用户名: 密码: 验证码:
钢铁企业能源实绩平衡与优化调度策略及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加强能源管理是实现循环经济的重要手段。钢铁企业的能耗费用约占工业部门能耗总量的15%-20%,高能耗造成对环境的污染和经济效益的负面效应长期以来一直是我国钢铁企业所面临的重大难题之一。能源管理模式分散粗放、能源计划与平衡安排不当、调度系统简单低效等问题,已成为我国钢铁企业低能源利用率、高能耗的重要原因。针对上述问题,本文结合某大型钢铁联合企业能源中心建设项目,从钢铁企业能源系统分析、能源产消预测、能源实绩平衡和能源优化调度模型及其应用等方面展开研究,主要研究内容和创新性研究成果如下。
     (1)指出了钢铁企业能源管理所普遍存在的主要问题
     分析了典型钢铁联合企业的烧结、焦炉炼焦、高炉炼铁、转炉炼钢、连续铸造和轧钢等主要生产工序所使用的煤气、电力、水、水蒸气、氧、氩和氮气等能源的分布状况以及主要能源的管理流程,指出能源产消量的预测、能源的实绩平衡与数据校正、能源的计划管理与优化调度等问题是当前钢铁企业能源管理工作中所普遍存在和亟待解决的研究问题。
     (2)能源产消特性分析与不同特性下的产消预测模型
     基于煤气和电力两种主要能源,结合生产工艺分析和灰色关联度分析方法,分析了钢铁企业主要生产工序及各工序主要能源用户的能源产消特性,并根据不同的产消特性,建立不同的能源产消预测模型对能源的产生或消耗量进行预测。
     针对产消量基本处于一定范围内的用户,建立基于生产计划的预测模型,以非能源的计划产量作为依据进行预测;针对产消量没有明显的规律,存在随机性、灰色特性,且与其影响因素之间呈非线性关系的用户,建立基于灰色RBF神经网络模型的预测模型,将与产消量相关联的数据进行灰色累加处理后,作为模型的训练数据,以时间序列作为模型输入进行预测,并以预测误差作为反馈对神经网络结构进行修正;针对与其影响因素之间存在明显规律或线性关系的用户,建立多层递阶回归分析预测模型,将线性回归方法与多层递阶方法相结合,将预报对象看成是随机动态的时变系统进行预测;针对短时间内呈线性变化,长时间内呈现连续性和周期性变化的用户,建立基于时间序列的自回归滑动平均预测模型,利用前段时间若干能源产消量的线性组合对后段时间进行预测。
     工业现场数据的仿真实验表明,所建立的四类预测模型对于具有不同产消特性的用户具有较好的针对性和适应性,预测精度较高。
     (3)能源数据校正与煤气实绩平衡策略
     基于所提出的产消预测模型,提出了一种能源数据校正方法,以产消预测模型得出的预测值为参考值,以校正值与该预测值之间差值的平方和最小为目标函数,以能源平衡方程作为约束条件,建立优化模型,通过求解模型最优解,得到能源数据的校正值,并采用基于污染正态分布的过失误差诊断方法对能源计量数据中的过失误差进行诊断,对含有过失误差数据再重新求解校正值。过失误差的检测,能为检测设备的诊断提供指导。利用该数据校正方法,针对煤气这一钢铁企业最重要的能源,设计了一种煤气自动实绩平衡策略,由职能部门设置补偿参数,煤气用户设置仪表停计时间,平衡管理员设置平衡的运行参数,以测量数据的校正值代替原始测量值,实现了煤气系统的自动实绩平衡。工业生产过程数据的仿真实验表明,能源数据校正方法合理可行,煤气实绩平衡策略可提高煤气平衡的科学性和自动化程度。
     (4)两种煤气优化调度模型
     分析了企业内部能源系统的网络结构,推导了基于数学规划的能源优化调度总体模型的数学表达式。针对煤气系统,提出基于单元分类的和基于产消预测的煤气优化调度模型。
     1)基于单元分类的煤气调度模型根据各煤气用户在生产过程中的作用与煤气产消方式的不同对用户进行分类,以统一的调度目标和不同类别的约束方程对各用户煤气进行优化调度。模型主要从宏观角度着眼于钢铁企业全流程,可以适用于所有的用户;
     2)基于产消预测的调度模型利用煤气产消预测模型的预测值,然后使用能源总体优化调度总体模型对预测结果进行相应修正,并作为优化调度值。模型增加了对关键影响因素的考虑,调度结果具有相对较高的精确度,但仅适用于具有预测模型的用户,且受预测精度影响较大。
     工业过程数据仿真结果表明,调度模型可显著减少煤气的放散量。
     (5)能源产消预测与优化调度模型在能源管理系统中的应用与实现
     使用Windows平台,Visual studio开发环境,Oracle数据库,基于所提出的能源产消预测模型和优化调度模型,设计实现了煤气自动实绩平衡系统和煤气优化调度系统,并应用于论文背景钢铁企业,作为其能源管理系统的一部分。两系统投入运行后,可以在5分钟内实现按班为最小周期的全厂煤气的自动实绩平衡,可以在2分钟内自动生成煤气的班调度计划;有效提高了实际平衡的效率和煤气利用率,经济效益显著。
Strengthening energy management is an important means to achieve the circular economy. The energy consumption cost of iron and steel enterprise takes up approximately 15%-20%of the total energy consumption cost of industrial sectors. The high energy consumption results in environmental pollution and negative effects on economic benefit, which have been a difficult problem for the iron and steel enterprises. The mains factors that result in the high energy consumption include the confused energy management, improper energy arrangement, inefficient energy scheduling and so forth. This paper aims to solve these problems based on the energy center construction project of a large-scale steel joint enterprise. The energy system, energy product-consume prediction, energy performance balancing, energy scheduling models and its applications are analyzed and studied. The main original research achievements are as follows:
     (1) Indicate the main problems existing in energy management system
     The distribution and management process of all kinds of energy such as gas, power, water, vapor, oxygen, argon and nitrogen consumed in the main production processes of sintering, coke oven coking, blast furnace ironmaking, converter steelmaking, continuous casting and rolling in a typical steel joint enterprise have been analyzed. It points out that energy product-consume prediction, energy performance balancing and energy scheduling remain to be improved in the current energy management.
     (2) Energy product-consume characteristic analysis and prediction models based on different characteristic
     Concerning the two main energy resources, gas and power, and combining the process characteristics analysis with grey relational analysis, the energy consumption characteristics of the users in the main production processes are analyzed. Then, the energy product-consume prediction models are developed according to the product-consume characteristics. For the users whose production and consumption are within a certain scope, the prediction model based on the production plan is built. It forecasts based on the planned production of non-energy.
     For the users whose production and consumption is of randomness, grey characteristics and has nonlinear relation with its influencing factors, the prediction model based on the RBF neural network is constructed. It adopts the grey accumulated data as the trained data, the time series as the input and the prediction error as the feedback to modify the neural network structure. For the users whose production and consumption are of obvious or linear relation with its influencing factors, the prediction model based on the multi-layer hierarchical regression is built. It combines the linear regression with multi-layer hierarchical, and takes the predicted object as the random dynamic time-varying system. For the users whose production and consumption are of linear change in a short time, but of continuity and cyclical change in a long time, the forecasting model based on the auto-regressive and moving average are developed. It predicts the changes in a latter period with the linear combination of energy product-consume in a former period.
     The results of simulation based on the practical industrial data show that the four models are of good pertinence, flexibility and accuracy.
     (3) Energy data reconciliation and performance balancing strategy
     Based on the prediction models, an energy data reconciliation method is proposed. It adopts the predicted value as the reference value, the balance equation and reconciliation range as the constraint condition, and sets the objective function as minimizing the sum-of-square of differential between the rectified and predicted value to construct the optimization model. The rectified value of energy data is obtained according to the optimal solution of the optimization model. Meanwhile, the method based on the polluted normal distribution gross error diagnosis is adopted to diagnose the error in the energy metrological data. The rectified value of the erotic data is re-solved. A gas automatic performance balancing strategy has been designed based on the data reconciliation method. The functional departments set the compensation parameters, gas users set the instrument stop time, and administrators set the balance operation parameters. Rectified value of metrological data replaces the original measured value to achieve automatic performance balancing of gas system. The results of simulation based on the practical industrial data show that the data reconciliation model and balance strategy are applicable and could improve the scientific and automation level of gas balance.
     (4) Two energy optimal scheduling models
     By analyzing the energy network structure, the expression of energy optimal scheduling based on the mathematical programming is deduced. Then, the gas scheduling models based on unit classification and product-consume forecasting are proposed.
     1) The gas scheduling model based on unit classification classifies the gas users into different units according to their roles and functions in the production process. The optimal scheduling is achieved with unified scheduling goal and different constraint conditions. The model focuses on the entire process from the macroscopic angle and could be used by all gas users.
     2) The scheduling model based on product-consume prediction adopts the predicted value of the gas product-consume prediction model, fixes the value with the overall energy optimal scheduling model, and sets the fixed value as optimal scheduling value. This model is of higher accuracy by taking the key factors into consideration. However, it can only be used by the users with forecasting model and is influenced by the predicting accuracy. The results of simulation based on the practical industrial data show that the two models could significantly reduce the amount of radiation gas.
     (5) Implementation and application of energy product-consume predicting and optimal scheduling model in energy management system
     Based on the energy product-consume predicting model and optimal scheduling model, the gas auto performance balancing and optimal scheduling system using Windows XP platform, Visual studio integrated development environment and Oracle database is built. It is applied in a iron and steel enterprise as a part of the energy management system, and could achieve auto performance balance of the gas of the whole factory by taking a class as the minimal cycle within five minutes and could generate class scheduling plan automatically within two minutes. It effectively improves the efficiency of the performance balance and the gas utilization, and remarkably increases the economic benefit.
引文
[1]姚伟龙,邢涛.中国能源状况与发展对策分析[J].能源研究与信息,2006,22(4):187-193.
    [2]K. Hiroshi. Production and technology of iron and steel in Japan during 2005 [J]. ISIJ International,2006,46 (7):939-958.
    [3]丁皓,郭新有.关于我国钢铁工业二次能源利用的思考[J].科技进步与对策,2004,21(10):102-104.
    [4]C. H. Liang, X. Z. Duan. Distributed generation and its impact on power system[J]. Automation of Electric Power Systems,2001,25 (12):53-56.
    [5]J. Wang, X. Y. Li, X. Y. Qiu. Power system research on distributed generation penetration[J]. Automation of Electric Power Systems,2005,29 (24):90-97.
    [6]Q. Huang, Z. G. Chen, K. Huang, K. Y. Qin. Distributed power generation and integrating technology [J]. Thermal Power Generation,2005,34 (10):7-12.
    [7]舒型武.简析钢铁企业节能减排的途径[J].冶金能源,2008,27(3):6-9.
    [8]符新.关于钢铁企业开展节能降耗的几点建议[C].2007中国钢铁年会论文集,2007:321-324.
    [9]李庭寿.我国烧结烟气脱硫现状及建议[J].中国钢铁业,2010,8(6):14-21.
    [10]李冰,吴海锁.钢铁行业节能减排与循环经济体系建设[J].中国资源综合利用,2008,26(6):12-14.
    [11]金光熙等.宝钢的生产管理[M].北京:北京国防工业出版社,1987.
    [12]魏海明.冶金能源管理系统的发展[J].宝钢技术,2007,25(5):28-34.
    [13]魏建新.钢铁企业的能源战略[J].冶金能源,2007,26(2):3-6.
    [14]王海风,张春霞.能源中心在钢铁企业中的应用和发展趋势[J].中国冶金,2009,19(2):6-9..
    [15]娄湖山.国内外钢铁工业能源现状和发展趋势及节能对策[J].冶金能源,2007,26(2):7-10.
    [16]李桂红.能源管理系统(EMS)的生命力[J].上海节能,2004,23(5):38-40.
    [17]韩丽辉,苍大强.钢铁企业的能源系统集成[J].冶金能源,2008,27(5):6-9.
    [18]宋军,蔡九菊,刘立宏.钢铁企业能源管理概述[C].2006全国能源与热工学术年会论文集,2006:470-472.
    [19]杨卫东,杨冬云.建设能源管理调度中心—现代化钢铁企业的必由之路[C]. 2008冶金循环经济发展论坛论文集,2008:4-5.
    [20]汤晓帆,戴坚,周庆安.物流理论在冶金能源管理中的应用[J].上海节能,2003,22(6):32-34.
    [21]冯为民,丛力群.冶金企业能源管理系统[J].控制工程,2005,12(6):597-600.
    [22]郑文文.能源中心的发展与应用[C].2008冶金循环经济发展论坛论文集,2008:28-30.
    [23]杜友武.钢铁企业能源管理与数据校正系统设计与实现[D].中南大学硕士学位论文,2010,6.
    [24]L. Mikael, J. Dahl. Development of a method for analysing energy, environmental and economic efficiency for an integrated steel plant[J]. Applied Thermal Engineering,2006,26 (13):1353-1361.
    [25]判治洋一,范锤利.采用大规模DCS系统的现代化能源中心[J].冶金能源,1993,12(5):43-47.
    [26]R. J. Stark. Computerized energy management in an integrated steel plant[C]. Proceedings of the American Control Conference, SanDiego, CA, USA,1984: 638-643.
    [27]B. Ramani, T. S. Subramonian. Energy management system in Bhilai steel plant-implementation and future enhancements[J]. Electricity Conservation Quarterly,1997,18(2):3-9.
    [28]R. Valsalam, N. Krishnan, V. Muralidharen. Energy management and control system for integrated steel plants[C]. Proceedings of the National Convention on Computerisation and Automation in steel Industry, Ranchi, India,1996: 59-83.
    [29]吕惠民.鞍钢能源中心开发中的若干问题探讨[J].鞍钢技术,1991,3(8):1-3.
    [30]冯为民.宝钢三期工程能源中心系统[J].冶金动力,1997,5(5):1-5.
    [31]李绪燕,张德华,朱长宏,李瑞芳.塔形流量计在济钢煤气系统计量中的应用[J].中国计量,2008,14(8):60-61.
    [32]邓春蕊,费晓明.唐钢能源计量网络系统[J].河北冶金,2002,24(5):45-46.
    [33]谢校庄.武钢能源计算机管理系统[J].冶金自动化,1992,16(4):20-22.
    [34]蒋平,李博,曾文清.马钢新区能源中心的建设与探讨[J].冶金能源,2009,28(3):3-5.
    [35]初明.梅钢计算机能源管理系统介绍[J].梅山科技,2006,27(2):53-55.
    [36]L. R. Chapman, R. J. Stark. How to organise an energy management effort[J]. Iron and Steel Engineering,1990, (8):38-42.
    [37]O. Lida, Y. Ushijima, T. Sawada. Application of AI techniques to blast furnace operation[J]. Iron and Steel Engineer,1995, (10):26-29.
    [38]Akimoto, N. Sannomiya, Y. Nishikawa, T. Tsuda. An optimal gas supply for a power plant using a Mixed Integer Programming Model[J]. Automatica,1991, 27 (3):513-518.
    [39]K. S. Kumar, S. R. Valsalam. Intelligent operator guidance system for advanced energy management in integrated steel plants[C]. Proceedings of the 5th annul seminar of ER&DC, Trivandrum, India,1994:33-34.
    [40]S. Subramonian, V. Muralidharen, N. Krishnan. Energy modelling and optimization for energy management system in integrated steel plants[C]. Proceedings of the 6th annul seminar of ER&DC, Trivandrum, India,1995: 10-16.
    [41]Lahhinen, Seppo. Implementation of an energy management system as strategic investment[J]. International Paperworld IPW,2009,42 (5):6-8.
    [42]马竹梧.EIC一体化系统的进步与展望[J].世界仪表与自动化,2004,8(8):14-18.
    [43]薛兴昌.EIC一体化的发展与未来[J].世界仪表与自动化,2005,9(12):18-19.
    [44]朱本荣,李洪伟.分布式能源计量微机管理系统[J].中国计量,2008,14(7):103-104.
    [45]汤晓帆,戴坚,周庆安.物流理论在冶金能源管理中的应用[J].上海节能,2003,22(6):32-34.
    [46]汤晓帆,戴坚,周庆安.钢铁生产流程的物流理论在冶金能源管理中应用[C].2004全国能源与热工学术年会论文集,2004:583-585.
    [47]徐明德.模型及其在能源预测中的应用[J].应用能源技术,1995,12(2):5-7.
    [48]曹代勇,杨森丛.河北省能源需求的中长期预测[J].中国矿业,2008,17(8):28-30.
    [49]袁顺全,千怀遂.气候对能源消费的预测指标及计算方法[J].资源科学,2004,26(6):125-128.
    [50]谢妍,李牧.基于遗传算法优化的GM(1,1)能源预测模型研究[J].中国管理信息化,2009,12(19):95-97.
    [51]任艳.基于遗传算法的能源结构多目标优化模型的研究[D].中国石油大学 (华东)硕士学位论文,2007.
    [52]张加云,张德江,李新胜.遗传小波神经网络在企业能耗预测中的应用[C].2009全国冶金自动化信息网年会论文集,2009:849-851.
    [53]A. Azadeh, S. F. Ghaderi, S. Tarverdian, M. Saberi. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption[J]. Applied Mathematics and Computation,2007,186 (2): 1731-1741.
    [54]K. Karabulut, A. Alkan, A. S. Yilmaz. Long term energy consumption forecasting using genetic programming[J]. Mathematical and Computational Applications,2008,13 (2):71-80.
    [55]H. Karahan, H. Ceylan, M. T. Ayvaz. Predicting rainfall intensity using a genetic algorithm approach[J]. Hydrological Processes,2007,27 (4):470-475.
    [56]孙晋众,林健.基于小波的能源消费弹性系数预测方法[J].沈阳航空工业学院学报,2007,24(3):78-80.
    [57]陈柳,马广大.大气中SO2浓度的小波分析及神经网络预测[J].环境科学学报,2006,26(9):553-558.
    [58]周仲礼,冯文新.基于小波神经网络模型的中国能耗预测[J].成都理工大学学报(自然科学版),2005,32(5):544-546.
    [59]D. Benaouda, F. Murtaqh. Electricity load forecast using neural network trained from wavelet-transformed data[C]. Proceedings of the IEEE International Conference on Engineering of Intelligent Systems, Islamabad, Pakistan,2006: 450-456.
    [60]宝钢股份公司能源部.EMS与节能[J].上海节能,2003,22(2):28-32.
    [61]李玲玲,吴敏,曹卫华.基于多层递阶回归分析的轧钢煤气用量预测[J].控制工程,2004,11(z1):33-35.
    [62]G. J. Tsekouras, E. N. Dialynas. A non-linear multivariable regression model for midterm energy forecasting of power systems[J]. Electric Power Systems Research,2007,77 (12):1560-1568.
    [63]刘豹,胡代平.神经网络在预测中的一些应用研究[J].系统工程学报,1999,14(4):82-87.
    [64]司昕.预测方法中的神经网络模型[J].预测,1998,17(2):32-35.
    [65]非思科技产品研发中心.神经网络理论MATLAB7.0实现[M].北京:电子工业出版社,2005.
    [66]S. J. Eglen, A. G. Hill. Using neural networks[J]. GEC Review,1992,7 (3): 27-36.
    [67]A. Khotanzad. ANNSTLF-A neural-network-based electric load forecasting system[J]. IEEE Transaction on Neural Networks,1997,8 (4):835-845.
    [68]S. Cho and Y. Cho. Reliable roll force prediction in cold mill using multiple neural networks[J]. IEEE Transaction on Neural Networks,1997,8 (4): 874-882.
    [69]J. V. Hanson, R. Nelson. Neural networks and traditional times series methods: A synergistic combination in state economic forecasts[J]. IEEE Transaction on Neural Networks,1997,8 (4):863-873.
    [70]G. J. Tsekouras, E. N. Dialynas. An optimized adaptive neural network for annual midterm energy forecasting[J]. IEEE Transactions on Power Systems, 2006,21 (1):385-391.
    [71]P. Mandal, K. Srivastava, T. Senjyu. Anew recursive neural network algorithm to forecast electricity price for PJM day-ahead market[J]. International Journal of Energy Research,2010,34 (6):507-522.
    [72]G. Grassi, P. Vecchio. Wind energy prediction using a two-hidden layer neural network[J]. Communications in Nonlinear Science and Numerical Simulation, 2010,15 (9):2262-2266.
    [73]郑静,杜秀华,史新祈.大型钢铁企业电力负荷的短期预测研究[J].电力需求侧管理,2004,6(1):18-21.
    [74]王隆基,张仲鹏,孙晓霞.基于BP神经网络的物流预测方法[J].机械,2004,31(3):4-9.
    [75]胥悦红,顾培亮.基于BP神经网络的产品成本预测[J].管理工程学报,2000,14(4):61-64.
    [76]冯述虎,侯运炳.基于时序分析与神经网络的能源产量预测模型[J].辽宁工程技术大学学报,2003,22(2):168-171.
    [77]张舒,高为民.人工神经网络在烧结矿指标预测中的应用[J].烧结球团,2001,26(4):6-10.
    [78]衣智,赵政.基于人工神经网络的电量预测[J].微处理机,2003,25(4):40-42.
    [79]常冰,王力军.热负荷预测中应用神经网络模型的研究[J].建筑热能通风空调,2003,22(4):59-67.
    [80]高强,王胜辉,徐建源.基于人工神经网络的中期电力负荷预测研究[J].沈阳工业大学学报,2004,26(1):41-43.
    [81]范志刚,邱贵宝,贾娟鱼.基于BP神经网络的高炉焦比预测方法[J].重庆大学学报,2002,25(6):85-91.
    [82]时章明,薛立华,周安粱.BP神经网络在铜锍吹炼终点预报中的应用[J].有色金属,2002,17(5):24-27.
    [83]张川,高峰,翟桥柱等.基于滚动优化的钢铁企业电力优化调度算法[C].第26界中国控制会议论文集,2007:474-478.
    [84]王西兵,钱燕云,郁鸿凌.大型钢铁企业低压蒸汽系统优化调度研究[J].上海理工大学学报,2006,28(4):391-395.
    [85]陈光,陆钟武,蔡九菊,卜庆才.钢铁企业氧气系统动态仿真[J].东北大学学报,2002,23(10):940-943.
    [86]回克钢,王芩,孟延孝.钢铁工业用水系统平衡设计[J].环境工程,2008,26(5):62-64.
    [87]A. Tatsuro, S. Michitaka. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works[J]. ISIJ International,2006,46 (12): 1736-1744.
    [88]田敬龙.中国十大钢铁企业能耗分析及节能工作建议[J].冶金能源,2007,26(6):3-7.
    [89]郑家麒,毕衍涛.谈煤气调度中心的功能和作用[J].冶金能源,2004,23(6):6-8.
    [90]刘春燕,林柒女,杜庆平.莱钢煤气动态平衡的研究与实践[J].冶金动力,2008,16(3):20-22.
    [91]池伟强,黄智斌,李仁君.韶钢煤气平衡分析[J].科技创新导报,2009,7(30):77-79.
    [92]陈尚恒,苏利平.强化计量检测管理提高煤气数据准确率[J].工业计量,2002,12(1):19-21.
    [93]孙贻公.对大型钢铁联合企业煤气平衡问题的探讨[J].钢铁,2003,38(6):59-64.
    [94]王自龙.梅钢高炉煤气系统平衡实践与思考[J].能源技术,2004,24(5):225-226.
    [95]Collings, Bignell, N. Hews-Taylor. Ultrasonic metering of gas flows[C]. Proceedings of the Ultrasonics International Conference, Vienna, Austria,1993: 205-208.
    [96]Mylvaganam, Saba. Gas density metering in ultrasonic gas flowmeters using dance measurements and chemometrics[C]. Proceedings of the IEEE Ultrasonics Symposium, LakeTahoe, NV, USA,1999:435-439.
    [97]Warner, L. Kevin. Transit time ultrasonic flow meters for natural gas measurement[C]. Proceedings of the International Pipeline Conference, Calgary, Alberta, Canada,1996:1049-1053.
    [98]A. Bhandarkar. Overview of scheduling[J]. Vivek,1991,4 (1):3-7.
    [99]J. Schultz, M. Weigelt, P. Mertens. Methods fo production scheduling-an overview[J]. Wirtschaftsinformatik(Gemany),1995,37 (6):594-608.
    [100]A. Muluk, H. Akpolat, J. C. Xu. Scheduling problems-an overview[J]. Journal of Systems Science and Systems Engineering,2003,12 (4):481-492.
    [101]de Pablo. On scheduling models:an overview[C]. Proceedings of the International Conference on Computers & Industrial Engineering, Troyes, France,2009:153-158.
    [102]高鸷,郭锦标,杨明诗.约束规划在原油调度中应用的探索[J].计算机与应用化学,2006,23(12):1239-1244.
    [103]徐立芳,莫宏伟.基于自适应克隆启发算法的作业车间调度[J].计算机工程,2009,35(4):207-209.
    [104]黄琼雁.一种基于专家系统的自动化立体车库出入库调度策略[J].计算机与现代化,2007,23(8):4144.
    [105]冯心玲,龚月姣,林映霞,詹志辉.用遗传算法优化航班规划问题[J].计算机工程与设计,2009,30(19):4468-4471.
    [106]谢小良,符卓.基于Hopfield神经网络的单周期船舶调度模型及算法[J].微电子学与计算机,2008,25(10):110-112.
    [107]D. Kim, C. Barnhart. Flight schedule design for a charter airline[J]. Computers & Operations Research,2007,34 (6):1516-1531.
    [108]K. Cho, T. Hong, C. Hyun. Integrated schedule and cost model for repetitive construction process[J]. Journal of Management in Engineering,2010,26 (2): 78-88.
    [109]P. Sukumaran, T. Hong, M. Hastak. Validation of a model for predicting schedule changes in highway work zones[J]. Journal of Transportation in Engineering,2006,132 (8):638-648.
    [110]S. G. Kim, Y. J. Koo, H. Y. Kim. Optimization of pumping schedule based on forecasting the hourly water demand in Seoul[J]. Water Science & Technology: Water Supply,2007,7 (5):85-93.
    [111]T. Nagatani. Dynamical model for retrieval of tram schedule[J]. Physica A: Statistical Mechanics and its Applications,2007,377 (2):661-671.
    [112]刘祥官,李吉弯.冶金生产过程的系统优化[J].系统工程理论与实践,1994,14(6):54-59.
    [113]鞠幼化.冶金企业工序系统节能研究[J].节能,1994,14(6):8-9.
    [114]方必和.工业技术节能量优选研究[J].运筹与管理,1994,3(3):86-89.
    [115]徐明德.模型及其在能源预测中的应用[J].应用能源技术,1995,12(2):5-7.
    [116]付凌晖,王惠文.多项式回归的建模方法比较研究[J].数理统计与管理,2004,23(1):48-52.
    [117]F. Focacci, A. Lodi, M. Milano. Mathematical programming techniques in constraint programming:a short overview[J]. Journal of Heuristics,2002,8 (1): 7-17.
    [118]金伟明.能源分配优化模型及其在企业节能中的应用[J].节能,1990,10(4):12-16.
    [119]苗嘉琨.能源系统最优化的计算及通用线性规划程序设计[J].中国能源,1996,19(6):18-21.
    [120]陈光,陆钟武.宝钢能源优化模型的研究[J].冶金能源,2003,22(1):5-9.
    [121]郭宇,茹海鹏.钢铁企业能源优化分配静态数学模型[J].科技信息,2008,25(19):489-490.
    [122]江文德.钢铁企业能源动态平衡和优化调度问题研究和系统设计[D].浙江大学硕士学位论文,2006.
    [123]N. Hayakawa. Minimizing energy consumption in industries by cascade use of waste energy[J]. IEEE Transactions on Energy Conversion,1999,14 (3): 795-801.
    [124]王建军,蔡九菊,张琦.钢铁企业能量流模型化研究[J].中国冶金,2006,16(5):48-52.
    [125]S. J. Honkomp, S. Lombardo, O. Rosen. The course of reality—why process scheduling optimization problems are difficult in practice[J]. Computers & Chemical Engineering,2000,24 (2):323-328.
    [126]发改委宏观经济研究院信息中心课题组.钢铁行业发展对电力的需求[J].经济研究参考,2005,27(78):24-36.
    [127]邹宽.宝钢节能历程对国内冶金企业的启示[J].钢铁,2003,38(z1):69-72.
    [128]C. M. Crowe, Y. A. Garcia Campos, A. Hrymak. Reconciliation of process flow rates by matrix projection[J]. AIChE Journal,1983,29 (6):881-888.
    [129]张正江,祝铃钰,邵之江.基于大规模严格机理模型的数据校正[J].高校化 学工程学报,2008,22(5):877-882.
    [130]G. H. Weiss, J.A. Romagnoli, K.A. Islam. Data reconciliation-an industrial case study[J]. Computers&Chemical Engineering,1996,20(12):1441-1449.
    [131]M. J. Bagajewicz, E. Cabrera. Data reconciliation in gas pipeline systems[J]. Industrial&Engineering Chemistry research,2003,42 (22):5597-5606.
    [132]S. Sunde. Data reconciliation in the steam-turbine cycle of a boiling water reactor[J]. Nuclear Technology,2003,143 (2):104-124.
    [133]林孔元.重油催化裂化稳态过程数据协调与检测[J].天津大学学报,1996,29(4):631-636.
    [134]周传光,金思毅,赵文.常减压蒸馏装置在线数据校正与优化控制[J].青岛化工学院学报,2000,21(2):135-138.
    [135]周传光,孔玲,王晓红.化工过程测量数据在线校正系统CPDRS的设计开发与应用[J].青岛科技大学学报,2003,24(6):471-475.
    [136]郭超,金晓明,荣冈.数据校正技术在流程工业企业物料平衡中的应用[J].化工自动化及仪表,2005,32(3):39-41.
    [137]蔡月忠.企业能源中心能源管理系统EMS简论[J].江苏现代计量.2010,12(12):23-27.
    [138]金周.计划管理在能源管理子系统中的应用[C].全国炼钢连铸过程自动化技术交流会论文集,2006.
    [139]刘渺.钢铁企业主工序分厂煤气量预测方法研究[D].中南大学硕士学位论文,2006,15-18.
    [140]熊永华,杜友武,曹卫华,吴敏.基于数据校正的煤气平衡认证方法及其应用[J].科技通报,2010,26(5):730-736.
    [141]明德廷,李娟,尹怡欣.钢铁企业煤气优化调度模型研究.计算机工程与设计,2008,29(6):1575-1578.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700