用户名: 密码: 验证码:
产肠毒素大肠杆菌、肠上皮细胞和乳酸菌相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产肠毒素大肠杆菌(enterotoxigenic Escherichia coli, ETEC)是引起动物和人体发生腹泻的重要病原菌之一。这种病原菌分泌在表面的黏附素可以介导细菌向肠道黏膜附着,随后细菌产生肠毒素而引起宿主腹泻。乳酸菌作为一类益生菌能够帮助宿主改善肠道菌群微生态平衡,维护宿主的肠道健康。已有的体外研究报道ETEC可以引起某些肠上皮细胞的死亡,并且乳酸菌能够通过和ETEC的相互作用而保护宿主细胞。因此,研究ETEC对肠上皮细胞致病的分子机制,以及乳酸菌保护宿主细胞的机理,对于益生菌在防治产肠毒素大肠杆菌引起的腹泻疾病方面有着重要的作用。
     本研究将一株猪小肠上皮细胞系IPEC-J2细胞和两种浓度的产肠毒素大肠杆菌ETEC K88菌株JG280共培养后,发现108 CFU/ml的ETEC对IPEC-J2细胞的细胞毒性显著性高于109 CFU/ml,这一结果提示ETEC对IPEC-J2的细胞毒性根据细菌浓度的不同而产生差别,并且细菌的群体感应(quorum sensing)可能在ETEC的致病机理中发挥重要的作用。研究发现在108 CFU/ml的ETEC和IPEC-J2细胞共培养过程中,ETEC产生的AI-2(autoinducer-2,自体诱导物)活性和IPEC-J2的细胞死亡呈正相关,而与ETEC的毒力基因estA(编码大肠杆菌耐热肠毒素a)和estB(编码大肠杆菌耐热肠毒素b)表达呈负相关。为了进一步地研究ETEC群体感应的机理,我们将ETEC K88菌株JG280的luxS基因(该基因的产物催化AI-2的生物合成)克隆,并在大肠杆菌E. coli DH5α中过量表达。将载有过量表达的luxS基因的E. coli DH5α的无菌培养上清液(内含高活性的AI-2)和IPEC-J2细胞及108 CFU/ml的ETEC共培养后发现,AI-2可以显著性地降低ETEC对IPEC-J2的细胞毒性并抑制estA基因的表达。以上结果共同提示,由AI-2介导的群体感应在ETEC的致病机理中起重要作用,并且AI-2可能是通过对大肠杆菌耐热肠毒素a的负向调控来实现的。
     我们还研究了13株从猪体内分离到的乳酸菌是否能够保护IPEC-J2细胞免受ETEC K88菌株JG280的侵染,及其作用的分子机制。本研究首先发现一株非产肠毒素大肠杆菌E. coli K88 JFF4在浓度为108和109 CFU/ml时,均不会对IPEC-J2产生细胞毒性,这一结果提示肠毒素对于引起肠上皮细胞死亡(或损伤)的重要作用。研究还发现,这13株乳酸菌中有5株能够显著地降低ETEC对IPEC-J2的细胞毒性,进而保护IPEC-J2细胞。通过对6株乳酸菌CL9、CL11、CL12、K67、S33和S64的进一步研究表明,这6株乳酸菌均能够降低ETEC诱导IPEC-J2分泌促炎因子白细胞介素-8 (interleukin-8, IL-8),并且除了K67之外的5株乳酸菌均能够促进IPEC-J2分泌抗炎因子白细胞介素-10 (interleukin-10, IL-10)。用实时定量PCR的方法研究发现,一株对IPEC-J2有保护作用的乳酸菌CL9能够抑制ETEC的estA和estB基因表达。乳酸菌S8能够显著性地促进ETEC分泌的AI-2活性,同时它还可以降低ETEC对IPEC-J2的细胞毒性。以上结果共同提示,某些乳酸菌可能通过抑制ETEC毒力基因的表达,另一些乳酸菌可能通过分泌某些物质影响ETEC群体感应信号分子的作用,进而降低ETEC肠毒素的产生,从而保护宿主细胞。同时,IPEC-J2细胞分泌的细胞因子IL-8和IL-10在乳酸菌的作用机制中起重要作用。为了进一步研究乳酸菌的作用机理,我们还需更加深入的研究。
Enterotoxigenic Escherichia coli (ETEC) are often associated with the outbreaks of diarrhea in animals and human beings worldwide. The adhesins of ETEC mediate bacterial adherence to the intestine, after binding of the fimbriae to enterocytes, ETEC proliferate rapidly to attain massive numbers and produce one or more types of enterotoxin, which stimulate fluid and electrolyte secretion by intestinal cells, thus leading to diarrhea. Some lactic acid bacteria were identified as probiotics, which can help the host with the improvement of gut microbial ecology and confer health benefits to animals and humans. Previous report showed that ETEC induced cell death of several intestinal epithelial cells in vitro, and lactic acid bacteria may protect the intestinal epithelial cells through the interactions with ETEC. However, the mechanisms of the actions are largely undefined. Therefore, understanding the ETEC pathogenesis of infecting host cells, and the potential protecting mechanisms of lactic acid bacteria would provide new insights into the study of how lactic acid bacteria protect the host.
     In this study, we incubated pig intestinal IPEC-J2 cells with two concentrations of ETEC K88 strain JG280. We observed that 108 CFU/ml of ETEC K88 strain JG280 caused more death of IPEC-J2 cells than did 109 CFU/ml, suggesting that ETEC-induced cell death was cell density-dependent and that quorum sensing (QS) may play a role in pathogenesis. Subsequent investigations demonstrated a positive correlation between autoinducer 2 (AI-2) activity of ETEC K88 strain JG280 and death of IPEC-J2 cells during the infection up to 3 hours. However, there was a negative correlation between AI-2 activity and expression of the ETEC K88 strain JG280 enterotoxin genes estA and estB when IPEC-J2 cells were exposed to the pathogen at 108 CFU/ml. To further understand the QS mechanisms of ETEC, we therefore cloned the luxS gene (responsible for AI-2 production) from ETEC K88 strain JG280, and overexpressed it in E. coli DH5α. Addition of culture fluid from E. coli DH5αwith the overexpressed luxS reduced cell death of IPEC-J2 by 108 CFU/ml JG280. The addition also reduced the estA expression of ETEC K88 strain JG280. These results suggest the involvement of AI-2-mediated quorum sensing in K88+ ETEC pathogenesis, possibly through a negative regulation of STa production.
     In this study, we have also investigated possible protection of thirteen previously selected lactic acid bacteria (LAB) strains from swine, against intestinal cell damage by ETEC K88 strain JG280 infection and the underlying mechanisms. In previous study, we observed that the non-pathogenic K88+ E. coli strain JFF4 (toxins-negative) caused no cytotoxicity to IPEC-J2 cells at both concentrations of 108 CFU/ml and 109 CFU/ml, implying the effect of enterotoxins on cell damage/death. Five out of thirteen LAB strains were able to prevent the ETEC-induced cytotoxicity to IPEC-J2 cells. Further investigations on six LAB strains CL9, CL11, CL12, K67, S33 and S64 showed that IL-8 (interleukin-8, pro-inflammatory cytokine) production was decreased by these six strains, and IL-10 (interleukin-10, anti-inflammatory cytokine) production was increased by five strains, except K67. Quantitative PCR analysis showed that expression of two enterotoxin genes estA and estB of ETEC were reduced by CL9 (an effective LAB strain) during incubation. Subsequent investigations showed that LAB strain S8 significantly increased the AI-2 activity produced by ETEC, and meanwhile inhibited the ETEC cytotoxicity to IPEC-J2 cells. Together, our results indicate that some LAB strains inhibit the intestinal cell damage caused by ETEC through inhibiting the enterotoxin gene expression of ETEC, and some LAB might secrete a molecule(s) that interfere with ETEC quorum sensing signaling. Meanwhile inflammatory cytokines IL-8 and IL-10 may involve in the lactic acid bacteria-reduced inflammation of IPEC-J2. To determine the molecular mechanism of the protection offered by the LAB strains, further studies are required.
引文
1. Bouckenooghe A R, Jiang Z D, De La Cabada F J, et al. Enterotoxigenic Escherichia coli as cause of diarrhea among Mexican adults and US travelers in Mexico. J Travel Med, 2002. 9(3): 137-40.
    2. Dalton C B, Mintz E D, Wells J G, et al. Outbreaks of enterotoxigenic Escherichia coli infection in American adults: a clinical and epidemiologic profile. Epidemiol Infect, 1999. 123(1): 9-16.
    3. Savarino S J, Fasano A, Watson J, et al. Enteroaggregative Escherichia coli heat-stable enterotoxin 1 represents another subfamily of E. coli heat-stable toxin. Proc Natl Acad Sci U S A, 1993. 90(7): 3093-7.
    4. Pichel M G, Binsztein N, Qadri F, et al. Type IV longus pilus of enterotoxigenic Escherichia coli: occurrence and association with toxin types and colonization factors among strains isolated in Argentina. J Clin Microbiol, 2002. 40(2): 694-7.
    5. Elsinghorst E A.Weitz J A. Epithelial cell invasion and adherence directed by the enterotoxigenic Escherichia coli tib locus is associated with a 104-kilodalton outer membrane protein. Infect Immun, 1994. 62(8): 3463-71.
    6. Fleckenstein J M, Holland J T.Hasty D L. Interaction of an uuter membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect Immun, 2002. 70(3): 1530-7.
    7. Ludwig A, von Rhein C, Bauer S, et al. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains. J Bacteriol, 2004. 186(16): 5311-20.
    8. Wang Y, Wang H, Xiang Q, et al. Detection of the high-pathogenicity island of Yersinia enterocolitica in enterotoxigenic and enteropathogenic E.coli strains. Di Yi Jun Yi Da Xue Xue Bao, 2002. 22(7): 580-3.
    9. Fekete P Z, Schneider G, Olasz F, et al. Detection of a plasmid-encoded pathogenicity island in F18+ enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs. Int J Med Microbiol, 2003. 293(4): 287-98.
    10. Orskov I.Orskov F. Serologic classification of fimbriae. Curr Top Microbiol Immunol, 1990. 151: 71-90.
    11. Nagy B.Fekete P Z. Enterotoxigenic Escherichia coli (ETEC) in farm animals. Vet Res, 1999. 30(2-3): 259-84.
    12. Nagy B.Fekete P Z. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol, 2005. 295(6-7): 443-54.
    13. Hu Z L, Hasler-Rapacz J, Huang S C, et al. Studies in swine on inheritance and variation in expression of small intestinal receptors mediating adhesion of the K88 enteropathogenic Escherichia coli variants. J Hered, 1993. 84(3): 157-65.
    14. Nagy B, Whipp S C, Imberechts H, et al. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea. Microb Pathog, 1997. 22(1): 1-11.
    15. Benz I.Schmidt M A. Isolation and serologic characterization of AIDA-I, the adhesin mediatingthe diffuse adherence phenotype of the diarrhea-associated Escherichia coli strain 2787 (O126:H27). Infect Immun, 1992. 60(1): 13-8.
    16. Ngeleka M, Pritchard J, Appleyard G, et al. Isolation and association of Escherichia coli AIDA-I/STb, rather than EAST1 pathotype, with diarrhea in piglets and antibiotic sensitivity of isolates. J Vet Diagn Invest, 2003. 15(3): 242-52.
    17. Jeyasingham M D, Butty P, King T P, et al. Escherichia coli K88 receptor expression in intestine of disease-susceptible weaned pigs. Vet Microbiol, 1999. 68(3-4): 219-34.
    18. Guinee P A.Jansen W H. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infect Immun, 1979. 23(3): 700-5.
    19. Choi C.Chae C. Genotypic prevalence of F4 variants (ab, ac, and ad) in Escherichia coli isolated from diarrheic piglets in Korea. Vet Microbiol, 1999. 67(4): 307-10.
    20. Fairbrother J M, Nadeau E.Gyles C L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev, 2005. 6(1): 17-39.
    21. Erickson A K, Baker D R, Bosworth B T, et al. Characterization of porcine intestinal receptors for the K88ac fimbrial adhesin of Escherichia coli as mucin-type sialoglycoproteins. Infect Immun, 1994. 62(12): 5404-10.
    22. Grange P A, Mouricout M A, Levery S B, et al. Evaluation of receptor binding specificity of Escherichia coli K88 (F4) fimbrial adhesin variants using porcine serum transferrin and glycosphingolipids as model receptors. Infect Immun, 2002. 70(5): 2336-43.
    23. Francis D H, Erickson A K.Grange P A. K88 adhesins of enterotoxigenic Escherichia coli and their porcine enterocyte receptors. Adv Exp Med Biol, 1999. 473: 147-54.
    24. Van den Broeck W, Cox E, Oudega B, et al. The F4 fimbrial antigen of Escherichia coli and its receptors. Vet Microbiol, 2000. 71(3-4): 223-44.
    25. Nagy L K, Mackenzie T, Pickard D J, et al. Effects of immune colostrum on the expression of a K88 plasmid encoded determinant: role of plasmid stability and influence of phenotypic expression of K88 fimbriae. J Gen Microbiol, 1986. 132(9): 2497-503.
    26. Huisman T T.de Graaf F K. Negative control of fae (K88) expression by the 'global' regulator Lrp is modulated by the 'local' regulator FaeA and affected by DNA methylation. Mol Microbiol, 1995. 16(5): 943-53.
    27. Huisman T T, Pilipcinec E, Remkes F, et al. Isolation and characterization of chromosomal mTn
    10 insertion mutations affecting K88 fimbriae production in Escherichia coli. Microb Pathog, 1996. 20(2): 101-8.
    28. Mol O.Oudega B. Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. FEMS Microbiol Rev, 1996. 19(1): 25-52.
    29. Rippinger P, Bertschinger H U, Imberechts H, et al. Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease. Vet Microbiol, 1995. 45(4): 281-95.
    30. Fekete P Z, Gerardin J, Jacquemin E, et al. Replicon typing of F18 fimbriae encoding plasmids of enterotoxigenic and verotoxigenic Escherichia coli strains from porcine postweaning diarrhoeaand oedema disease. Vet Microbiol, 2002. 85(3): 275-84.
    31. Imberechts H, Wild P, Charlier G, et al. Characterization of F18 fimbrial genes fedE and fedF involved in adhesion and length of enterotoxemic Escherichia coli strain 107/86. Microb Pathog, 1996. 21(3): 183-92.
    32. Smeds A, Pertovaara M, Timonen T, et al. Mapping the binding domain of the F18 fimbrial adhesin. Infect Immun, 2003. 71(4): 2163-72.
    33. Frydendahl K. Prevalence of serogroups and virulence genes in Escherichia coli associated with postweaning diarrhoea and edema disease in pigs and a comparison of diagnostic approaches. Vet Microbiol, 2002. 85(2): 169-82.
    34. Post K W, Bosworth B T.Knoth J L. Frequency of virulence factors in Escherichia coli isolated from pigs with postweaning diarrhea and edema disease in North Carolina. Journal of Swine Health and Production, 2000. 8(3): 119-120.
    35. Amezcua R, Friendship R M, Dewey C E, et al. Presentation of postweaning Escherichia coli diarrhea in southern Ontario, prevalence of hemolytic E. coli serogroups involved, and their antimicrobial resistance patterns. Can J Vet Res, 2002. 66(2): 73-8.
    36. Benz I.Schmidt M A. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol, 2001. 40(6): 1403-13.
    37. Sherlock O, Schembri M A, Reisner A, et al. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol, 2004. 186(23): 8058-65.
    38. Niewerth U, Frey A, Voss T, et al. The AIDA autotransporter system is associated with F18 and stx2e in Escherichia coli isolates from pigs diagnosed with edema disease and postweaning diarrhea. Clin Diagn Lab Immunol, 2001. 8(1): 143-9.
    39. An H, Fairbrother J M, Desautels C, et al. Distribution of a novel locus called Paa (porcine attaching and effacing associated) among enteric Escherichia coli. Adv Exp Med Biol, 1999. 473: 179-84.
    40. Noamani B N, Fairbrother J M.Gyles C L. Virulence genes of O149 enterotoxigenic Escherichia coli from outbreaks of postweaning diarrhea in pigs. Vet Microbiol, 2003. 97(1-2): 87-101.
    41. Batisson I, Guimond M P, Girard F, et al. Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect Immun, 2003. 71(8): 4516-25.
    42. Dallas W S.Falkow S. Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature, 1980. 288(5790): 499-501.
    43. Spangler B D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev, 1992. 56(4): 622-47.
    44. De Haan L.Hirst T R. Cholera toxin: a paradigm for multi-functional engagement of cellular mechanisms (Review). Mol Membr Biol, 2004. 21(2): 77-92.
    45. Holmes R K, Twiddy E M.Pickett C L. Purification and characterization of type II heat-labile enterotoxin of Escherichia coli. Infect Immun, 1986. 53(3): 464-73.
    46. Guth B E, Twiddy E M, Trabulsi L R, et al. Variation in chemical properties and antigenic determinants among type II heat-labile enterotoxins of Escherichia coli. Infect Immun, 1986.54(2): 529-36.
    47. Horstman A L, Bauman S J.Kuehn M J. Lipopolysaccharide 3-deoxy-D-manno-octulosonic acid (Kdo) core determines bacterial association of secreted toxins. J Biol Chem, 2004. 279(9): 8070-5.
    48. Berberov E M, Zhou Y, Francis D H, et al. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun, 2004. 72(7): 3914-24.
    49. Tauschek M, Gorrell R J, Strugnell R A, et al. Identification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli. Proc Natl Acad Sci U S A, 2002. 99(10): 7066-71.
    50. Salmond R J, Luross J A.Williams N A. Immune modulation by the cholera-like enterotoxins. Expert Rev Mol Med, 2002. 4(21): 1-16.
    51. Williams N A, Hirst T R.Nashar T O. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol Today, 1999. 20(2): 95-101.
    52. Francis D H.Willgohs J A. Evaluation of a live avirulent Escherichia coli vaccine for K88+, LT+ enterotoxigenic colibacillosis in weaned pigs. Am J Vet Res, 1991. 52(7): 1051-5.
    53. Boerlin P. Molecular epidemiology of antimicrobial resistance in veterinary medicine: where do we go? Anim Health Res Rev, 2004. 5(1): 95-102.
    54. Choi B K.Schifferli D M. Characterization of FasG segments required for 987P fimbria-mediated binding to piglet glycoprotein receptors. Infect Immun, 2001. 69(11): 6625-32.
    55. Yamamoto T.Nakazawa M. Detection and sequences of the enteroaggregative Escherichia coli heat-stable enterotoxin 1 gene in enterotoxigenic E. coli strains isolated from piglets and calves with diarrhea. J Clin Microbiol, 1997. 35(1): 223-7.
    56. Savarino S J, McVeigh A, Watson J, et al. Enteroaggregative Escherichia coli heat-stable enterotoxin is not restricted to enteroaggregative E. coli. J Infect Dis, 1996. 173(4): 1019-22.
    57. Menard L P, Lussier J G, Lepine F, et al. Expression, purification, and biochemical characterization of enteroaggregative Escherichia coli heat-stable enterotoxin 1. Protein Expr Purif, 2004. 33(2): 223-31.
    58. Dulguer M V, Fabbricotti S H, Bando S Y, et al. Atypical enteropathogenic Escherichia coli strains: phenotypic and genetic profiling reveals a strong association between enteroaggregative E. coli heat-stable enterotoxin and diarrhea. J Infect Dis, 2003. 188(11): 1685-94.
    59. Dubreuil J D. Escherichia coli STb enterotoxin. Microbiology, 1997. 143 ( Pt 6): 1783-95.
    60. Lee C H, Moseley S L, Moon H W, et al. Characterization of the gene encoding heat-stable toxin II and preliminary molecular epidemiological studies of enterotoxigenic Escherichia coli heat-stable toxin II producers. Infect Immun, 1983. 42(1): 264-8.
    61. Picken R N, Mazaitis A J, Maas W K, et al. Nucleotide sequence of the gene for heat-stable enterotoxin II of Escherichia coli. Infect Immun, 1983. 42(1): 269-75.
    62. Moon H W, Schneider R A.Moseley S L. Comparative prevalence of four enterotoxin genes among Escherichia coli isolated from swine. Am J Vet Res, 1986. 47(2): 210-2.
    63. Francis D H. Enterotoxigenic Escherichia coli infection in pigs and its diagnosis. Journal ofSwine Health and Production, 2002. 10(4): 171-175.
    64. Echeverria P, Seriwatana J, Taylor D N, et al. Escherichia coli contains plasmids coding for heat-stable b, other enterotoxins, and antibiotic resistance. Infect Immun, 1985. 48(3): 843-6.
    65. Lee C H, Hu S T, Swiatek P J, et al. Isolation of a novel transposon which carries the Escherichia coli enterotoxin STII gene. J Bacteriol, 1985. 162(2): 615-20.
    66. Guerin G, Duval-Iflah Y, Bonneau M, et al. Evidence for linkage between K88ab, K88ac intestinal receptors to Escherichia coli and transferrin loci in pigs. Anim Genet, 1993. 24(5): 393-6.
    67. Edfors-Lilja I, Gustafsson U, Duval-Iflah Y, et al. The porcine intestinal receptor for Escherichia coli K88ab, K88ac: regional localization on chromosome 13 and influence of IgG response to the K88 antigen. Anim Genet, 1995. 26(4): 237-42.
    68. Python P, Jorg H, Neuenschwander S, et al. Fine-mapping of the intestinal receptor locus for enterotoxigenic Escherichia coli F4ac on porcine chromosome 13. Anim Genet, 2002. 33(6): 441-7.
    69. Willemsen P T.de Graaf F K. Age and serotype dependent binding of K88 fimbriae to porcine intestinal receptors. Microb Pathog, 1992. 12(5): 367-75.
    70. Grange P A, Erickson A K, Levery S B, et al. Identification of an intestinal neutral glycosphingolipid as a phenotype-specific receptor for the K88ad fimbrial adhesin of Escherichia coli. Infect Immun, 1999. 67(1): 165-72.
    71. Erickson A K, Willgohs J A, McFarland S Y, et al. Identification of two porcine brush border glycoproteins that bind the K88ac adhesin of Escherichia coli and correlation of these glycoproteins with the adhesive phenotype. Infect Immun, 1992. 60(3): 983-8.
    72. Vogeli P, Bertschinger H U, Stamm M, et al. Genes specifying receptors for F18 fimbriated Escherichia coli, causing oedema disease and postweaning diarrhoea in pigs, map to chromosome 6. Anim Genet, 1996. 27(5): 321-8.
    73. Helie P, Morin M, Jacques M, et al. Experimental infection of newborn pigs with an attaching and effacing Escherichia coli O45:K"E65" strain. Infect Immun, 1991. 59(3): 814-21.
    74. Zhu C, Harel J, Jacques M, et al. Virulence properties and attaching-effacing activity of Escherichia coli O45 from swine postweaning diarrhea. Infect Immun, 1994. 62(10): 4153-9.
    75. Moss J.Richardson S H. Activation of adenylate cyclase by heat-labile Escherichia coli enterotoxin. Evidence for ADP-ribosyltransferase activity similar to that of choleragen. J Clin Invest, 1978. 62(2): 281-5.
    76. Field M, Graf L H, Jr., Laird W J, et al. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A, 1978. 75(6): 2800-4.
    77. Guerrant R L, Hughes J M, Chang B, et al. Activation of intestinal guanylate cyclase by heat-stable enterotoxin of Escherichia coli: studies of tissue specificity, potential receptors, and intermediates. J Infect Dis, 1980. 142(2): 220-8.
    78. ElDeib M M, Parker C D, Veum T L, et al. Characterization of intestinal brush border guanylate cyclase activation by Escherichia coli heat-stable enterotoxin. Arch Biochem Biophys, 1986. 245(1): 51-65.
    79. Hitotsubashi S, Fujii Y, Yamanaka H, et al. Some properties of purified Escherichia coli heat-stable enterotoxin II. Infect Immun, 1992. 60(11): 4468-74.
    80. Fujii Y, Kondo Y.Okamoto K. Involvement of prostaglandin E2 synthesis in the intestinal secretory action of Escherichia coli heat-stable enterotoxin II. FEMS Microbiol Lett, 1995. 130(2-3): 259-65.
    81. Dreyfus L A, Harville B, Howard D E, et al. Calcium influx mediated by the Escherichia coli heat-stable enterotoxin B (STB). Proc Natl Acad Sci U S A, 1993. 90(8): 3202-6.
    82. Fujii Y, Nomura T, Yamanaka H, et al. Involvement of Ca(2+)-calmodulin-dependent protein kinase II in the intestinal secretory action of Escherichia coli heat-stable enterotoxin II. Microbiol Immunol, 1997. 41(8): 633-6.
    83. Nealson K H.Hastings J W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev, 1979. 43(4): 496-518.
    84. Nealson K H, Platt T.Hastings J W. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol, 1970. 104(1): 313-22.
    85. Schauder S, Shokat K, Surette M G, et al. The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. Mol Microbiol, 2001. 41(2): 463-76.
    86. Sperandio V, Torres A G, Jarvis B, et al. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A, 2003. 100(15): 8951-6.
    87. de Kievit T R.Iglewski B H. Bacterial quorum sensing in pathogenic relationships. Infect Immun, 2000. 68(9): 4839-49.
    88. Miller M B.Bassler B L. Quorum sensing in bacteria. Annu Rev Microbiol, 2001. 55: 165-99.
    89. Taga M E.Bassler B L. Chemical communication among bacteria. Proc Natl Acad Sci U S A, 2003. 100 Suppl 2: 14549-54.
    90. Xavier K B.Bassler B L. LuxS quorum sensing: more than just a numbers game. Curr Opin Microbiol, 2003. 6(2): 191-7.
    91. Engebrecht J, Nealson K.Silverman M. Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell, 1983. 32(3): 773-81.
    92. Engebrecht J.Silverman M. Identification of genes and gene products necessary for bacterial bioluminescence. Proc Natl Acad Sci U S A, 1984. 81(13): 4154-8.
    93. Fuqua C, Parsek M R.Greenberg E P. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet, 2001. 35: 439-68.
    94. Reading N C.Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett, 2006. 254(1): 1-11.
    95. Waters C M.Bassler B L. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol, 2005. 21: 319-46.
    96. Zhu J.Winans S C. The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proc Natl Acad Sci U S A, 2001. 98(4): 1507-12.
    97. Zhang R G, Pappas T, Brace J L, et al. Structure of a bacterial quorum-sensing transcription factor complexed with pheromone and DNA. Nature, 2002. 417(6892): 971-4.
    98. Wang X D, de Boer P A.Rothfield L I. A factor that positively regulates cell division byactivating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J, 1991. 10(11): 3363-72.
    99. Swift S, Lynch M J, Fish L, et al. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun, 1999. 67(10): 5192-9.
    100. Michael B, Smith J N, Swift S, et al. SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. J Bacteriol, 2001. 183(19): 5733-42.
    101. Kanamaru K, Tatsuno I, Tobe T, et al. SdiA, an Escherichia coli homologue of quorum-sensing regulators, controls the expression of virulence factors in enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol, 2000. 38(4): 805-16.
    102. Ahmer B M. Cell-to-cell signalling in Escherichia coli and Salmonella enterica. Mol Microbiol, 2004. 52(4): 933-45.
    103. Parsek M R.Greenberg E P. Acyl-homoserine lactone quorum sensing in gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci U S A, 2000. 97(16): 8789-93.
    104. Rahme L G, Stevens E J, Wolfort S F, et al. Common virulence factors for bacterial pathogenicity in plants and animals. Science, 1995. 268(5219): 1899-902.
    105. Pearson J P, Gray K M, Passador L, et al. Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A, 1994. 91(1): 197-201.
    106. Pearson J P, Passador L, Iglewski B H, et al. A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 1995. 92(5): 1490-4.
    107. Dong Y H, Wang L H, Xu J L, et al. Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 2001. 411(6839): 813-7.
    108. Rasmussen T B, Manefield M, Andersen J B, et al. How Delisea pulchra furanones affect quorum sensing and swarming motility in Serratia liquefaciens MG1. Microbiology, 2000. 146 Pt 12: 3237-44.
    109. Mathesius U, Mulders S, Gao M, et al. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci U S A, 2003. 100(3): 1444-9.
    110. Telford G, Wheeler D, Williams P, et al. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun, 1998. 66(1): 36-42.
    111. Smith R S, Fedyk E R, Springer T A, et al. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol, 2001. 167(1): 366-74.
    112. Ritchie A J, Yam A O, Tanabe K M, et al. Modification of in vivo and in vitro T- and B-cell-mediated immune responses by the Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone. Infect Immun, 2003. 71(8): 4421-31.
    113. Smith R S, Harris S G, Phipps R, et al. The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol, 2002. 184(4): 1132-9.
    114. Smith R S, Kelly R, Iglewski B H, et al. The Pseudomonas autoinducer N-(3-oxododecanoyl)homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol, 2002. 169(5): 2636-42.
    115. Vannini A, Volpari C, Gargioli C, et al. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J, 2002. 21(17): 4393-401.
    116. Novick R P. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol, 2003. 48(6): 1429-49.
    117. Haas W, Shepard B D.Gilmore M S. Two-component regulator of Enterococcus faecalis cytolysin responds to quorum-sensing autoinduction. Nature, 2002. 415(6867): 84-7.
    118. Coburn P S, Pillar C M, Jett B D, et al. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science, 2004. 306(5705): 2270-2.
    119. Dawson M H.Sia R H. In Vitro Transformation of Pneumococcal Types : I. A Technique for Inducing Transformation of Pneumococcal Types in Vitro. J Exp Med, 1931. 54(5): 681-99.
    120. Tomasz A. Control of the competent state in Pneumococcus by a hormone-like cell product: an example for a new type of regulatory mechanism in bacteria. Nature, 1965. 208(5006): 155-9.
    121. Havarstein L S, Coomaraswamy G.Morrison D A. An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proc Natl Acad Sci U S A, 1995. 92(24): 11140-4.
    122. Hui F M, Zhou L.Morrison D A. Competence for genetic transformation in Streptococcus pneumoniae: organization of a regulatory locus with homology to two lactococcin A secretion genes. Gene, 1995. 153(1): 25-31.
    123. Pestova E V, Havarstein L S.Morrison D A. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol, 1996. 21(4): 853-62.
    124. Lee M S.Morrison D A. Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol, 1999. 181(16): 5004-16.
    125. Tomasz A.Hotchkiss R D. Regulation of the Transformability of Pheumococcal Cultures by Macromolecular Cell Products. Proc Natl Acad Sci U S A, 1964. 51: 480-7.
    126. Bassler B L, Wright M.Silverman M R. Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: sequence and function of genes encoding a second sensory pathway. Mol Microbiol, 1994. 13(2): 273-86.
    127. Chen X, Schauder S, Potier N, et al. Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 2002. 415(6871): 545-9.
    128. Surette M G.Bassler B L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A, 1998. 95(12): 7046-50.
    129. Freeman J A, Lilley B N.Bassler B L. A genetic analysis of the functions of LuxN: a two-component hybrid sensor kinase that regulates quorum sensing in Vibrio harveyi. Mol Microbiol, 2000. 35(1): 139-49.
    130. Defoirdt T, Boon N, Sorgeloos P, et al. Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. ISME J, 2008. 2(1): 19-26.
    131. Neiditch M B, Federle M J, Miller S T, et al. Regulation of LuxPQ receptor activity by the quorum-sensing signal autoinducer-2. Mol Cell, 2005. 18(5): 507-18.
    132. Bassler B L, Wright M, Showalter R E, et al. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol Microbiol, 1993. 9(4): 773-86.
    133. Taga M E, Semmelhack J L.Bassler B L. The LuxS-dependent autoinducer AI-2 controls the expression of an ABC transporter that functions in AI-2 uptake in Salmonella typhimurium. Mol Microbiol, 2001. 42(3): 777-93.
    134. Winzer K, Hardie K R, Burgess N, et al. LuxS: its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3(2H)-furanone. Microbiology, 2002. 148(Pt 4): 909-22.
    135. Miller S T, Xavier K B, Campagna S R, et al. Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Mol Cell, 2004. 15(5): 677-87.
    136. Winzer K, Hardie K R.Williams P. Bacterial cell-to-cell communication: sorry, can't talk now - gone to lunch! Curr Opin Microbiol, 2002. 5(2): 216-22.
    137. Sperandio V, Mellies J L, Nguyen W, et al. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A, 1999. 96(26): 15196-201.
    138. Sperandio V, Torres A G, Giron J A, et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2001. 183(17): 5187-97.
    139. Day W A, Jr..Maurelli A T. Shigella flexneri LuxS quorum-sensing system modulates virB expression but is not essential for virulence. Infect Immun, 2001. 69(1): 15-23.
    140. Lyon W R, Madden J C, Levin J C, et al. Mutation of luxS affects growth and virulence factor expression in Streptococcus pyogenes. Mol Microbiol, 2001. 42(1): 145-57.
    141. Henke J M.Bassler B L. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol, 2004. 186(12): 3794-805.
    142. DeLisa M P, Wu C F, Wang L, et al. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol, 2001. 183(18): 5239-47.
    143. Walters M, Sircili M P.Sperandio V. AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol, 2006. 188(16): 5668-81.
    144. Kaper J B.Sperandio V. Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun, 2005. 73(6): 3197-209.
    145. Furness J B. Types of neurons in the enteric nervous system. J Auton Nerv Syst, 2000. 81(1-3): 87-96.
    146. Purves D. Viktor Hamburger 1900-2001. Nat Neurosci, 2001. 4(8): 777-8.
    147. Horger S, Schultheiss G.Diener M. Segment-specific effects of epinephrine on ion transport in the colon of the rat. Am J Physiol, 1998. 275(6 Pt 1): G1367-76.
    148. Freddolino P L, Kalani M Y, Vaidehi N, et al. Predicted 3D structure for the human beta 2 adrenergic receptor and its binding site for agonists and antagonists. Proc Natl Acad Sci U S A, 2004. 101(9): 2736-41.
    149. Kaper J B, Nataro J P.Mobley H L. Pathogenic Escherichia coli. Nat Rev Microbiol, 2004. 2(2): 123-40.
    150. Jarvis K G, Giron J A, Jerse A E, et al. Enteropathogenic Escherichia coli contains a putative type III secretion system necessary for the export of proteins involved in attaching and effacinglesion formation. Proc Natl Acad Sci U S A, 1995. 92(17): 7996-8000.
    151. Elliott S J, Wainwright L A, McDaniel T K, et al. The complete sequence of the locus of enterocyte effacement (LEE) from enteropathogenic Escherichia coli E2348/69. Mol Microbiol, 1998. 28(1): 1-4.
    152. Mellies J L, Elliott S J, Sperandio V, et al. The Per regulon of enteropathogenic Escherichia coli : identification of a regulatory cascade and a novel transcriptional activator, the locus of enterocyte effacement (LEE)-encoded regulator (Ler). Mol Microbiol, 1999. 33(2): 296-306.
    153. Deng W, Puente J L, Gruenheid S, et al. Dissecting virulence: systematic and functional analyses of a pathogenicity island. Proc Natl Acad Sci U S A, 2004. 101(10): 3597-602.
    154. Sperandio V, Torres A G.Kaper J B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol, 2002. 43(3): 809-21.
    155. Clarke M B.Sperandio V. Transcriptional autoregulation by quorum sensing Escherichia coli regulators B and C (QseBC) in enterohaemorrhagic E. coli (EHEC). Mol Microbiol, 2005. 58(2): 441-55.
    156. Felis G E.Dellaglio F. Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intest Microbiol, 2007. 8(2): 44-61.
    157. Kleerebezem M.Vaughan E E. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol, 2009. 63: 269-90.
    158. Reid G. The scientific basis for probiotic strains of Lactobacillus. Appl Environ Microbiol, 1999. 65(9): 3763-6.
    159. Salminen S, Isolauri E.Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek, 1996. 70(2-4): 347-58.
    160. Reid G.Burton J. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect, 2002. 4(3): 319-24.
    161. Simonovic I, Rosenberg J, Koutsouris A, et al. Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol, 2000. 2(4): 305-15.
    162. Guignot J, Bernet-Camard M F, Pous C, et al. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules. Infect Immun, 2001. 69(3): 1856-68.
    163. Celli J, Olivier M.Finlay B B. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J, 2001. 20(6): 1245-58.
    164. Ogawa M, Shimizu K, Nomoto K, et al. Protective effect of Lactobacillus casei strain Shirota on Shiga toxin-producing Escherichia coli O157:H7 infection in infant rabbits. Infect Immun, 2001. 69(2): 1101-8.
    165. Nakagawa Y, Koide K, Watanabe K, et al. The expression of the pathogenic yeast Candida albicans catalase gene in response to hydrogen peroxide. Microbiol Immunol, 1999. 43(7): 645-51.
    166. Neeser J R, Granato D, Rouvet M, et al. Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology, 2000. 10(11): 1193-9.
    167. Goosney D L, DeVinney R.Finlay B B. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect Immun, 2001. 69(5): 3315-22.
    168. Pothoulakis C. Effects of Clostridium difficile toxins on epithelial cell barrier. Ann N Y Acad Sci, 2000. 915: 347-56.
    169. Brumell J H, Rosenberger C M, Gotto G T, et al. SifA permits survival and replication of Salmonella typhimurium in murine macrophages. Cell Microbiol, 2001. 3(2): 75-84.
    170. Reid G. Probiotics in the Treatment of Diarrheal Diseases. Curr Infect Dis Rep, 2000. 2(1): 78.
    171. Troost F J, van Baarlen P, Lindsey P, et al. Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics, 2008. 9: 374.
    172. Seth A, Yan F, Polk D B, et al. Probiotics ameliorate the hydrogen peroxide-induced epithelial barrier disruption by a PKC- and MAP kinase-dependent mechanism. Am J Physiol Gastrointest Liver Physiol, 2008. 294(4): G1060-9.
    173. Roselli M, Finamore A, Britti M S, et al. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr, 2007. 137(12): 2709-16.
    174. Miyoshi Y, Okada S, Uchimura T, et al. A mucus adhesion promoting protein, MapA, mediates the adhesion of Lactobacillus reuteri to Caco-2 human intestinal epithelial cells. Biosci Biotechnol Biochem, 2006. 70(7): 1622-8.
    175. Mack D R, Michail S, Wei S, et al. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Physiol, 1999. 276(4 Pt 1): G941-50.
    176. de Vries M C, Vaughan E E, Kleerebezem M, et al. Lactobacillus plantarum--survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 2006. 16(9): 1018-1028.
    177. Mack D R, Ahrne S, Hyde L, et al. Extracellular MUC3 mucin secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro. Gut, 2003. 52(6): 827-33.
    178. Buck B L, Altermann E, Svingerud T, et al. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol, 2005. 71(12): 8344-51.
    179. Castaldo C, Vastano V, Siciliano R A, et al. Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microb Cell Fact, 2009. 8: 14.
    180. Granato D, Bergonzelli G E, Pridmore R D, et al. Cell surface-associated elongation factor Tu mediates the attachment of Lactobacillus johnsonii NCC533 (La1) to human intestinal cells and mucins. Infect Immun, 2004. 72(4): 2160-9.
    181. Bergonzelli G E, Granato D, Pridmore R D, et al. GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun, 2006. 74(1): 425-34.
    182. Michail S.Abernathy F. Lactobacillus plantarum reduces the in vitro secretory response ofintestinal epithelial cells to enteropathogenic Escherichia coli infection. J Pediatr Gastroenterol Nutr, 2002. 35(3): 350-5.
    183. Ryan K A, Jayaraman T, Daly P, et al. Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol, 2008. 47(4): 269-74.
    184. Valeur N, Engel P, Carbajal N, et al. Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract. Appl Environ Microbiol, 2004. 70(2): 1176-81.
    185. Gotteland M, Brunser O.Cruchet S. Systematic review: are probiotics useful in controlling gastric colonization by Helicobacter pylori? Aliment Pharmacol Ther, 2006. 23(8): 1077-86.
    186. Meurman J H. Probiotics: do they have a role in oral medicine and dentistry? Eur J Oral Sci, 2005. 113(3): 188-96.
    187. Koll P, Mandar R, Marcotte H, et al. Characterization of oral lactobacilli as potential probiotics for oral health. Oral Microbiol Immunol, 2008. 23(2): 139-47.
    188. Garcia-Godoy F.Hicks M J. Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J Am Dent Assoc, 2008. 139 Suppl: 25S-34S.
    189. Haukioja A, Loimaranta V.Tenovuo J. Probiotic bacteria affect the composition of salivary pellicle and streptococcal adhesion in vitro. Oral Microbiol Immunol, 2008. 23(4): 336-43.
    190. Famularo G, Perluigi M, Coccia R, et al. Microecology, bacterial vaginosis and probiotics: perspectives for bacteriotherapy. Med Hypotheses, 2001. 56(4): 421-30.
    191. Linsalata M, Russo F, Berloco P, et al. The influence of Lactobacillus brevis on ornithine decarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa. Helicobacter, 2004. 9(2): 165-72.
    192. Rousseau V, Lepargneur J P, Roques C, et al. Prebiotic effects of oligosaccharides on selected vaginal lactobacilli and pathogenic microorganisms. Anaerobe, 2005. 11(3): 145-53.
    193. Hess P, Altenhofer A, Khan A S, et al. A Salmonella fim homologue in Citrobacter freundii mediates invasion in vitro and crossing of the blood-brain barrier in the rat pup model. Infect Immun, 2004. 72(9): 5298-307.
    194. Altenhoefer A, Oswald S, Sonnenborn U, et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol, 2004. 40(3): 223-9.
    195. Ingrassia I, Leplingard A.Darfeuille-Michaud A. Lactobacillus casei DN-114 001 inhibits the ability of adherent-invasive Escherichia coli isolated from Crohn's disease patients to adhere to and to invade intestinal epithelial cells. Appl Environ Microbiol, 2005. 71(6): 2880-7.
    196. Golowczyc M A, Mobili P, Garrote G L, et al. Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar Enteritidis. Int J Food Microbiol, 2007. 118(3): 264-73.
    197. Hammes W P.Tichaczek P S. The potential of lactic acid bacteria for the production of safe and wholesome food. Z Lebensm Unters Forsch, 1994. 198(3): 193-201.
    198. Martin R, Jimenez E, Olivares M, et al. Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J FoodMicrobiol, 2006. 112(1): 35-43.
    199. Spiegel C A. Bacterial vaginosis. Clin Microbiol Rev, 1991. 4(4): 485-502.
    200. Otero M C.Nader-Macias M E. Inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus gasseri isolated from the vaginal tract of cattle. Anim Reprod Sci, 2006. 96(1-2): 35-46.
    201. Pridmore R D, Pittet A C, Praplan F, et al. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiol Lett, 2008. 283(2): 210-5.
    202. Glynn A A, O'Donnell S T, Molony D C, et al. Hydrogen peroxide induced repression of icaADBC transcription and biofilm development in Staphylococcus epidermidis. Journal of Orthopaedic Research, 2009. 27(5): 627-630.
    203. Alakomi H L, Skytta E, Saarela M, et al. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol, 2000. 66(5): 2001-5.
    204. Aiba Y, Suzuki N, Kabir A M, et al. Lactic acid-mediated suppression of Helicobacter pylori by the oral administration of Lactobacillus salivarius as a probiotic in a gnotobiotic murine model. Am J Gastroenterol, 1998. 93(11): 2097-101.
    205. Lavermicocca P, Valerio F, Lonigro S L, et al. Antagonistic activity of potential probiotic Lactobacilli against the ureolytic pathogen Yersinia enterocolitica. Curr Microbiol, 2008. 56(2): 175-81.
    206. Ivec M, Botic T, Koren S, et al. Interactions of macrophages with probiotic bacteria lead to increased antiviral response against vesicular stomatitis virus. Antiviral Res, 2007. 75(3): 266-74.
    207. Nes I F, Diep D B, Havarstein L S, et al. Biosynthesis of bacteriocins in lactic acid bacteria. Antonie Van Leeuwenhoek, 1996. 70(2-4): 113-28.
    208. de Wit M A S, Koopmans M P G, Kortbeek L M, et al. Sensor, a Population-based Cohort Study on Gastroenteritis in the Netherlands: Incidence and Etiology. American Journal of Epidemiology, 2001. 154(7): 666-674.
    209. Asahara T, Shimizu K, Nomoto K, et al. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun, 2004. 72(4): 2240-7.
    210. Carey C M, Kostrzynska M, Ojha S, et al. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods, 2008. 73(2): 125-32.
    211. Ryan K A, O'Hara A M, van Pijkeren J P, et al. Lactobacillus salivarius modulates cytokine induction and virulence factor gene expression in Helicobacter pylori. J Med Microbiol, 2009. 58(Pt 8): 996-1005.
    212. Speijers D G. Mycotoxins and Food Safety. Trends in Food Science & Technology, 2003. 14(3): 111-115.
    213. Fuchs S, Sontag G, Stidl R, et al. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food Chem Toxicol, 2008. 46(4): 1398-407.
    214. Gratz S, Taubel M, Juvonen R O, et al. Lactobacillus rhamnosus strain GG modulates intestinalabsorption, fecal excretion, and toxicity of aflatoxin B(1) in rats. Appl Environ Microbiol, 2006. 72(11): 7398-400.
    215. El-Nezami H, Polychronaki N, Salminen S, et al. Binding rather than metabolism may explain the interaction of two food-Grade Lactobacillus strains with zearalenone and its derivative (')alpha-earalenol. Appl Environ Microbiol, 2002. 68(7): 3545-9.
    216. Niderkorn V, Boudra H.Morgavi D P. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. J Appl Microbiol, 2006. 101(4): 849-56.
    1. Fairbrother J M, Nadeau E.Gyles C L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev, 2005. 6(1): 17-39.
    2. Dalton C B, Mintz E D, Wells J G, et al. Outbreaks of enterotoxigenic Escherichia coli infection in American adults: a clinical and epidemiologic profile. Epidemiol Infect, 1999. 123(1): 9-16.
    3. Bouckenooghe A R, Jiang Z D, De La Cabada F J, et al. Enterotoxigenic Escherichia coli as cause of diarrhea among Mexican adults and US travelers in Mexico. J Travel Med, 2002. 9(3): 137-40.
    4. Lasaro M A, Rodrigues J F, Mathias-Santos C, et al. Production and release of heat-labile toxin by wild-type human-derived enterotoxigenic Escherichia coli. FEMS Immunol Med Microbiol, 2006. 48(1): 123-31.
    5. Nagy B, Wilson R A.Whittam T S. Genetic diversity among Escherichia coli isolates carrying f18 genes from pigs with porcine postweaning diarrhea and edema disease. J Clin Microbiol, 1999. 37(5): 1642-5.
    6. Croxen M A.Finlay B B. Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): 26-38.
    7. Noamani B N, Fairbrother J M.Gyles C L. Virulence genes of O149 enterotoxigenic Escherichia coli from outbreaks of postweaning diarrhea in pigs. Vet Microbiol, 2003. 97(1-2): 87-101.
    8. Stein M, Kenny B, Stein M A, et al. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins. J Bacteriol, 1996. 178(22): 6546-54.
    9. Brunder W, Schmidt H.Karch H. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol Microbiol, 1997. 24(4): 767-78.
    10. Benjelloun-Touimi Z, Si Tahar M, Montecucco C, et al. SepA, the 110 kDa protein secreted by Shigella flexneri: two-domain structure and proteolytic activity. Microbiology, 1998. 144 ( Pt 7): 1815-22.
    11. Huang Y, Liang W, Pan A, et al. Production of FaeG, the major subunit of K88 fimbriae, in transgenic tobacco plants and its immunogenicity in mice. Infect Immun, 2003. 71(9): 5436-9.
    12. Boerlin P, Travis R, Gyles C L, et al. Antimicrobial resistance and virulence genes of Escherichia coli isolates from swine in Ontario. Appl Environ Microbiol, 2005. 71(11): 6753-61.
    13. Berberov E M, Zhou Y, Francis D H, et al. Relative importance of heat-labile enterotoxin in the causation of severe diarrheal disease in the gnotobiotic piglet model by a strain of enterotoxigenic Escherichia coli that produces multiple enterotoxins. Infect Immun, 2004. 72(7): 3914-24.
    14. Johnson A M, Kaushik R S, Rotella N J, et al. Enterotoxigenic Escherichia coli modulates host intestinal cell membrane asymmetry and metabolic activity. Infect Immun, 2009. 77(1): 341-7.
    15. Erume J, Berberov E M, Kachman S D, et al. Comparison of the contributions of heat-labileenterotoxin and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli in F4ac receptor-positive young pigs. Infect Immun, 2008. 76(7): 3141-9.
    16. Sperandio V, Mellies J L, Nguyen W, et al. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc Natl Acad Sci U S A, 1999. 96(26): 15196-201.
    17. Walters M, Sircili M P.Sperandio V. AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol, 2006. 188(16): 5668-81.
    18. Sperandio V, Torres A G, Jarvis B, et al. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci U S A, 2003. 100(15): 8951-6.
    19. Sperandio V, Torres A G.Kaper J B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol, 2002. 43(3): 809-21.
    20. Nadeau E.Fairbrother J, Use of Live Bacteria for Growth Promotion in Animals. United States Patent Application Publication. 2005. Pub. No.: US 2007/0218035 A1.
    21. Bassler B L, Greenberg E P.Stevens A M. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J Bacteriol, 1997. 179(12): 4043-5.
    22. Skjolaas K A, Burkey T E, Dritz S S, et al. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Vet Immunol Immunopathol, 2007. 115(3-4): 299-308.
    23. Rasschaert K, Verdonck F, Goddeeris B M, et al. Screening of pigs resistant to F4 enterotoxigenic Escherichia coli (ETEC) infection. Vet Microbiol, 2007. 123(1-3): 249-53.
    24. Maldonado Y, Fiser J C, Nakatsu C H, et al. Cytotoxicity potential and genotypic characterization of Escherichia coli isolates from environmental and food sources. Appl Environ Microbiol, 2005. 71(4): 1890-8.
    25. Carey C M, Kostrzynska M, Ojha S, et al. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Methods, 2008. 73(2): 125-32.
    26. Yin X, Chambers J R, Wheatcroft R, et al. Adherence of Escherichia coli O157:H7 mutants in vitro and in ligated pig intestines. Appl Environ Microbiol, 2009. 75(15): 4975-83.
    27. Si W, Gong J, Han Y, et al. Quantification of cell proliferation and alpha-toxin gene expression of Clostridium perfringens in the development of necrotic enteritis in broiler chickens. Appl Environ Microbiol, 2007. 73(21): 7110-3.
    28. Reischl U, Youssef M T, Wolf H, et al. Real-time fluorescence PCR assays for detection and characterization of heat-labile I and heat-stable I enterotoxin genes from enterotoxigenic Escherichia coli. J Clin Microbiol, 2004. 42(9): 4092-100.
    29. Feng Y, Gong J, Yu H, et al. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet Microbiol, 2010. 140(1-2): 116-21.
    30. Guerin G, Duval-Iflah Y, Bonneau M, et al. Evidence for linkage between K88ab, K88ac intestinal receptors to Escherichia coli and transferrin loci in pigs. Anim Genet, 1993. 24(5):393-6.
    31. J(?)rgensen C B, Cirera S, Archibald A L, et al. Porcine polymorphisms and methods for detecting them. International application published under the patent cooperation treaty (PCT). 2004. PCT/DK2003/000807 or WO2004/048606-A2.
    32. Leclerc S, Boerlin P, Gyles C, et al. paa, originally identified in attaching and effacing Escherichia coli, is also associated with enterotoxigenic E. coli. Res Microbiol, 2007. 158(1): 97-104.
    33. Nagy B.Fekete P Z. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol, 2005. 295(6-7): 443-54.
    34. Lai X H, Xu J G, Melgar S, et al. An apoptotic response by J774 macrophage cells is common upon infection with diarrheagenic Escherichia coli. FEMS Microbiol Lett, 1999. 172(1): 29-34.
    35. Pitari G M, Di Guglielmo M D, Park J, et al. Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells. Proc Natl Acad Sci U S A, 2001. 98(14): 7846-51.
    36. Waldman S A, Barber M, Pearlman J, et al. Heterogeneity of guanylyl cyclase C expressed by human colorectal cancer cell lines in vitro. Cancer Epidemiol Biomarkers Prev, 1998. 7(6): 505-14.
    37. Pitari G M, Zingman L V, Hodgson D M, et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci U S A, 2003. 100(5): 2695-9.
    38. Saha S, Chowdhury P, Pal A, et al. Downregulation of human colon carcinoma cell (COLO-205) proliferation through PKG-MAP kinase mediated signaling cascade by E. coli heat stable enterotoxin (STa), a potent anti-angiogenic and anti-metastatic molecule. J Appl Toxicol, 2008.28(4): 475-83.
    39. Beausoleil H E, Labrie V.Dubreuil J D. Trypan blue uptake by chinese hamster ovary cultured epithelial cells: a cellular model to study Escherichia coli STb enterotoxin. Toxicon, 2002. 40(2): 185-91.
    40. Antunes L C, Ferreira R B, Buckner M M, et al. Quorum sensing in bacterial virulence. Microbiology, 2010. 156(Pt 8): 2271-82.
    41. Fuqua W C, Winans S C.Greenberg E P. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol, 1994. 176(2): 269-75.
    42. DeLisa M P, Valdes J J.Bentley W E. Mapping stress-induced changes in autoinducer AI-2 production in chemostat-cultivated Escherichia coli K-12. J Bacteriol, 2001. 183(9): 2918-28.
    43. Surette M G.Bassler B L. Regulation of autoinducer production in Salmonella typhimurium. Mol Microbiol, 1999. 31(2): 585-95.
    44. Walters M.Sperandio V. Autoinducer 3 and epinephrine signaling in the kinetics of locus of enterocyte effacement gene expression in enterohemorrhagic Escherichia coli. Infect Immun, 2006. 74(10): 5445-55.
    45. Surette M G.Bassler B L. Quorum sensing in Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A, 1998. 95(12): 7046-50.
    46. Bodero M D.Munson G P. Cyclic AMP receptor protein-dependent repression of heat-labile enterotoxin. Infect Immun, 2009. 77(2): 791-8.
    47. Zhu J, Miller M B, Vance R E, et al. Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A, 2002. 99(5): 3129-34.
    48. DeLisa M P, Wu C F, Wang L, et al. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J Bacteriol, 2001. 183(18): 5239-47.
    49. Sperandio V, Torres A G, Giron J A, et al. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2001. 183(17): 5187-97.
    1. Fairbrother J M, Nadeau E.Gyles C L. Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev, 2005. 6(1): 17-39.
    2. Noamani B N, Fairbrother J M.Gyles C L. Virulence genes of O149 enterotoxigenic Escherichia coli from outbreaks of postweaning diarrhea in pigs. Vet Microbiol, 2003. 97(1-2): 87-101.
    3. Konstantinov S R, Smidt H, Akkermans A D, et al. Feeding of Lactobacillus sobrius reduces Escherichia coli F4 levels in the gut and promotes growth of infected piglets. FEMS Microbiol Ecol, 2008. 66(3): 599-607.
    4. Hillman K.Fox A. Effects of porcine faecal lactobacilli on the rate of growth of enterotoxigenic Escherichia coli 0149K88K91. Letters-in-Applied-Microbiology (United Kingdom), 1994. 19(6): 497-500.
    5. Fujiwara S, Hashiba H, Hirota T, et al. Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of Bifidobacterium longum SBT2928: suggestive evidence of blocking of the binding receptor gangliotetraosylceramide on the cell surface. Int J Food Microbiol, 2001. 67(1-2): 97-106.
    6. Zhang L, Xu Y Q, Liu H Y, et al. Evaluation of Lactobacillus rhamnosus GG using an Escherichia coli K88 model of piglet diarrhoea: Effects on diarrhoea incidence, faecal microflora and immune responses. Vet Microbiol, 2010. 141(1-2): 142-8.
    7. Medellin-Pena M J, Wang H, Johnson R, et al. Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol, 2007. 73(13): 4259-67.
    8. De Mitchell I.Kenworthy R. Investigations on a metabolite from Lactobacillus bulgaricus which neutralizes the effect of enterotoxin from Escherichia coli pathogenic for pigs. J Appl Bacteriol, 1976. 41(1): 163-74.
    9. Vandenbergh P A. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews, 1993. 12(1-3): 221-237.
    10. Chauviere G, Coconnier M H, Kerneis S, et al. Competitive exclusion of diarrheagenic Escherichia coli (ETEC) from human enterocyte-like Caco-2 cells by heat-killed Lactobacillus. FEMS Microbiol Lett, 1992. 70(3): 213-7.
    11. Toki S, Kagaya S, Shinohara M, et al. Lactobacillus rhamnosus GG and Lactobacillus casei suppress Escherichia coli-induced chemokine expression in intestinal epithelial cells. Int Arch Allergy Immunol, 2009. 148(1): 45-58.
    12. Roselli M, Finamore A, Britti M S, et al. Probiotic bacteria Bifidobacterium animalis MB5 and Lactobacillus rhamnosus GG protect intestinal Caco-2 cells from the inflammation-associated response induced by enterotoxigenic Escherichia coli K88. Br J Nutr, 2006. 95(6): 1177-84.
    13. Nadeau E.Fairbrother J, Use of Live Bacteria for Growth Promotion in Animals. United States Patent Application Publication. 2005. Pub. No.: US 2007/0218035 A1.
    14. Maldonado Y, Fiser J C, Nakatsu C H, et al. Cytotoxicity potential and genotypiccharacterization of Escherichia coli isolates from environmental and food sources. Appl Environ Microbiol, 2005. 71(4): 1890-8.
    15. Yin X, Chambers J R, Wheatcroft R, et al. Adherence of Escherichia coli O157:H7 mutants in vitro and in ligated pig intestines. Appl Environ Microbiol, 2009. 75(15): 4975-83.
    16. Si W, Gong J, Han Y, et al. Quantification of cell proliferation and alpha-toxin gene expression of Clostridium perfringens in the development of necrotic enteritis in broiler chickens. Appl Environ Microbiol, 2007. 73(21): 7110-3.
    17. Feng Y, Gong J, Yu H, et al. Identification of changes in the composition of ileal bacterial microbiota of broiler chickens infected with Clostridium perfringens. Vet Microbiol, 2010. 140(1-2): 116-21.
    18. Erume J, Berberov E M, Kachman S D, et al. Comparison of the contributions of heat-labile enterotoxin and heat-stable enterotoxin b to the virulence of enterotoxigenic Escherichia coli in F4ac receptor-positive young pigs. Infect Immun, 2008. 76(7): 3141-9.
    19. Johnson A M, Kaushik R S, Rotella N J, et al. Enterotoxigenic Escherichia coli modulates host intestinal cell membrane asymmetry and metabolic activity. Infect Immun, 2009. 77(1): 341-7.
    20. Nagy B.Fekete P Z. Enterotoxigenic Escherichia coli in veterinary medicine. Int J Med Microbiol, 2005. 295(6-7): 443-54.
    21. Nair G B.Takeda Y. The heat-stable enterotoxins. Microb Pathog, 1998. 24(2): 123-31.
    22. Vaandrager A B. Structure and function of the heat-stable enterotoxin receptor/guanylyl cyclase C. Mol Cell Biochem, 2002. 230(1-2): 73-83.
    23. Harville B A.Dreyfus L A. Involvement of 5-hydroxytryptamine and prostaglandin E2 in the intestinal secretory action of Escherichia coli heat-stable enterotoxin B. Infect Immun, 1995. 63(3): 745-50.
    24. Hitotsubashi S, Fujii Y, Yamanaka H, et al. Some properties of purified Escherichia coli heat-stable enterotoxin II. Infect Immun, 1992. 60(11): 4468-74.
    25. Peterson J W.Whipp S C. Comparison of the mechanisms of action of cholera toxin and the heat-stable enterotoxins of Escherichia coli. Infect Immun, 1995. 63(4): 1452-61.
    26. Sears C L.Kaper J B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol Rev, 1996. 60(1): 167-215.
    27. Spangler B D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev, 1992. 56(4): 622-47.
    28. Pitari G M, Zingman L V, Hodgson D M, et al. Bacterial enterotoxins are associated with resistance to colon cancer. Proc Natl Acad Sci U S A, 2003. 100(5): 2695-9.
    29. Saha S, Chowdhury P, Pal A, et al. Downregulation of human colon carcinoma cell (COLO-205) proliferation through PKG-MAP kinase mediated signaling cascade by E. coli heat stable enterotoxin (STa), a potent anti-angiogenic and anti-metastatic molecule. J Appl Toxicol, 2008. 28(4): 475-83.
    30. Saha S, Chowdhury P, Pal A, et al. Downregulation of human colon carcinoma cell (COLO-205) proliferation through PKG-MAP kinase mediated signaling cascade by E. coli heat stable enterotoxin (STa), a potent anti-angiogenic and anti-metastatic molecule. Journal of applied toxicology, 2008. 28(4): 475-483.
    31. Beausoleil H E, Labrie V.Dubreuil J D. Trypan blue uptake by chinese hamster ovary cultured epithelial cells: a cellular model to study Escherichia coli STb enterotoxin. Toxicon, 2002. 40(2): 185-91.
    32. Erickson K L.Hubbard N E. Probiotic immunomodulation in health and disease. J Nutr, 2000. 130(2S Suppl): 403S-409S.
    33. Salminen S, Isolauri E.Salminen E. Clinical uses of probiotics for stabilizing the gut mucosal barrier: successful strains and future challenges. Antonie Van Leeuwenhoek, 1996. 70(2-4): 347-58.
    34. McFarland L V. Normal flora: diversity and functions. Microbial Ecology in Health and Disease, 2000. 12(4): 193-207.
    35. Servin A L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev, 2004. 28(4): 405-40.
    36. Baggiolini M, Loetscher P.Moser B. Interleukin-8 and the chemokine family. Int J Immunopharmacol, 1995. 17(2): 103-8.
    37. Roselli M, Finamore A, Britti M S, et al. The novel porcine Lactobacillus sobrius strain protects intestinal cells from enterotoxigenic Escherichia coli K88 infection and prevents membrane barrier damage. J Nutr, 2007. 137(12): 2709-16.
    38. Skjolaas K A, Burkey T E, Dritz S S, et al. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Vet Immunol Immunopathol, 2007. 115(3-4): 299-308.
    39. Menard S, Candalh C, Bambou J C, et al. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut, 2004. 53(6): 821-8.
    40. Otte J M.Podolsky D K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. Am J Physiol Gastrointest Liver Physiol, 2004. 286(4): G613-26.
    41. Dieleman L A, Goerres M S, Arends A, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut, 2003. 52(3): 370-6.
    42. Madsen K L, Malfair D, Gray D, et al. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis, 1999. 5(4): 262-70.
    43. Suzuki Y, Sher A, Yap G, et al. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J Immunol, 2000. 164(10): 5375-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700