. Mineral Engineering, 1994,5:715-735
    [56]Yoon R H., Basilio C I. Adsorption of thin collectors on the sulfide minerals and precious metals-a new perspective[C]. Proc.18th Int. Miner. Process. Congr.. Syney, Australas. Inst. Min. metal.1993:611-617
    [57]J.O.Leppinen. FTIR and flotation investigation of the adsorption of ethyl xanthate on activated and non-activated sulfide minerals[J]. Int. J. Miner. Process,1990,30:245-263
    [58]彭会清.中矿选择性分级再磨新技术[P].中国,CN98113134.4,1998-10-7
    [59]刘江浩,彭会清,刘建国.中矿选择性分级再磨新技术的工业应用[J].矿产综合利用,1999,20(2):12-15
    [60]刘建国,吴一微.中矿选择分级再磨浮选新工艺的研究与应用[J].有色金属(选矿部分),2002,54(2):20-21
    [61]武培勇,张启富,宋绍辉.中矿选择性再磨在凤凰山铜矿的应用研究[J].金属矿山,2004,37(1):44-46
    [62]彭会清,胡海祥,李骥,等.浮选中矿选择性分级再磨新技术机理研究[J].矿业研究与开发,2010,30(5):29-34
    [63]黄开国.分支浮选的进展及应用[J].有色金属(选矿部分),1991,43(2):22-28
    [64]张宏福,彭运军.提高浮选指标的有效途径-分支工艺流程在浮选中的应用[J].湖南有色金属,1987,3(2):8-12
    [65]B·A-波恰洛夫,吴剑利.根据矿物分步解离和分步分离原理联合处理硫化矿石[J].国外金属矿选矿,2002,39(11):26-30,25
    [66]谭欣,范先锋.应用新药剂和新工艺提高铜钼混合精矿中铝回收指标的研究与实践[J].中国钼业,1998,22(5):20-23
    [67]胡为柏.分选效率怎么算?[J].有色金属(冶炼部分),1975,25(6):40-50
    [68]许时.关于“分选效率怎么算”的几点补充看法[J].有色金属,1979,31(1):38-43
    [69]哀领群,曹菁.关于“分选效率怎么算”看法再补充[J].有色金属(选矿部分),1981,33(3):51-54
    [70]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993:1-6,226-233
    [71]段希祥.碎矿与磨矿(第2版)[M].北京:冶金工业出版社,2006:125
    [72]杨家文.碎矿与磨矿技术[M].北京:冶金工业出版社,2006:142-144
    [73]王淀佐,卢寿慈,陈清如,等.矿物加工学[M].徐州:中国矿业大学出版社,2003
    [74]彭会清,胡海祥,李骥,等.浮选中矿选择性分级再磨新技术机理研究[J].矿业研究与开发,2010,30(5):29-34
    [75]彭会清,李骥,罗鸣坤,等.浮选中矿选择性分级再磨浮选机理研究[J].金属矿山,2009,45(3):61-65
    [76]胡海祥,李广,李骥.提高某铜选厂一段选铜回收率的新工艺试验研究[J].矿业研究与开发,2010,30(4):22-26
    [77]段希祥.选择性磨矿及其应用[M].北京:冶金工业出版社,1991:33,62-63
    [78]Tatu Miettinen, John Ralston, Daniel Fornasiero. The limits of fine particle flotation[J]. Minerals Engineering,2010 (23):420-437
    [79]B. Klein, N. Emre Altun, H. Ghaffari, et al. A hybrid flotation-gravity circuit for improved metal recovery[J]. International Journal of Mineral Processing,2010,94(3-4):159-165
    [80]胡海祥,李广.中矿再磨提高高硫铜矿石选铜回收率的试验研究[J].矿山机械,2010,38(19):36-37
    [81]HU Haixiang, LIU Ganlin, ZHAO Na, et al. Experimental of Flocculation- sedimentation Aids in Drainage Treatment from Copper Election Process[C]. International Conference on Bioinformatics and Biomedical Engineering,2010
    [82]HU Haixiang. Neutralizing-Sedimentation with Flocculation Process for Acid Mine Drainage Treatment[C]. International Workshop on Architecture, Civil and Environmental Engineering,2011
    [83]赵俊哲,吕新彪.高压下白云石的原位拉曼光谱研究[J].岩矿测试,2008,27(5):337-340
    [84]Bischoff William D, Sharma Shiv K, Machenzie Fred T. Carbonate ion disorder in synthetic and biogenic magnesian calcites; A Raman spectral study[J]. American Mi neralogist,1985,70:581-589
    [85]Gillet P H, Biellmann C L, Reynard B R, et al. Raman spectroscopic studies of carbonates part 1:high-pressure and high-temperature behaviour of calcate, mganesite, dolomite and aragnnite[J]. Phys Chem Minerals,1993,20:1-18
    [86]Gretel K. Parker, Gregory A. Hope, Ronald Woods. Gold-enhanced Raman observation of chalcopyrite leaching[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,325, (3):132-140
    [87]GretelK.Parker, Ronald Woods, Gregory A. Hope. Raman investigation of chalcopyrite oxidation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008, 318 (1-3):160-168
    [88]F.W.Ohrendorf, H.Haeuseler. Lattice dynamics of chalcopyrite type com-pounds. Part Ⅰ. Vibrational frequencies[J]. Cryst. Res. Technol,1999,34:339-349
    [89]T.P.Mernagh, A.G.Trudu. Alaser Raman microprobe study of some geologically important sulphide minerals[J]. Chem.Geol,1993,103:113-127
    [90]J. Li, X. Zhu, M. E. Wadsworth. Raman Spectroscopy of natural and oxidized metal sulfides, in:J.P.Hager(Ed.), EPD Congress, The Minerals[C]. Metals and Materials Society, Denver, 1993,229-244
    [91]贾建业,朱自尊,潘兆橹,等.含金黄铁矿的拉曼光谱特征及其找矿意义初探[J].地球科学,1997,41(6):2-5
    [92]王蓉,张保民.辉石的拉曼光谱[J].光谱学与光谱分析,2010,30(2):376-381
    [93]陈辉,尤静林,蒋国吕,等.硅酸盐熔体高温Raman光谱定量分析中若干问题的探讨[J].光散射学报,2004,16(2):99-102
    [94]颜世永,周瑶琪,陈勇.高温下辉石和橄榄石的激光拉曼光谱研究[J].光散射学报,2004,16(4):325-331
    [95]汪立今,柴凤梅,王德强.新疆某地宝石级透辉石拉曼光谱及基本特征初探[J].新疆大学学报(自然科学版),2002,28(3):341-343
    [96]吴红丹,于吉顺,张锦化,等.不同产地煤系高岭土的结晶度及有序度研究[J].非金属矿,2010,37(4):24-27
    [97]康彪,杨青芳,梁建峰,等.颜面赝复体粘接剂的红外光谱分析[J].光谱学与光谱分析,2008,28(10):2296-2298
    [98]刘丽华,张培萍,李宪州.蒙药饭石膏的红外光谱分析及药用再研讨[J].广东微量元素科学,2002,9(6):56-58
    [99]钟白茜,程麟.用红外光谱分析钙矾石的转变[J].南京工业大学学报(自然科学版),1983,5(1):115-120
    [100]蔡佳,刘春花,余晓艳.新疆吐鲁番珊瑚化石的宝石学特征及开发前景[J].宝石和宝石学杂志,2008,10(2):13-16
    [101]宋锐,何领好,谢巧丽,杨浩.碳酸钙在水溶性甲壳素溶液中的结晶行为[J].光谱学与光谱分析,2007,27(7):1388-1392
    [102]陈传宝,张群,方亮.天冬氨酸对碳酸钙形貌和晶型的控制[J].安庆师范学院学报(自然科学版),2008,27(2):45-47
    [103]孙凤久,楼丹花,李莉娟.方解石晶体振动模式群论分析和红外光谱的DFT[J]东北大学学报(自然科学版),2008,54(1):145-148
    [104]张春艳,谢安建,沈玉华,等.聚乙二醇对碳酸钙晶体生长影响的研究[J].安徽大学学报(自然科学版),2008,49(1):74-77
    [105]王来生.一种极纯透辉石的发现及其研究意义[J].西北地质科学,1987,8(5):75-81
    [106]朱玉霜,朱建光.浮选药剂的化学原理(修订版)[M].长沙:中南工业大学出版社,1996:19-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700