用户名: 密码: 验证码:
若干二元金属间化合物电子结构、弹性和热力学性质的密度泛函研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的目标是利用密度泛函理论和准近谐德拜理论,研究具有典型代表性的二元金属间化合物的电子结构、热力学和弹塑性力学等性能,以及替位掺杂对材料性能的影响。本文计算了高温结构金属间化合物Ti-Al二元系及其Mn、Nb掺杂体系的弹塑性、弹性模量、电子结构等,分析了替位掺杂对几何结构、电子结构和键强的影响;计算了Al-Sc系四个二元相的电子结构、生成焓、德拜温度、弹性系数(含模量)和自由能,分析了AlSc和Al3Sc在高压下的弹性性质;计算了Ti-B系的电子结构和TiBx(x=1、2,常压下)及Ti1-xZrxB2(高压工况下)的力学参数和热力学参数,分析了压力变化对Ti-Zr-B金属间化合物体系的力学和热力学性质的影响,如弹性系数、各项异性、德拜温度和热熔等;设计并计算了新型超导材料Mg1-xZnxB2的电子结构和弹性系数等,并在推导得到的基于Mc-Millan公式的Tc从头算公式基础上,计算了不同Zn掺杂情况下的超导转变温度Tc,并分析了Zn掺杂对Mg-Zn-B金属间化合物体系力学性能的影响。
     本文较为系统的计算了上述二元体系及其掺杂系的电子态密度、体弹模量B、弹性系数Cij、德拜温度ΘD、生成焓Ho、结合能Ecoh、热熔、自由能和Tc参量等,计算数据与已知可对比的试验数据符合良好,许多计算结果和分析结论具有独创性和良好的理论指导价值。主要的研究结果表明:
     四方相TiAl中的Nb替位Ti的掺杂,在几何结构上对体系塑性性能的影响不大,但电子结构计算和布局分析表明,Nb掺杂降低了体系共价性和方向性,并提出当Nb掺杂的摩尔含量在8.33%-12.5%时有利于室温塑性的改善。Mn替Al位掺杂TiAl3后(Ti3Al8Mn)降低了由Al-Al共价键和A12p-Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而也改善其室温脆性。
     Al-Sc系二元化合物中Al2Sc和Al3Sc结构最为稳定。OK时Al2Sc合金化形成能力最强,AlSc2最差;高温下Al2Sc结构稳定性最强,而AlSc2结构稳定性最差。研究了高压下的立方相AISc和Al3Sc的弹性系数对压力具有相似的敏感性。由于Al3Sc的各向异性弱于AISc,因此随压力的增高,Al3Sc的脆塑性转变程度不大,AISc体系的脆塑性则较大的依赖于压力的变化,随着压力的增大其塑性性能提升。
     TiB2的电子成键情况较之TiB更为复杂,研究发现,TiB2的价带显示了明显的抛物线形和类sp带的特征,且非局域程度及其共价性也比TiB大。压力作用下,六方TiB2和Ti1-xZrxB2的弹性系数敏感度存在差异,掺Zr体系的剪切各向异性因子A2存在“跃变”现象,且压力对体系脆-塑转变起到了重要推动作用;另一方面,Zr的掺杂也降低了TiB2的各向异性,体系延塑性逐渐增大,但整体仍呈现出脆性性质。热力学方面,重新较为系统的估算了Ti-B和Ti-Zr-B系的热力学参量,计算表明,TiB热熔值在所有温度下都是最大的,TiB2最小,而Ti1-xZrxB2得热熔值则居于两者之间;随着压力的增大,Ti1-xZrxB2各相的德拜温度近似线性增大,并且德拜温度值随着Zr掺杂量的增大而逐步降低。
     较为系统的对超导二元化合物MgB2进行了掺Zn的计算研究,结果表明,随着Zn量的增大,体系的晶格参数a和c明显拉长,且呈现出先增大后减小的情况;对于电子结构,纯态的MgB2费米面处主要是B原子的P电子共价成键,Mg2+离子降低了π带,使B原子形成近满的空穴型6带,进而增强了电声耦合作用;Zn掺杂后,影响了费密能级处的总态密度Ef等,直接影响了MgB2声子频率和电声耦合强度,研究认为Zn的替位掺杂有利于超导转变温度Tc的增大。采用自行推导得到的Tc公式计算表明,随着Zn量的增多,超导转变温度Tc先逐步升高,即当Zn掺杂量x值为0.0833和0.125时,体系的超导转变温度分别上升0.716K和0.108K,而当Zn含量继续增大时,体系的超导机制部分破坏从而Tc迅速降低。同时,随着Zn掺杂量的增大,体系的剪切各项异性A2和压缩各项异性A3整体呈现微弱的下降趋势,当Zn掺杂量x为0.14左右时,体系出现脆-塑转变现象。
The purpose of this dissertation is to demonstrate the electronic structure, thermodynamic and mechanical properties and Elemen doping performance of the typically representative binary intermetallic compounds, by using density functional theory and the quasi-harmonic Debye theory.
     The plastic, elastic modulus, electronic structure of the high-temperature Ti-Al intermetallic compounds and its Mn-doping, Nb-doping system are calculated, the affect of the doping on the geometric structure, electronic structure and the bond strength are analyzed. The electronic structure, formation enthalpy (binding energy), Debye temperature, elastic coefficient (including modulus) and the free energy of the Al-Sc binary compounds are calculated, the elastic properties of AlSc and Al3Sc in high-pressure are obtained. The electronic structure and the thermodynamic parameters of Ti-B binary compounds are calculated, the mechanical parameters and thermodynamic parameters of TiBx in atmospheric pressure and Ti1-xZrxB2 in high pressure are calculated. And the affect of the mechanical and thermodynamic properties of the Ti-Zr-B system are discussed, such as elastic coefficient, anisotropy, Debye temperature and heat capacity. The electronic structure and elastic coefficient of the Mg1-xZnxB2 s uperconducting intermetallic compounds are calculated, the ab initio formula of the Tc is derived according to the Mc-Millan's formula by BCS theory, which is used to calculate the Tc. The mechanical properties of Zn-doping on the Mg-B binary compounds are analyzed.
     This calculated parameters, such as DOS, bulk modulus, elastic coefficient, Debye temperature, enthalpy of formation, binding energy, heat capacity, the free energy andμ*(λ),et al, are in good agreement with the known experimental data, many calculated results of the paper have originality and the good reference value.
     It is found that:
     The plastic properties of the Ti-Al-Nb are not affected by the geometric structure of the tetragonal TiAl by Nb-doping in Ti site, but the electronic structure calculations and population analysis shows that Nb doping reduced the total covalence and direction of the ternary, and the room temperature plasticity is conducive to improved with the Nb content of 8.33%-12.5%. Mn doping in Al site in TiAl3 (Ti3Al8Mn) reduced the anisotropy of the key and the dislocation energy barrier which caused by the Al-Al covalent bond and A12p-Ti3d hybrid bond, and thus improve its room temperature brittleness.
     Al2Sc and Al3Sc are the most stable structure in Al-Sc binary compounds. The alloy's forming ability of Al2Sc is the strongest one at 0 K, but the AlSc2 is the worst one, as well as their structural stability at high temperatures. The elasticity coefficients of AlSc and Al3Sc with cubic phase have the similar sensitivity for the pressure. The anisotropy of Al3Sc is weaker than AlSc, thus the brittle-plastic transition of Al3Sc with the increasing pressure is not great, but the brittle-plastic transition of AlSc is larger depends on the pressure and the plastic could be upgraded as pressure increases.
     The electronic structure of TiB2 is more complex than that of TiB, the valence band of TiB2 shows a clear characteristic of parabolic and like-sp band, meanwhile, the degree of non-localization and covalence of TiB2 is larger than that of TiB. The elastic coefficients of the hexagonal TiB2 and Ti1-xZrxB2 have different sensitivity for the pressure. The shear anisotropy factor A2 of the Ti-Zr-B ternary has a special phenomenon which called "jump", and the pressure plays an important role in the transition from brittle to ductile. On the other hand, Zr doping reduces the anisotropy of TiB2, the plastic of Ti-Zr-B increased gradually, the thermodynamic parameters of Ti-B and Ti-Zr-B systems are re-estimated systematically, the results show that the heat capacities of TiB are the biggest at all temperatures, on the contrary of TiB2, while the data of Ti1-xZrxB2 are located between TiB and TiB2. The Debye temperature of Ti1-xZrxB2 increases linearly as the pressure increases, and the value of Debye temperature decreased with the increase of Zr doping content.
     The the lattice parameters (a and c) of MgB2 is significantly elongated by Zn doped. The DOS of Fermi energy of MgB2 is mainly provided by the p electrons of B and form covalent bonds, Mg+2 ions reduce theπband and the hole-typeσband of B atoms is nearly full, thus enhancing the electron-phonon coupling; the Fermi level Ef is impacted by Zn doped, which directly affect the frequency of phonon of the MgB2 and the strength of the electron-phonon coupling. It is suggested that the Zn doping is benefit for the increasing of the superconducting transition temperature Tc. The calculation shows that with the increase of Zn content, the superconducting transition temperature Tc increases at first, and the theoretical value of Tc can increase 0.716K and 0.108K when x is equal to 0.0833 and 0.125, respectively; and then the Tc decreases rapidly with the increase of Zn content. Meanwhile, the anisotropy of shear and compression takes on a slight downward trend. When the x of Zn doping is about 0.14, the system exhibits brittle-plastic changes in behavior.
引文
[1]Dierk R. Computational Materials science. (ISBN:3-527-29541-0). Weinheim: WILEY-VCH Verlag GmbH,1998,10-11.
    [2]黄美纯.密度泛函理论的若干进展.物理学进展,2000,20(3):199-219
    [3]Computational and Theoretical Techniques for Materials Science. National Academy of Sciences,1995:21-22.
    [4]郭景坤.陶瓷晶界应力设计.无机材料学报,1995,10(1):27-31
    [5]Allen M P, Tildesley D J. Computer Simulation of Liquids, Oxford:Clarendon, 1987,44-45
    [6]Xiao J, Lu J F,Chen J, et al. Molecular dynamics simulation of diffusion coefficients of oxygen, nitrogen and sodium chloride in supercritical water. Chin Phys Lett,2001,18(7):847-849
    [7]Anderson M, Grest G S, Srolovitz D J. Grain growth in three dimensions:a lattice model. Scripta Metallurgica,1985,19(2):225-230
    [8]温俊芹,刘新田.蒙特卡罗方法及其在晶粒生长模拟中的研究进展.焊接技术,2002,31(2):1-3
    [9]廖奕,苏忠民,仇永清.BeQ_2衍生物中金属配体间相互作用对前线分子轨道和非线性光学性质影响的理论研究.高等学校化学学报.2003,24(7):1289-1292
    [10]莫依,黎乐民.对体系局部进行高精度量子化学计算的研究.物理化学学报,2002,18(08):716-720
    [11]David C.Young. Computational Chemistry. John Wiley&Sons, Inc.2001,25-29
    [12]Galantucci L M, Tricarico L. Thermo-mechanical simulation of a rolling process with an FEM approach. Jounal of Material Processing technology,1999, 92:494-501
    [13]张健飞,姜弘道.有限元并行计算的预处理.计算力学学报,2003,20(4):500-503
    [14]Kaufman L, Turchi P E A, Huang W, et al. Thermodynamics of the Cr-Ta-W system by combining the Ab initio and CALPHAD methods. CALPHAD,2001, 25(3):419-433
    [15]Abe T, Ying Chen, Yamabe-Mitarai Y,et al. Combined ab initio/CALPHAD modeling of fcc-based phase-equilibria in the Ir-Nb system. CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry,2008,32(2): 353-360
    [16]Mathon M, Connetable D, Sundman B,et al. Calphad-type assessment of the Fe-Nb-Ni ternary system. CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry,2009,33(1):136-161
    [17]Liu Z K, Zhong Y, Schlom D G. Computational Thermodynamic Modeling of the Mg-B System. Calphad,2001,25(2):299-303
    [18]Arroyave R, van de Walle A, Liu Z K. First-principles calculations of the Zn-Zr system. Acta Materialia,2006 (54):473-482
    [19]Zhang H, Wang Y, Liu Z K. Thermodynamic modeling of Mg-Ca-Ce system by combining first-principles and CALPHAD method. Journal of Alloys and Compounds,2008,463(1-2):294-301
    [20]Dewar M J S, Zoebisch E G, Healy E F. AM1:a new general purpose quantum mechanical molecular model. J. Am. Chem. Soc.,1985,107 (13):3902-3909
    [21]A P Sutton, R W Balluffi. Interfaces in Crystalline Materials[M]. Clarendon Press, Oxford,1995,132-134
    [22]Volkmar Gerold. Materials Science and Technology, Volume 1:Structure of Solids[M]. Wiley-VCH, ISBN 3-527-26814-6,1996,621-624
    [23]G C Abell. Empirical chemical pseudopotential theory of molecular and metallic bonding. Phys. Rev. B,1985,31(10):6184-6196
    [24]Zerner M C, Loew G H, Kirchner R F. An intermediate neglect of differential overlap technique for spect roscopy of t ransition-metal complexes ferrocene. J. Am. Chem. Soc.,1980,102 (2):589-599
    [25]Dewar M J S, Thiel W. Ground States of Molecules:The MNDO Method Approximations and Parameters. J. Amer. Chem. Soc.,1977,99(15):4899-4907
    [26]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review,1964, 136(3B):864-871
    [27]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. A,1965,140(4A):1133-1138
    [28]Sabirov R K h. Self-consistent calculation of the electriostatic potentials of atoms and ions. Soviet Physics Journal,1984,9(27):788-796
    [29]Tang Wenhui(汤文辉),Zhang Ruoqi(张若棋).Theory and Calculation for State of Matter Equation(物态方程理论及计算概论)[M]. Changsha:Press of National University of Defense Technology,1999,67-71
    [30]Percus J K. In the Equilibrium Theory of Classical Fluids[M]. Edited by H.L. Frisch and A. New York:L.Lebowitz Benjamin,1964,113-119.
    [31]Mel Levy. Universal variational functional of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Physics,1979,76(12):6062-6065
    [32]Car R, Parrinello M. Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett.,1985,55:2471-2474
    [33]Car R. Modeling materials by ab-initio molecular dynamics. In:chelikowsky J R, Louie S G. Quantum theory of real materials[M]. Kluwer Academic Publishers, 1996:57-94
    [34]Hume R W, Mabbot G W, Channel-Evans K M. Enthalpies formation dependence of electrons. Philos.Trans.R.Soc.London,1934,233(1):1009-1016
    [35]Darken L S, Gurry F W. Proceeding of the Symposium Theory of Alloy Phase Formation[M]. Edited by L.D.Bennet, New Orleans,1979,86-91
    [36]Miedema A R, De-Boer F R, Boom R. Predicting heat effects in alloys, Physics B,1980,103B:67-75
    [37]Du Yong, Schuster, Julius Clemens, et al. A thermodynamic description of the Al-Fe-Si system over the whole composition and temperature ranges via a hybrid approach of CALPHAD and key experiments. Intermetallics,2008,16(4): 554-570
    [38]Chen X Q, Li H L, Ding X Y, et al. A new thermodynamic calculation method for binary alloys Ⅱ.Exploring the correction factor function. J. Mater. Sci. Technol.,2002,18(4):328-331
    [39]余胜文,王为,徐赫,等.Al-Mg-Sc合金中热力学平衡相的计算.中国有色金属学报,2006,16(3):505-510
    [40]Chen X Q, Witusiewicz V T, Sommer F, et al. Computational and experimental study of phase stability, cohesive properties, magnetism and electronic structure of TiMn2. Acta. Mater.,2003,51:1239-1247
    [41]陈星秋,严新林,丁学勇,等.化合物生成焓:一百年和密度泛函基量子机制的原子模型新时代.中国稀土学报,2004,22(SI):1-7
    [42]汤振雷,王为.计算合金系统热力学性质的Miedema模型的发展.材料导报,2008,22(3):115-118
    [43]Chen X Q, Wolf W, Podloucky R, et al. Comment on "Enthalpies of formation of binary laves phases". Intermetallics,2004,12:59-64
    [44]Saunders N, Miodownik A P. CALPHAD(Calculation of Phase Diagrams)—A comprehensive guide[M], Great Britain:Elsevier Science Ltd,1998,7-9
    [45]Fabrichnaya O, Seifert H J. Assessment of thermodynamic functions in the ZrO2-Sm2O3-Al2O3 system. Journal of Alloys and Compounds,2009, 475(1-2):86-95
    [46]马兹希拉特.合金热力学和扩散[M].北京:冶金工业出版社,1984,21-22
    [47]Spencer P J. A brief history of CALPHAD. Calphad:Computer Coupling of Phase Diagrams and Thermochemistry,2008,32(1):1-8
    [48]Ohno Munekazu, Yoh Kanji. Thermodynamic calculation of phase equilibria in As-Fe-In ternary system based on CALPHAD approach. Materials Transactions, 2009,50(5):1202-1207
    [49]Palumbo M. Thermodynamics of martensitic transformations in the framework of the CALPHAD approach. CALPHAD,2008,32(4):693-708
    [50]Ohtani H, Hanaya N, Hasebe M. Thermodynamic analysis of steels by incorporating first-principles calculations into the CALPHAD approach. Materials Science Forum,2007,539-543(3):2413-2424
    [51]Colinet C. Phase diagram calculations:contribution of Ab initio and cluster variation methods[C]. CALPHAD and Alloy Thermodynamics. USA:TMS,2002, 15-17
    [52]Manas Paliwal, In-Ho Jung. Thermodynamic modeling of the Al-Bi, Al-Sb, Mg-Al-Bi and Mg-Al-Sb systems. CALPHAD,2010,34(1):51-63
    [53]Ogando Arregui E, Caro M, Caro A. Numerical evaluation of the exact phase diagram of an empirical Hamiltonian:Embedded atom model for the Au-Ni system. Phys. Rev. B,2002,66(5):054201-10
    [54]吴波,沈剑韵,张翥,等.Ti2AlNb基合金的计算机模拟研究进展.稀有金属材料与工程,2002,31(4):241-245
    [55]柳春雷,金展鹏,刘华山.相图计算在电子材料焊接中的应用.中国有色金属学报,2003,13(6):1343-1349
    [56]Connetable D, Lacaze J, Maugis P,et al. A CALPHAD assessment of Al-C-Fe system with the κ carbide modelled as an ordered form of the fcc phase. CALPHAD,2008,32(2):361-370
    [57]乔芝郁,郝士明.相图计算研究的进展.材料与冶金学报,2005,4(2):83-91
    [58]Jansaon B, Schalin M. The Thermo-Calc Database System[Z]. Sweden:Division of Computational Thermodynamics, Royal Institute of Technology, S10044 Stockholm,98:1-6
    [59]Saunders N. Proceedings of ICAA5. Materials Science Forum,1996,217(22): 667-670
    [60]Wanga Y, Curtarolo S, Liu Z K, et al. Abinitio lattice stability in comparison with CALPHAD lattice stability. Computer Coupling of Phase Diagrams and Thermochemistry,2004,28(1):79-90
    [61]Arroyave R, Shin D, Liu Z K. Modification of the thermodynamic model for the Mg-Zr system. Computer Coupling of Phase Diagrams and Thermochemistry, 2005 (29):230-238
    [62]M A Blanco, E Francisco,V Luana. GIBBS:isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications,2004,158:57-72
    [63]Zhang Wei, Cheng Yan, Zhu Jun, et al. Structural, thermodynamic and electronic properties of zinc-blende A1N from first-principles calculations. Chinese Physics B,2009,18(3):1207-1213.
    [64]Dey S.R, Suwas S, Fundenberger J J, et al. Evolution of crystallographic texture and microstructure in the orthorhombic phase of a two-phase alloy Ti-22Al-25Nb. Intermetallics,2009,17(8):622-633
    [65]史耀君,杜宇雷,陈光.高铌钛铝基合金研究进展.稀有金属,2007,31(6):834-839
    [66]Kruml T, Obrtlik K, Petrenec M, et al. Low-cycle fatigue properties of TiAl alloy with high Nb content. International Journal of Materials Research,2009,100(3): 349-356
    [67]吴欢.γ-TiAl薄板的现状及成形技术.稀有金属快报,2005,24(4):39-41
    [68]Xinhua Wu. Review of alloy and process development of TiAl alloys. Intermetallics,2006,14:1114-1122
    [69]IMAMURA T. Current status and trend of applicable material technology for aerospace structure. Journal of Japan Institute of Light Metals,1999,49(7): 302-309
    [70]杨少华,邱竹贤,张明杰.铝钪合金的应用及生产.轻金属,2006,4:55-57.
    [71]H Bo, L B Liu, Z P Jin. Thermodynamic analysis of Al-Sc, Cu-Sc and Al-Cu-Sc system. Journal of Alloys and Compounds,2010,490(1-2):318-325
    [72]Woei-Shyan Lee, Tao-Hsing Chen, Chi-Feng Lin, et al. Impact deformation behaviour and dislocation substructure of Al-Sc alloy. Journal of Alloys and Compounds,2010,493(1-2):580-589
    [73]Masanori Harata, Kouji Yasuda, Hiromasa Yakushiji, et al. Electrochemical production of Al-Sc alloy in CaCl2-Sc2O3 molten salt. Journal of Alloys and Compounds,2009,474(1-2):124-130
    [74]K Vinod, R G. Abhilash Kumar and U Syamaprasad. Prospects for MgB2 superconductors for magnet application. Supercond. Sci. Technol.2007,20(1): R1-R13
    [75]M Putti, R Vaglio, J M Rowell. Radiation effects on MgB2:a review and a comparison with A15 superconductors. Supercond. Sci. Technol.2008,21(4): 043001-25
    [76]Nagamatsu J, Nakagawa N, Akimitsu J, et al. Superconductivity at 39K in magnesium diboride. Nature,2001,410:63-64
    [77]T Nakane, K Takahashi, H Kitaguchi, et al. Fabrication of Cu-sheathed MgB2 wire with high Jc-B performance using a mixture of in situ and ex situ PIT techniques. Physica C:Superconductivity,2009,469(15-20):1531-1535; E Yanmaz, K Ozturk, C E J Dancer, et al. Levitation force at different temperatures and superconducting properties of nano-structured MgB2 superconductors. Journal of Alloys and Compounds,2010,492(1-2):48-51
    [78]谭明秋,陶向明.高温超导体MgB2的电子结构研究.物理学报,2001,50:1193-1198.
    [79]Joshua Pelleg. Schottky barrier formation at Al/TiB2/TiSi2/Si and Cu/TiB2/ TiSi2/Si interfaces. Microelectronic Engineering,2004,75(4):413-422.
    [80]Yanfeng Han, Yongbing Dai, Da Shu,et al. First-principles study of TiB2(0001) surfaces. J. Phys.:Condens. Matter,2006,18:4197-4205
    [81]H Y Wang, Q C Jiang, Y G Zhao,et al. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium, Journal of Alloys and Compounds,2004,379:L4-L7.
    [82]Dimiduk D M. Gamma Titanium Aluminide alloys-an assessment within the competition of aerospace structural materials. Material Science and Engineering, 1999, A263:281-288
    [83]张永刚,韩雅芳,陈国良等.金属间化合物结构材料.国防工业出版社,北京,2001.
    [84]陶辉锦,彭坤,谢佑卿,贺跃辉,尹志民.TiAl金属间化合物脆性问题的研究 进展.粉末冶金材料科学与工程,2007,12(6):330-333
    [85]GREENBERG B A, ANTONOVA O V. Dislocation transformations and the anomalies of deformation characteristics in TiAl-Ⅰ Model sofdislocation blocking. Acta Metallurgica et Materialia,1991,39(2):233-242.
    [86]YAMAGUCHI M, ITO K. High-temperature structur intermetallics. Acta Materialia,2000,48(1):307-322.
    [87]KIM Y W. Intermetallic alloys based on gamma titanium aluminide. JOM,1989, 41(7):24-30.
    [88]H Clemens, I Rumberg, P Schretter. Characterization of Ti-48A1-2Cr sheet material.Intermetallics,1994,2(3):179-184
    [89]C Koeppe, A Bartels, H Clemens, et al. Optimizing the properties of TiAI sheet material for application in heat protection shields or propulsion systems.Mater. Sci. Eng.A,1995, A201:182-193
    [90]O A Kaibyshev,李良福译.利用超塑性变形规范制造金属间化合物制件.国内钛合金动态,1999,7:7-10
    [91]刘咏.元素粉末冶金TiAl基合金制备工艺及成形技术[D].长沙:中南大学博士学位论文,1999,25-46
    [92]张俊红,黄伯云,贺跃辉.非晶晶化制备细晶TiAl基合金.航空材料学报,2002,22(4):26-32.
    [93]ISHIYAMA S, BUCHKREMER H P, STOVER D. The characterization of reinforced TiAl intermetallic with dispersed Cr particles consolidated by HIP. Materials Transactions,2002,43(9):2331-2336.
    [94]朱晓鹏,雷鸣凯,马腾才.离子注入Cr、Y、Nb对TiAl金属间化合物高温氧化性能的影响.核技术,2001,24(1):27-32.
    [95]JIN Guang-xi, QIAO Li-jie, GAO Ke-wei, et al. Effect of Mn and V on hot corrosion of TiAl alloy. Acta Metallurgica Sinica,2004,40(2):179-184
    [96]李宝辉,陈玉勇,孔凡涛.Y对Ti-47Al合金显微组织及室温拉伸性能的影响.中国稀土学报,2006,24(3):352-359
    [97]LI W, XIA K. Kinetics of the a grain growth in a binary Ti-44Al alloy and a ternary Ti-44Al-0.15Gd alloy. Materials Science & Engineering A,2002, A329-331:430-434.
    [98]Bursik Jiri, PAVEL B. Constitution of Ni-Al-Ti system studied by scanning electron microscopy. Intermetallics,2009,17(8):591-595.
    [99]黄尊行,周立新,章永凡.影响TiAl合金塑性的电子结构因素.结构化学, 1999,18(6):51-56
    [100]孔凡涛,陈子勇,田竞,等.提高TiAl基合金室温塑性的方法.稀有金属材料与工程,2003,32(2):81-86
    [101]曹名洲,韩东,周敬.含Mn的TiAl基合金的组织和性能.金属学报,1990,26(3):223-227
    [102]肖代红,黄伯云.铸造Ti-47Al-8Cr-2Nb合金的低温超塑性及其组织演变.中国有色金属学报,2008,18(1):1749-1755
    [103]Vaasudevan V K, Court S A, Kurath P. Effect of purity on the deformation mechanism in the intermetallic compound TiAl. Scripta Metall,1989,23(6): 907-911
    [104]陈仕奇,曲选辉,雷长明.TiAl+L a有序合金的室温力学性能.金属学报,1994,30(1):20-24
    [105]DONCHEV A, RICHTER E, SCHUTZE M. Improvement of the oxidation behaviour of TiAI-alloys by treatment with halogens. Intermetallics,2006, 14(10):1168-1174
    [106]JIANG Hui-ren, WANG Zhong-lei, MA Wen-shuai. Effects of Nb and Si on high temperature oxidation of TiAl. Trans.Nonferrous Met.Soc.China,2008, 18(3):512-517.
    [107]SHIGEJI T, ZHU Yao-can, KAZUHISA F, et al. TEM Observations of the initial oxidation stages of Nb-ion-implanted TiAl. Oxidation of Metals,2002,58, (3-4):375-390
    [108]HUANG B Y, HE Y H, WANG J N. Improvement in mechanical and oxidation properties of TiAl alloys with Sb additions. Intermetallics,1999,7(8):881-888
    [109]MA Xiao-xia, LIANG Wei, ZHAO xing-guo. Effect of Al2O3 layer on improving high temperature oxidation resistance of siliconized TiAl-based alloy. Materials Letter,2006,60(13/14):1651-1653
    [110]LIU Y, CHEN K, ZHANG J H. First-principles investigation on environmental embrittlement of TiAl. J. Mater. Res.,1998,13(2):290-301
    [111]王福会,唐兆麟.TiAl金属间化合物的高温氧化和防护研究进展.材料研究学报,1998,12(4):337-344
    [112]C.T.Yang, YC.Lu, C.H.Koo. The high temperature tensile properties and microstructural analysis of Ti-40Al-15Nb alloy. Intermetallics,2002,10: 161-169
    [113]CUI W F, LIU C M. Fracture characteristics of γ-TiAl alloy with high Nb content under cyclic loading. Journal of Alloys and Compounds,2009, 477(1/2):596-601
    [114]WU Hong-li, ZHANG Wei, GONG Sheng-kai. Effect of Nb on the Bonding Characteristics of TiAl Intermetallic Compounds:A First-principle Study. ACTA CHIMICA SINICA,2008,66(14):1669-1675(in chinese)
    [115]QU Hua, LIU Wei-dong, ZHANG Kun, et al. Study on the Valence Electron Structure of 0001α//110β Interface in Ti3Al-Based Alloys. RARE METAL MATERIALS AND ENGINEERING,2005,34(10):1569-1573
    [116]DANG Hong-li, WANG Chong-yu, YU Tao. First-principles investigation on alloying effect of Nb and Mo in y-TiAl. Chin. Phys. Soc.,2007,56(5):2838-2844
    [117]LI Wen, LIU Gui-fu. Valence electron structures and alloying behavior of Ti3A1. ACTA ARMAMENTARII,1999,20(2):151-155
    [118]Banerjee D. The Intermetallic TiAlNb. Progress in Malerials Science,1997, 42:135-158
    [119]LIN Jun-pin, XU Xiang-jun, WANG Yan-li, et al. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics 2007,15:668-674.
    [120]XIE Hua, CHEN Wen-zhe, QIAN Kuang-wu. Influence of Manganese and Niobium on Electronic Structure and Brittleness of TiAl. Rare Metals,2004, 28(2):350-353
    [121]丁万武,夏天东,赵文军,等.中间合金中第二项粒子TiC和TiAl3对纯铝的细化作用.中国有色金属学报,2009,19(6):1025-1031.
    [122]Blochl P E. Projector augmented-wave method. Phys. Rev. B,1994, 50:17953-17979
    [123]Kresse G, Joubert J. From ultrasoft pseudopotentials to the projector augmented wave method. Phys. Rev. B,1999,59:1758-1775.
    [124]Tao Xiao-ma, Ouyang Yi-fang. Ab initio calculation of the total energy and elastic properties of Laves phase C15 A12RE (RE=Sc, Y, La, Ce-Lu). Computational Materials Science,2008,44(2):392-399.
    [125]Tao Xiao-ma, Ouyang Yi-fang, Jin Zhan-peng, et al. Calculation of the thermodynamic propertiesof B2 AlRE (RE, Sc, Y, La, Ce-Lu)[J].Physica B, 2007,399:27-32.
    [126]Lu Xiao-gang, Wang Yi. Calculation of the Vibrational Contribution to the Gibbs Energy of Formation for AlSc. Calphad,2002,26(4):555-561.
    [127]Wang Yi, Chen Dong-quan, Zhang Xin-wei. Calculated Equation of State of Al, Cu, Ta, Mo, and W to 1000 GPa. Phys. Rev. Lett.2000,84 (15):3220-3223
    [128]Asta M, Ozolins V. Structural, vibrational, and thermodynamic properties of Al-Sc alloys and intermetallic compounds. Phys. Rev. B,2001,64:094104-2
    [129]Asta M, Foiles S M, Quong A A. First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys. Phys. Rev. B, 1998,57:11265-11275.
    [130]Cacciamani G, Riani P, Borzone G, et al. Thermodynamic measurements and assessment of the Al-Sc system. Intermetallics,1999,7:101-108.
    [131]E Bayazit, S Altin, M E Yakinci, et al. The effect of Mo addition on the microstructure and Jc properties of MgB2 tapes fabricated by PIT method. Journal of Alloys and Compounds,2008,457(1-2):42-46.
    [132]Slusky J S, Rogado N. Loss of Superconductivity with the Addition of Al to MgB2 and a Structural Transition in Mg1-xAlxB2. Nature,2001,410:343-345
    [133]Paranathaman M, Thompson J R, Christen D K. Effect of carbondoping in bulk superconducting MgB2 samples. Phys. C,2001,355:1-5
    [134]王克勤,李世燕,余旻等.超导材料Mg(1-x)AgxB2的比热和电阻率.低温物理学报,2002,24:50-54
    [135]郭建栋,徐晓林,韩汝珊,等.Au掺杂的Mg(1-x)AuxB2超导体的合成.低温物理学报,2001,23:292-296
    [136]刘志斌,宋现峰,王永忠,等.MgB2超导体掺Au的研究.低温物理学报,2003,25:71-75
    [137]李慧玲,阮可青,李世燕,等.MgB2和Mg0.93Li0.07B2的电阻率与霍尔效应研究.物理学报,2001,50(10):2044-2048
    [138]Jin S, Mavoori H, Bower C. High critical currents in iron-clad superconducting MgB2 wires. Nature,2001,411:563-567
    [139]Mehl M J, Papaconstantopoulos D A, Singh D J. Effects of C Cu and Be substitutions in superconducting MgB2. Phys. Rev. B,2001,64:140-144
    [140]Yang F, Han R S, Tong N H, et al. Electronic Structural Properties and Superconductivity of Diborides in the MgB2 Structure. Chinese Phys. Lett.,2002, 19:1336-1339
    [141]B B Sinha, M B Kadam, M Mudgel, et al. Synthesis and characterization of excess magnesium MgB2 superconductor under inert carbon environment. Physica C:Superconductivity,2010,470(1):25-30
    [142]T Nakane, K Takahashi, H Kitaguchi,et al. Fabrication of Cu-sheathed MgB2 wire with high Jc-B performance using a mixture of in situ and ex situ PIT techniques. Physica C:Superconductivity,2009,469(15-20):1531-1535
    [143]V Beilin, I Felner, M.I Tsindlekht, et al. Critical state instability in Nb-clad MgB2 superconducting wires. Physica C:Superconductivity,2008,468 (3):223-228
    [144]B H Jun, Y J Kim, K S Tan, et al. Influence of intermediate annealing on the microstructure of in situ MgB2/Fe wire. Physica C:Superconductivity,2008, 468(15-20):1825-1828
    [145]Y Yang, D Zhao, T M Shen, et al. Flux pinning behaviors of Ti and C co-doped MgB2 superconductors. Physica C:Superconductivity,2008,468(15-20): 1202-1205
    [146]M Ranot, Soon-Gil Jung, W K Seong, et al. Fabrication of SiC-doped MgB2 coated conductors by a simple process. Physica C:Superconductivity,2010, 470(12):1000-1002
    [147]Kulikowski Z, Godfrey T M T, Wisbey A, et al. Mechanical and microstructural behaviour of particulate reinforced steel for structural applications. Materials Science and Technology,2000,16(11):1453-1464
    [148]Han Yan-feng, Dai Yong-bing, Shu Da, et al. First-principles study of TiB2(0001) surfaces. Journal of Physics:Condensed Matter,2006,18(17): 4197-4205
    [149]Greer A L, Bunn A M, Tronche A, et al. Modelling of inoculation of metallic melts:Application to grain refinement of aluminium by Al-Ti-B. Acta Mater, 2000,48(3):2823-2835
    [150]Lie K, Brydson R, Davock H. Band structure of TiB2:Orientation-dependent EELS near-edge fine structure and the effect of the core hole at the B//K edge. Physical Review B,1999,59(8):5361-5367
    [151]Lie K, H(?)ier R, Brydson R. Theoretical site-and symmetry-resolved density of states and experimental EELS near-edge spectra of AlB2 and TiB2. Physical Review B,2000,61(3):1786-1794
    [152]Fenish R G. Phase Relationships in the Titanium-Boron System, NRM-138, 1964:1-37
    [153]Murray J L, Liao P K, Spear K E. The B-Ti (Boron-Titanium) system. Journal of Phase Equilibria,1986,7(6):550-555
    [154]Ma Xiao-yan, Li Chang-rong, Du Zhen-min, et al. Thermodynamic assessment of the Ti-B system. Journal of Alloys and Compounds,2004,370 (1):149-158
    [155]Wang H Y, Jiang Q C, Zhao Y G, et al. In situ synthesis of TiB2/Mg composite by self-propagating high-temperature synthesis reaction of the Al-Ti-B system in molten magnesium. Journal of Alloys and Compounds,2004,379(1):4-7
    [156]Munro R G. Material Properties of Titanium Diboride. J. Res. Natl Inst. Stand. Technol.,2000,105(5):709-720
    [157]Joshua Pelleg. Schottky barrier formation at Al/TiB2/TiSi2/Si and Cu/TiB2/ TiSi2/Si interfaces. Microelectronic Engineering,2004,75(4):413-422
    [158]Williams W S. Transition Metal Carbides, Nitrides, and Borides for Electronic Applications. JOM,1997,49(3):38-42
    [159]Choy K L, Balzer R, Rawlings R D. Diffusion barrier coatings on ductile particles for protection in bioactive glass-ceramic matrix. J. EUR. CERAM. SOC.,2000,20:2199-2207
    [160]姚强,邢辉,孟丽君,等.TiB2和TiB弹性性质的理论计算.中国有色金属学报,2007,17(8):1927-1931
    [161]王春雷,周理海,胡雪慧,等.TiB2(0001)表面性质的密度泛函理论.中国有色金属学报,2008,18(1):145-150
    [162]Vajeeston P, Ravindran P, Ravi C, et al. Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Physical Review B,2001,63(4):045115-045127
    [163]王皓,闵新民,王为民,等.二硼化钛电子结构的量子化学计算.中国有色金属学报,2006,12(6):1229-1233
    [164]章桥新.TiB2的价电子结构及其性能研究.陶瓷学报,2000,21(3):159-161
    [165]Gilman J J, Roberts B W. Elastic constants of TiC and TiB2. J. Appl. Phys., 1961,32(2):1405-1410
    [166]Spoor P S, Maynard J D, Pan M J, et al. Elastic constants and crystal anisotropy of titanium diboride. Applied Physics Letters,1997,70(15):1959-1961
    [167]Wright S I. Estimation of single-crystal elastic constants from textured polycrystal measurements. J. Appl. Cryst.,1994,27(5):794-801
    [168]冯端,金国钧.凝聚态物理(上卷),北京:高等教育出版社,2002,358-360
    [169]W Kohn, A D Becke, R G Parr. Density Functional Theory of Electronic Structure. J. Phys. Chem.,1996,100(31):12974-12980
    [170]XiaoYu Deng, Lei Wang, Zhong Fang, et al. Local density approximation combined with Gutzwiller method for correlated electron systems:Formalism and applications. Phys. Rev. B,2009,79:075114-20
    [171]Becke A D. Density functional exchange energy approximation with correct asymptotic behavior. Phys. Rev. A,1988,38:3098-3100
    [172]E Wikborg, J E Inglesfield. The exchange and correlation energy at a metal surface. Solid State Commun.,1975,16(3):335-339
    [173]Ceperley D M, Alder B J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett.,1980,45:566-569
    [174]Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations:a critical analysis. Canadian Journal of Physics,1980,58(8):1200-1211
    [175]J P PERDEW, Y WANG. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B:Condensed Matter,1992, 45(23):13244-13249
    [176]Von Barth U, Hedin L. A local exchange-correlation potential for the spin polarized case:I. J. Phys. C:Solid State Phys,1972,5(13):1629-1642
    [177]D C Langreth. J P Perdew. Theory of nonuniform electronic systems:Ⅰ. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B,1980,21(12):5469-5493
    [178]D C Langreth. M J Mehl. Beyond the local-density approximation in calculations of ground-state electronic properties. Phys. Rev. B,1983,28(4): 1809-1834
    [179]A D Becke. Density-Functional Thermochemistry.3. the Role of Exact Exchange. J. Chem. Phys.1993,98(7):5648-5652
    [180]A D Becke. Density-functional thermochemistry.5. Systematic optimization of exchange-correlation functionals.1997,107(20):8554-8560
    [181]Perdew J P, Chevary J A, Vosko S H. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B,1992,46(11):6671-6687
    [182]Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.,1996,77(18):3865-3868
    [183]Mattsson A E. Density Functional Theory:In Pursuit of the "Divine" Functional. Science,2002,298(5594):759-760
    [184]Tao J, Perdew J P, Staroverov V N. Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett.,2003,91(14):146401-146404
    [185]Hamann D R, Schluter M, Ching C. Norm-Conserving Pseudopotential. Phys. Rev. Lett.,1979,43(20):1494-1497
    [186]Blaha P, Schwarz K, Sorantin P, et al. Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun.,1990, 59(2):399-415
    [187]Andersen O K. Linear method in band theory. Phys. Rev. B,1975,12(8): 3036-3083
    [188]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B,1990,41(11):7892-7895
    [189]徐光宪,黎乐民,王德民.量子化学(中册),科学出版社,北京,1985,101-109
    [190]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,1998,87-89
    [191]M Payne, M Teter, D Allan, et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.,1992,64(4):1045-1097
    [192]N Papanikolaou, R Zeller, P H Dederichs. Conceptual improvements of the KKR method. J. Phys.:Condens. Matter,2002,14(11):2799-2823
    [193]O K Anderson. Linear methods in band theory. Phys. Rev. B,1975,12(8): 3060-3083
    [194]O K Anderson, T Saha-Dasgupta. Muffin-tin orbitals of arbitrary order. Phys. Rev. B,2000,62(24):R16219-R16222
    [195]Thomas L Beck. Real-space mesh techniques in density-functional theory. Rev. Mod. Phys.,2000,72(4):1041-1080
    [196]马文淦,张子平.计算物理学.合肥:中国科学技术大学出版社,1992:84-85
    [197]J R Chelikowsky, N Troullier, Y Saad. Finite-difference-pseudopotential method:Electronic structure calculations without a basis. Phys. Rev. Lett.,1994, 72(8):1240-1243
    [198]J R Chelikowsky, N Troullier, K Wu, et al. Higher-order finite-difference pseudopotential method:An application to diatomic molecules. Phys. Rev. B, 1994,50(16):11355-11364
    [199]J E Pask, B M Klein, C Y Fong, et al. Real-space local polynomial basis for solid-state electronic-structure calculations:A finite-element approach. Phys. Rev. B,1999,59(19):12352-12358
    [200]Moruzzi V L, Janak J F, Schwarz K. calculated thermal properties of metals. Physical Review B,1988,37(2):790-799
    [201]徐向俊,林俊品,陈国良,等.工程化高Nb钛铝合金锻造性研究.材料科学与工艺,2007,15(5):709-712
    [202]JIANG Hui ren, WANG Zhong lei, MA Wen shuai. Effects of Nb and Si on high temperature oxidation of TiAl. Trans. Nonferrous Met. Soc. China, 2008,18:512-517
    [203]J P Lin, X J Xu, G L Chen, et al. High temperature deformation behaviors of a high Nb containing TiAl alloy. Intermetallics,2007,15:668-674
    [204]Morinaga M, Saito J, Yukawa N, et al. Electronic effect on the ductility of alloyed TiAl compound. Acta Metallurgica et. Materialia,1990,38(1):25-29
    [205]张兰芝,王宝义,王丹妮,等.王电子湮没谱研究Nb在TiAl合金中的掺杂效应.金属学报,2007,43(3):269-272
    [206]王艳丽,李时磊,彭凌剑,等.Mn含量对铸造高铌TiAl合金组织和性能的影响.北京科技大学学报,2009,31(2):199-205
    [207]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B,1990,41(11):7892-7895
    [208]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys. Rev. B,1976,13:5188-5192
    [209]SONG Y, YANG R, LI D, et al. A first principles study of the influence of alloying elements on TiAl:site preference. Intermetallics,2000,8(5/6):563-568
    [210]MOHANDAS E, BEAVEN P A. Site occupation of Nb, V, Mn and Cr in γ-TiAl. Scipta Metallurgica et. Materialia,1991,25(9):2023-2027
    [211]WOLF W, PODLOUCKY R, ROGL P, et al. Atomic modeling of Nb, V, Cr and Mn substitutions in γ-TiAl.2:Electrionc structure and site preference. Intermetallics,1996,4(3):201-209
    [212]NIC J P, ZHANG S, MIKKOLA D E. Observations on the systematic alloying of A13Ti with fourth period elements to yield cubic phases. Scripta Metall,1990, 24(6):1099-1102
    [213]LIU Y L, LIU L M, WANG S Q, et al. First-principles study of shear deformation in TiAl and Ti3Al. Intermetallics,2007,15(3):428-435
    [214]CHU F, MITCHELL T E, MAJUMDAR B, et al. Elastic properties of the O phase in Ti-Al-Nb alloys. Inermetallics,1997,5 (2):147-156
    [215]NOVOSELOVA T, MALINOV S, SHA W, et al. High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy. Materials Science and Engineering,2004,371(1-2):103-112
    [216]Jahnatek M, Krajci M., Hafner J. Interatomic bonding elastic properties and ideal strength of transition metal aluminides:A case study for A13(V,Ti). Physical Review B,2005,71 (2):024101-1-16
    [217]肖代红,黄伯云.铸造TiAl (CrNb)合金的低温超塑性极其组织演变.中国有色金属学报,2008,18(10):1749-1755
    [218]ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel. J. Appl. Phys.,1944,15(1):22-32
    [219]KIM Y W. Intermetallic alloys based on gamma titanium aluminide. JOM,1989, 41(7):24-30
    [220]于荣.Ti<3>SiC<2>与TiAl的显微结构与电子结构研究[博士学位论文].沈阳:中国科学院金属研究所,2002:88-90
    [221]PAYNE M C, TETER M P, ALLAN D C, et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Rev. Mod. Phys.,1992,64 (4):1045-1097
    [222]黄尊行,王秀丽,周立新.γ-TiAl中掺杂原子取代位置的量子化学研究.结构化学,2002,21(2):218-221
    [223]Scabarozi T H, Gennaoui C, Roche J, et al. Combinatorial investigation of (Til-xNbx)2AlC. Applied Physics Letters,2009,95(10):101907-101909
    [224]Rossouw C J, Forwood C T, Gibson M A, et al. Generation and Absorption of Characteristic X- Rays under Dynamical Electron Diffraction Conditions. Micron,1997,28(2):125-137
    [225]Novoselova T, Malinov S, Sha W, et al. High-temperature synchrotron X-ray diffraction study of phases in a gamma TiAl alloy. Materials Science and Engineering A,2004,371(1-2):103-112
    [226]CHEN Guo-liang, WANG Jin-guo, LIN Jun-pin. A new intermetallic compound in TiAl+Nb composition area of the Ti2A12Nb ternary system. Intermetallics,2005,13(3):329-336
    [227]孔凡涛,陈子勇,田竞,陈玉勇.提高TiAl基合金室温塑性的方法.稀有金属材料与工程,2003,32(2):81-86
    [228]邢飞,刘燕萍,韩培德,等.铌、碳在TiAl合金扩散的原理研究.新技术新工艺,2008,11:86-89
    [229]廖立兵.晶体化学及晶体物理学.北京:地质出版社,2000,131-134.
    [230]Reismann H, Pawlik P S. Elasticity Theory and Application. New York:John Wiley(0471031658),1980,185-187
    [231]Hu Xue-Lan, Zhang Ying, Lu Guang-Hong,et al. Effect of O impurity on structure and mechanical properties of NiAl inermetallics:A first principles study. Inermetallics,2009,17:358-364
    [232]陈洪荪.金属的弹性各向异性.北京:冶金工业出版社,1996:22-81
    [233]Pugh S F. Relation between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag.,1954,45:823-843
    [234]Pettifor D G. Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol.,1992,8(4):345-349
    [235]I D Bleskov, E A Smirnoval, Yu Kh Vekilov, et al. Ab initio calculations of elastic properties of Rul-xNixAl superalloys. Appl. Phys. Lett.,2009, 94(16):161901-3
    [236]张伟,刘咏,黄劲松,等.高铌TiAl高温合金的研究现状与展望.稀有金属快报,2007,26(8):1-9
    [237]陈律,彭平,李贵发,等.L10-TiAl金属间化合物Mn,Nb合金化电子结构的计算.航空材料学报,2005,25(5):15-19
    [238]Lu Xiao-gang, Wang Yi. Calculation of the Vibrational Contribution to the Gibbs Energy of Formation for AlSc. Calphad,2002,26(4):555-561
    [239]Cacciamani G, Riani P, Borzone G, et al. Thermodynamic measurements and assessment of the Al-Sc system. Intermetallics,1999,7:101-108
    [240]Perdew John P, Wang Yue. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B,1992,45(23):13244-13249
    [241]Eymond S, Parthe E. J Less-Common. The Al-rich region in the Y-Ni-Al system:microstructures and phase equilibria. Met,1969,19:441-448
    [242]Schuster J C, Bauer J, Less-Common J. Phase equilibria in M-X-X'and M-Al-X ternary systems (M=transition metal; X, X'=B, C, N, Si) and the crystal chemistry of ternary compounds. Met,1985,109:345-350
    [243]Tao Xiao-ma, Ouyang Yi-fang, Jin Zhan-peng. Ab initio calculations of mechanical and thermodynamic properties for the B2-based A1RE. Computational Materials Science,2007,40(2):226-233
    [244]Nguyen-Manh D, Pettifor D G. Electronic structure, phase stability and elastic moduli of AB transition metal aluminides. Intermetallics,1999,7:1095-1106
    [245]Tao Xiao-ma, Ouyang Yi-fang. Ab initio calculation of the total energy and elastic properties of Laves phase C15 A12RE (RE=Sc, Y, La, Ce-Lu). Computational Materials Science,2008,44(2):392-399
    [246]Chen Xing-qiu, Wolf W, Podloucky R, et al. Miedema's model revisited:The parameter Ψ* for Ti, Zr, and Hf. Intermetallics,2004,12:59-64
    [247]Harada Y. Microstructure of A13Sc with ternary rare-earth additions. Intermetallics,2009,17(1-2):17-24
    [248]Nylen J, Garcia F J, Mosel B D, et al. Structure relationships, phase stability and bonding of compounds PdSnn (n=2,3,4). Solid State Sci,2004,6(1):147-155
    [249]段素青,刘绍军,马本茔Co3Ti和CoTi的电子结构及结合能.物理学报,1997,46(12):2426-2430
    [250]徐万东,张瑞林,余瑞靖.过渡金属化合物晶体结合能计算.中国科学A辑,1988,3:323-331
    [251]Li Chong-he, Joo Lim Hoe, Wu Ping. Empirical correlation between melting temperature and cohesive energy of binary Laves phases. Journal of Physics and Chemistry of Solids,2003,64:201-212
    [252]Asta M, Ozolins V. Structural, vibrational, and thermodynamic properties of Al-Sc alloys and intermetallic compounds. Phys. Rev. B,2001,64(9):094104-14
    [253]王娜,唐壁玉.L12型铝合金的结构、弹性和电子性质的第一性原理研究.物理学报,2009,58(s):230-235
    [254]Tao Xiao-ma, Ouyang Yi-fang, Jin Zhan-peng, et al. Calculation of the thermodynamic propertiesof B2 AlRE (RE Sc, Y, La, Ce-Lu). Physica B,2007, 399(1):27-32
    [255]Asta M, Foiles S M, Quong A A. First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys. Phys. Rev. B, 1998,57:11265-11275
    [256]Mayer B, Anton H, Bott E, et al. Ab-initio Calculation of the Elastic Constants and Thermal Expansion Coefficients of Laves Phases. Intermetallics,2003,11(1): 23-32
    [257]Xu Ji-hua, Freeman A J. Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrA13 precipitates. Phys. Rev. B,1990,41: 12553-12561
    [258]Hyland R W, Stiffler R C. Determination of the Elastic Constants of Polycrystalline Al3Sc. Scripta Metall. Mater,1991,25(2):473-477
    [259]张明杰,李金丽,梁家骁.盐熔电解法生产Al-Sc合金.东北大学学报(自然科学版),2003,24(4):355-360
    [260]Yin Z M, Pan Q L, Zhang Y H, et al. Effect of minor Sc and Zr on the micro structure and mechanical properties of Al-Mg based alloys. Mater. Sci. Eng. A, 2000,280(1):151-155
    [261]Mattesini M, Ahuja R, Johansson B. Cubic Hf3N4 and Zr3N4:A class of hard materials. Phys.Rev.B,2003,68(18):184108-13
    [262]Born M, Huang K. Dynamical theory of crystal lattices. Oxford:Clarendon, 1954.
    [263]Mayer B, Anton H, Bott E, et al. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases. Intermetallics,2003, 11(1):23-32
    [264]Anderson O L. The Debye Temperature from Elastic Constants. J. Phys. Chem.Solids,1963,24(7),909-917
    [265]R W Hyland, Jr R C Stiffler. Determination of the Elastic Constants of Polycrystalline Al3Sc. Scripta Metall. Mater.,1991,25:473-477
    [266]B B Karki, L Stixrude, S J Clark, et al. Structure and elasticity of MgO at high pressure. Am. Mineral.,1997,82:51-60
    [267]Perottoni C A, Pereira A S, Jornada J A H. Periodic Hartree-Fock linear combination of crystalline orbitals calculation of the structure, equation of state and elastic properties of titanium diboride. Journal of Physics:Condensed Matter, 2000,12 (32):7205-7222
    [268]Milman V, Warren M C. Elastic properties of TiB2 and MgB2. Journal of Physics:Condensed Matter,2001,13 (24):5585-5595
    [269]X B Wang, D C Tian, L L Wang. The electronic structure and chemical stability of the AlB2-type transition-metal diborides. J.Phys.:condens,matter, 1994,6:10185-10192
    [270]张鹏林.镁热剂反应自蔓延高温合成TiB<,2>和ZrB<,2>陶瓷及其结构宏观动力学研究[博士学位论文],兰州:兰州理工大学,2008.
    [271]逢婷婷,付正义,张东名.放电等离子(SPS),快速烧结TiB2陶瓷.陶瓷学报,2001,22(3):129-132
    [272]孙景,魏庆丰,刘俊朋,等.添加Vc的TiB2-FeMo硬质合金.天津大学学报,2004,37(4):349-352
    [273]Zhou Songqing, Xiao Harming, Li Guiyu. Research on wear fi'acture characteristics of TiB2-SiC matrix composites by in-suit synthesis at elevated temperature. Lubrication engineering,2007,32(7):59-65
    [274]王皓,王为民,辜萍.热压烧结TiB2\ZrB2固溶复合陶瓷的结构研究.硅酸盐学报,2002,30(4):486-490
    [275]Tian De-cheng, Wang Xiao-bing. Electronic structure and equation of state of TiB2. Journal of Physics:Condensed Matter,1992,4(45):8765-8772
    [276]Decker B F, Kasper J S. The Crystal Structure of Ti-B. Acta Crystallographica, 1954,7:77-81
    [277]Hegenscheidt T. Moeglichkeiten und Grenzen des Roentgen-Beugungs experiments aufgezeigt am Beispiel dreier "einfacher" Strukturen(D). Karlsruhe:Dissertation Universitaet Karlsruhe,1998:1-81
    [278]Milman V, Warren M C. Elastic properties of TiB2 and MgB2. Journal of Physics:Condensed Matter,2001,13 (24):5585-5595
    [279]Norihiko L, Okamoto, Kusakari M, et al. Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Materialia, 2010,58 (1):76-84
    [280]Li Feng-ying, Chen Liang-chen, Wang Li-jun, et al. Pressure induced phase transition in TiB. CHIN. PHYS. LETT.,2001,18(9):1240-1241
    [281]Yao Qiang, Xing Hui, Meng Li-Jun, et al. Theoretical calculation of elastic properties of TiB2 and TiB. Chinese Journal of Nonferrous Metals,2007,17(8): 1297-1301.(in chinese)
    [282]Panda K B, Chandran K S R. First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Materialia,2006,54(6):1641-1657
    [283]G V Sin'ko, N A Smirnov. Ab initio calculations of elastic constants and thermodynamic properties of bcc fcc and hcp Al crystals under pressure. J.Phys.:Condens.Matter,2002,14:6989-7005
    [284]Xing-Qiu Chen, W Wolf, R Podloucky, et al. Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2. Phys. Rev. B,2005,71(17):174101-11
    [285]Jiemin Wang, Jingyang Wang, Yanchun Zhou, Chunfeng Hu. Phase stability, electronic structure and methanical properties of ternary-layered carbide Nb4A1C3:An abinitio study. Acta Materialia,2008,56:1511-1518
    [286]Feng Peng, Hong-Zhi Fu, Xin-Lu Cheng. First-principles calculations of thermodynamic properties of TiB2 at high pressure. Physica B,2007,400:83-87
    [287]Panda K B, Chandran K S R. Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory. Computational Materials Science,2006, 35(2):134-150.
    [288]Ihara H, Hirabayashi M, Nakagawa H. Band structure and x-ray photoelectron spectrum of ZrB2. Physical Review,1977,16(2):726-730
    [289]Rosner H, An J M, Pickett W E, et al. Fermi surfaces of diborides:MgB2 and ZrB2. Physical Review B,2002,66(2):024521-024527
    [290]Batzner C.'System B-Ti', COST507, in:Ansara I, Dinsdale A T, Rand M H(Eds.). Thermochemical Database For Light Metal Alloys, European Commission, Luxembourg,1998.
    [291]Rudy E, Windisch S. Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems. Part Ⅰ. Related Binary System, Ti-B System, vol. Ⅶ, Technical Report No. AFML-TR-65-2, Part Ⅰ, vol. Ⅶ,1966.
    [292]Eremets M I, Struzhkin V W, Mao H K, et al. Superconductivity in boron. Science,2001,293:272-274
    [293]Jiang Chao, Lin Zhi-jun, Zhang Jian-zhong, et al. First-principles prediction of mechanical properties of gamma-boron. Applied Physics Letters,2009,94(19): 191906-191911
    [294]Artem R Oganov, Jiuhua Chen, Carlo Gatti, et al. Ionic high-pressure form of elemental boron. Nature,2009,457(12):863-867
    [295]Paul Rulis, Liaoyuan Wang, W Y Ching. Prediction of γ-B28 ELNES with comparison to α-B12. Phys. Status Solidi. RRL,2009,3(5):133-135
    [296]Zarechnaya E Y, Dubrovinsky L, Dubrovinskaia N, et al. Superhard Semiconducting Optically Transparent High Pressure Phase of Boron. Physical Review Letters,2009,102(18):185501-185508
    [297]van Setten M J, Uijttewaal M A, de Wijs G A, de Groot R A. Thermodynamic stability of boron:The role of defects and zero point motion. Am. Chem. Soc., 2007,129:2458-2465
    [298]Sanz D N, Loubeyre P, Mezouar M. Equation of state and pressure induced amorphization of b-boron from X-ray measurements up to 100 GPa. Phys. Rev.Lett.,2002,89(24):245501-04
    [299]Ha "ussermann U, Simak S I, Ahuja R, et al. Metal-nonmetal transition in the boron group elements. Phys. Rev. Lett.,2003,90:065701-05
    [300]Ma Y Z, Prewitt C T, Zou G T, et al. High-pressure high temperature x-ray diffraction of b-boron to 30GPa. Phys. Rev. B,2003,67,174116-7
    [301]Switendick A C, Morosin B. Electronic charge density and bonding in alpha-boron:an experimental-theoretical comparison. American Institute of Physics:Conference Proceedings.1991,231:205-211
    [302]Decker B F, Kasper J S. The crystal structure of a simple rhombohedral form of boron. Acta Crystallographica.1959,12:503-506
    [303]Hoard J L, Hughes R E, Sands D E. The Structure of Tetragonal Boron. Journal of the American Chemical Society,1958,80:4507-4515
    [304]Williams R K, Becher P F, Finch C B. Study of the Kondo effect and intrinsic electrical conduction in titanium diboride. Journal of Applied Physics,1984, 56(8):202295-303
    [305]Schissel P O, Trulson O C. Mass Spectrometric Study of The Vaporization of The Titanium-Boron System. Journal of Physical Chemistry,1962,66 (8):1492-1496
    [306]Yurick T J, Spear K E. Thermodynamics of TiB2 from Ti-B-N Studies. Thermodynamics of Nuclear Materials,1980,Ⅰ:73-90
    [307]Guzman L, Elena A, Miotello P M, et al. Phase formation in the N-B-Ti system. Vacuum,1995,46(8):951-954
    [308]Akhachinskij V V, Chirin N A. Enthalpy of Formation of Titanium Diboride. Thermodynamic of Nuclear Materials,1975,Ⅱ:467-476
    [309]I Ansara, A T Dinsdale, M H Rand. Thermochemical database for light metal alloys. Luxembourg:Office for Official Publications of the European Communities(ISBN 92-828-3902-8),1998,2:5-17
    [310]李邦盛,吴士平,尚俊玲,等.原位钛基复合材料中TiB的生成热力学及动力学.2005,4:42-46
    [311]吕维洁,张获,张小农,等.原位合成TiB/Ti复合材料的微观结构及力学性能.2000,34(12):1606-1609
    [312]T Nakane, K Takahashi, H Kitaguchi, et al. Fabrication of Cu-sheathed MgB2 wire with high Jc-B performance using a mixture of in situ and ex situ PIT techniques. Physica C:Superconductivity,2009,469(15-20):1531-1535
    [313]Kazakov S M, Angst M, Karpinski J, et al. Substitution effect of Zn and Cu in MgB2 on Tc and structure. Solid State Communications,2001,119:1-5
    [314]Y Moritomo, S Xu. Effects of transition metal doping in MgB2 superconductor. cond-mat.supr-con,2001, arXiv:cond-mat/0104568v1
    [315]尹道乐,齐志,许恒毅,等.MgB2及高温超导体的强电子声子耦合和输运性质.低温物理学报,2001,23:261-268
    [316]Hai-Yan Wang, Xiang-Rong Chen, Wen-Jun Zhu, et al. Structural and elastic properties of MgB2 under high pressure. Physical Review B,2005,72 (17):172502-4
    [317]T Yildirim, O Gu"lseren. A simple theory of 40 K superconductivity in MgB2:first-principles calculations of Tc, its dependence on boron mass and pressure. Journal of Physics and Chemistry of Solids,2002,63:2201-2206.
    [318]S Suzuki, S Higai, K Nakao. Two-Dimensional Sigma-Hole Systems in Boron Layers:A First-Principles Study on Mgl-xNaxB2 and Mg1-xA1xB2. cond-mat.supr-con,2001, arXiv:cond-mat/0102484v1.
    [319]G J Xu, J C Grivel, A B Abrahamsen, et al. Superconducting properties of Zn and Al double-doped Mg1-x(Zn0.5A10.5)xB2. Physica c,2004,403:113-118
    [320]T Vogt, G Schneider, J A Hriljac, et al. Compressibility and Electronic Structure of MgB2 up to 8 GPa.2001, arXiv:cond-mat/0102480v1
    [321]柴永泉,靳常青,刘邦贵.类MgB2硼化物晶体电子结构比较研究.物理学报,2003,52(11):2883-2889
    [322]Bouquet F, Fisher R A, Phillips N E, et al. Specific Heat of Mg11B2:Evidence for a Second Energy Gap. Phys. Rev. Lett.,2001,87:047001-05
    [323]Muranaka T, Akimitsu J, Sera M. Thermal transport properties of MgB2. Phys. Rev. B,2001,64(2):020505.
    [324]Bud'ko S L, Lapertot G, Petrovic C, et al. Boron Isotope Effect in Superconducting MgB2. Phys. Rev. Lett.,2001,86:1877-1883
    [325]Bollinger G R, Suderow H, Vieira S. Tunneling Spectroscopy in Small Grains of Superconducting MgB2. Phys. Rev. Lett.,2001,86:5582-5587
    [326]Mcmillan W L. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev.,1968,167:331-335
    [327]沈龙海,金华,王丹.MgB2的经验有效声子谱及电声耦合常数的计算.延边大学学报,2003,29(2):104-106
    [328]Yang F, Han R S, Tong N H, et al. Electronic structural properties and superconductivity of diborides in the MgB2 structure. CHIN. PHYS. LETT., 2002,19:1336-1340
    [329]Y Kong, O V Dolgov, O Jepsen, et al. Electron-phonon interaction in the normal and superconducting states of MgB2. Phys. Rev. B.,2001,64(2): 020501-4
    [330]Osborn R, Goremychkin E A, Kolesnikov A I, et al. Phonon Density-of-States in MgB2. Phys. Rev. Lett.,2001,87(1):017005-4
    [331]朱宰万,徐济安.金属氢—转变压力和物理性质.物理学报,1979,28(6):115-121
    [332]Pines D. Superconductivity in the Periodic System. Phys. Rev.,1958,109: 280-285
    [333]Ashcroft N W. Metallic Hydrogen:A High-Temperature Superconductor. Phys. Rev. Lett.,1968,21:1748-1754
    [334]Bouquet F, Fisher R A, Phillips N E, et al. Specific Heat of Mg11B2:Evidence for a Second Energy Gap. Phys. Rev. Lett.,2001,87(4):047001-4
    [335]Z F WEI, G C CHE, F M WANG, et al. Debye temperature of MgB2. Modern Physics Letters B,2001,15(25):1109-1115
    [336]张杰,雒建林,赵忠贤,等.常压和高压合成MgB2的低温比热及两个超导能隙研究.物理学报,2002,51(2):342-346
    [337]金莲玉.强耦合超导临界温度Tc公式的进一步研究.中央民族大学学报,2003,12(1):27-30
    [338]W K Seong, W N Kang. Superconductivity of epitaxial MgB2 thick films and MgB2 nanowires grown by hybrid physical-chemical vapor deposition. Physica C:Superconductivity,2008,468(15-20):1884-1887
    [339]Guo Hua-Zhong, Chen Xiang-Rong, Zhu Jun, et al. First-Principles calculations of elastic constants of superconducting MgB2. CHIN. PHYS. LETT.,2005, 22(7):1764-1767
    [340]A K M A Islam, F N Islam. Ab initio investigation of elastic constants of superconducting MgB2. Physica C:Superconductivity,2001,363(3):189-193
    [341]W H Xie, D S Xue. A first-principle study of MgB2:the effect of pressure and substitution. J. Phys.:Condens.Matter,2001,13(50):11679-11687

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700