用户名: 密码: 验证码:
钱塘江冲海积粉土工程特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杭州的发展已由“西湖时代”跨向“钱塘江时代”,钱塘江冲海积粉土已成为城市发展建设中普遍遇到的土类。粉土是介于砂性土和黏性土之间的一种过渡类型土,工程性质既与砂性土不同又与黏性土有较大区别。本文通过工程地质调查研究、室内试验研究和自行研制开发粉土抗渗强度测定设备等方法,对钱塘江冲海积粉土工程特性开展研究,主要工作有以下几个方面。
     一、钱塘江冲海积粉土地质特征研究。根据杭州钱塘江两岸几十项工程近千个钻孔的试验成果,从地质成因着手分别归纳出下沙区、钱江新城、滨江区三个研究区冲海积粉土层典型地质剖面。通过统计分析,研究其颗粒组成特征及基本物理力学性质。冲海积粉土层以砂质粉土为主,呈“高粉性、低黏性”的地区特点,在地下水动水压力作用下极易产生渗透破坏。
     二、钱塘江冲海积粉土土水体系特性试验研究。通过对钱塘江冲海积粉土的x衍射试验和扫描电镜试验,研究钱塘江冲海积粉土矿物成份和微观结构特征。通过对不同粉粒、砂粒、黏粒比例土样的液塑限联合测定试验,研究圆锥在三个不同下沉深度范围(3-4mm,7-9 mm,15-17 mm)的下滑情况,圆锥下沉量与含水率关系。常规的液限和塑限不能代表粉土的塑性特征。结合近百个粉土和粉质黏土密度计法测定的试验结果,提出粉土分类定名的几点建议。
     三、钱塘江冲海积粉土剪胀特性试验研究。通过三轴固结不排水CU和固结排水CD试验,研究钱塘江冲海积饱和粉土的应力应变性状和剪胀特性。在对钱塘江饱和粉土三轴试验研究的基础上,采用常规三轴仪,通过对不同饱和度系列粉土的固结排水CD试验,研究钱塘江冲海积非饱和粉土的应力应变性状和剪胀特性。钱塘江冲海积粉土的剪切破坏要经历一个大的变形过程,固结排水剪切过程的应力应变性状可分为四个阶段。取应变继续而没有进一步体积变化的临界状态做破坏标准,确定粉土排水剪切强度指标较合理。
     四、钱塘江冲海积粉土渗透特性试验研究。采用改进的常水头试验方法,研究了钱塘江冲海积粉土渗透规律。对钱塘江两岸下沙区,钱江新城,滨江区三个研究区30余项工程变水头试验结果进行统计分析,结合典型工程现场抽水试验结果,研究具微层理构造的钱塘江冲海积粉土层的渗透特性,提出钱塘江冲海积粉土渗透性指标。
     五、自行研制开发粉土抗渗强度测定设备。针对目前还没有合适的室内试验仪器测试粉土抗渗强度的现状,从试样极限平衡状态出发,对土体进行受力分析,研制粉土抗渗强度测定设备,研究解决粉土饱和难问题的试验方法。设计变水头装置和透明接水容器,保证粉土抗渗强度测定的可靠性和准确性。多个渗透容器并联成多套装置,可实现多个样本同时测定。
     六、钱塘江冲海积粉土渗透稳定特性试验研究。采用自行研制的粉土抗渗强度测定设备,对五种典型钱塘江冲海积粉土样本进行了渗透稳定特性试验,对微层理原状样进行了渗透稳定各向异性试验,对设置尼龙滤网土工布抗渗层进行了渗透稳定特性试验。研究钱塘江冲海积粉土渗透破坏机理,并提出相应的工程防治措施。为粉土地基渗透破坏的防控提供依据,为工程建设引起的地质灾害防治打下良好的基础。
With Hangzhou entering a new development stage known as Qiangtang Era, Qiangtang alluvial silts have been frequently encountered in the metropolitan construction of Hangzhou. Silt is a kind of complex and transitional soil between sand and clay and its engineering property is different from both of them. For this reason, the thesis studied engineering properties of Qiantangjiang alluvial silts through investigations, laboratory testing and with the self-developed apparatus for testing seepage stability. The main work is as follows:
     Firstly, the thesis investigated and analyzed the geological characteristics of Qiantang alluvial silts. Based on the test results of a large number of samples from dozens of projects along the Qiantang River in Hangzhou, typical geological sections of silts in Xiasha area, New Qianjiang area and Binjiang area were summarized respectively in terms of geological origins. Components of particles and basic properties of silts were analyzed with statistical methods. The research revealed that Qiangtang alluvial layers were composed of sandy silt and were characterized by "high silty and low clayey". Seepage failure easily occurred in these soil layers under hydrodynamic pressure.
     Secondly, the thesis studied characteristics of the soil-water system of Qiantang alluvial silts. Through X-ray diffraction and Electron Scanning Microscope tests, the mineralogy and microstructure of silts were analysed. The falling conditions of cones within three ranges of sinking depths (3~4 mm,7~9 mm and 15~17 mm) were measured and analysed in the fall cone tests, which was designed to determine the liquid limit and plastic limit of the samples with different ratios of silt, sand and clay. The relationship between water content and penetration was also studied in the tests. The conventional liquid and plastic limits cannot represent the plasticity characteristics of silts. Based on the hydrometer analysis results of nearly one hundred samples, suggestions on the classification and nomination of silts are proposed.
     Thirdly, the thesis studied the dilatancy of Qiantang alluvial silts. Drained and undrained triaxial tests were conducted to study the dilatancy of saturated silts. General triaxial drained tests of five groups of silts with different saturation degrees were carried out afterwards to study the dilatancy of the unsaturated silts. The failure of Qiantang alluvial silts usually goes through large deformations. The stress-strain curve of drained tests can be divided into four stages. It is reasonable that the point where the strain can continue without further change of volume is chosen as a failure criterion to define the drained strength of silt.
     Fourthly, the thesis studied seepage characteristics of Qiantang alluvial silts. Using improved constant head test, the permeability law of silts was studied. Statistical analysis was made of the results of variable water head tests of over 30 projects in Xiasha area, New Qianjiang area and Binjiang area. The seepage characteristics of silts layer were studied and the indexes of permeability of Qiantang alluvial silts were proposed by taking into account both the results of the statistical analysis and the outcomes of the field pumping water tests.
     Fifthly, the apparatus for testing seepage stability were developed. According to the limit equilibrium analysis of silt samples, the new apparatus were developed for effective measurement of the critical hydraulic gradient of silt undergoing seepage failure in laboratory tests. The changing water level device and the transparent vessel insure the accuracy and dependability of impermeability intensity measuring. Parallel multi-containers were used so that more samples could be tested simultaneously.
     Lastly, the thesis studied the seepage stability of Qiantang alluvial silts. The apparatus were used to conduct experiments on five typical silt samples, undisturbed soil samples with horizontal bedding and anti-seepage layers with geotextile. Failure mechnisms of silt under seepage were analyzed and corresponding preventive measures were proposed. The research provides more knowledge on the prevention of silt seepage failure, and can be used as an important reference for general engineering.
引文
Aberg B. Void ratio of noncohesive soil and similar materials [J]. Journal of Geotechnical engineering, ASCE,1992,118(9):1315-1334.
    Borgesson, L. Shear strength of inorganic sily soils[C]//Proc.,10th Int. Couf. On Soil Mechanics and Foundation, Stockholm,1981,10(1):567-572.
    Chan, H.T.& Kenney, T.C. Laboratory Invvestigation of Permeability Ratio of New Liskeard Varved Soils[J]. Canadian Geotechnical Journal,1973,10 (3):453-472
    Chi Fai Wan and Robin Fell. Laboratory tests on the rate of piping erosion of soils in embankment dams[J]. Geotechnical testing journal,2004,27(3):295-303.
    Cui, Y J., Delage. P. Yielding and plastic behaviour of an unsaturated compacted silt[J]. Geotechnique,1996,46(2):291-311.
    Estabragh A.R.and Javadi A.A. Critical state for overconsolidated unsaturated silty soil[J]. Canadian Geotechnical Journal,2008,45:408-420.
    Filippo Santucci De Magistris and Fumio Tatsuoka. Effects of moulding water content on the stress-strain behaviour of a compacted silty sand[J]. Soils and foundations 2004,44(2): 85-101.
    Fleming, L.N., and Duncan, J.M. Stress-deformation characteristics of an Alaskan silt[J]. Journal of Geotechnical Engineering,1990,116(3):377-393.
    Geiser, F., Laloui, L., Vulliet, L.,Elasto-plasticity of unsaturated soils:Laboratory test results on a remoulded silt[J]. Soils and foundations,2006,46(5):545-556.
    Harison, J. A. Using the BS cone penetrometer for the determination of the plastic limit of soils[J]. Geotechnique,1988,38(3):433-438.
    Houlsby, G. T. Theoretical analysis of the fall cone test[J]. Geotechnique,1982,32(2): 111-118.
    HΦeg, K., Dyvik, R., Sandboekken, G. Strength of undisturbed versus reconstitutued silt and silty sand specimens [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,126(7),2000:606-617.
    Istomina V S. Stability of Clayey Soil to seepage [M]. [s.l.]:[s. n.],1957.
    Kenney, T.C. Lau D. Internal stability of granular filters[J]. Canadian Geotechnical Journal, 1985,22(2):215-225.
    Kenney, T.C.& Chan, H.T. Field Investigation of Permeability Ratio of Nes Liskeard Varved Soils[J]. Canadian Geotechnical Journal,1973,10 (3).473-488
    Khilar,K. C., Folger, H.S., and Gray, D.H. Model for piping-plugging in earthen strucures [J]. Journal of Geotechnical Engineering,1985,111(7):833-846.
    Konrad, J. M., Bozozuk, M., and Law, K. T. Study of in situ test methods in deltaic silt[C]// Proc.,11th Int. Conf. On Soil Mechanics and Foundation Engineering,1984, 2:879-886.
    Kovacs, G. Seepage hydraulics[M]. Elsevier Scientific Publishing Company, Amsterdam,The Netherlands,1981.
    Ladd,C.C.,etal. Strength-deformation properties of Arctic silt[C]//ASCE Specialty conference, ARCTIC'85,San Francisco, Calif.,1985:820-829.
    Lambe, T.W.& Whiteman, R.V. Soil Mechanics, John Wiley & Sons, Inc.,1969.
    Lara Fletcher, Oldrich Hungr, S. G. Evans. Contrasting failure behaviour of two large landslides in clay and silt[J]. Canadian Geotechnical Journal,2002.39:46-62.
    Leonards, G.A., Huang, A.B.and Ramos.,J.Piping and erosion tests at conner run dam[J]. Journal of Geotechnical Engineering,1991,117(1):108-117.
    Maatouk,A.,Leroueil,S.and P. La Rochelle.Yielding and critical state of a collapsible unsaturated silty soil[J]. Geotechnique,1995,45(3):465-477.
    Mitchell, J K. Fundamentals of soil Behavior[M].2nd ed. New York:John Wiley and Sons Inc,1993:131-160.
    Nakajima,Y. Study of the failure of piping in polder Dikes for Lan Reclamation [J].Soils and Foundations,1968,8(4):30-47.
    Nishida, Y., Koike, H.& Nakagawa, S. Coefficient of Permeability of Highly Plastic Clays[C]//Proc. Of 4th Budapest Conference on SMFE,1971.
    Ojha,C.S.P.,Singh,V.P.,and Adrian,D.D.Determination of Critical Head in Soil Piping[J]. Journal of Hydraulic Engineering,2003,129(7):511-518.
    Penman, A. D. M.,Shear characteristics of a saturated silt measured in triaxial compression[J]. Geotechnique,1953,3:12-328.
    Prakash,K.&Sridharana,A. Critical appraisal of the cone penetration method of determining soil plasticity[J]. Canadian Geotechnical Journal,2006,43(8):884-888.
    Russel, D.A.& Swartzendruber, D. Flux-Gradient Relationship for Saturated Flow through Mixtures of Sand, Silt and Clay[C]//Proc. SSSA,1971,35(1):21-26
    Sherard, J.L., Dunnigan, L.P., Decker, R.S.,and Steele,E.F. Pinhole test for identifying dispersive soils[J]. Journal of Geotechnical Engineering division.ASCE,1976,102(1): 69-85.
    Sherard J L, Dunnigan L P, Talbot J R. Filters for silts and clays[J]. Journal of Geotechnical Engineering, ASCE,1984,110(6):701-71.
    Sherwood, P. T. and Ryley, M. D. An investigation of a cone-penetrometer method for the determination of the liquid limit[J]. Geotechnique,1970,20(2):203-208.
    Skempton,A.W.and Brogan,J.M. Experiments on piping in sandy gravels[J]. Geotechnique, 1994,44(3):449-460.
    Sridharan, A., Rao,S. M. and Murthy, N. S. Liquid limit of kaolinitic soils[J]. Geotechnique,1988,38(2):191-198.
    Stone, K. J. L.and Phan, K. D. Cone penetration tests near the plastic limit[J]. Geotechnique,1995,45(1):155-158.
    Tayler. Fundamentals of soil mechanics[M]. Wiley, New York.1948
    Terzaghi, K. Der Groundbruch an Stauwerken und seine Verhuetung [J]. Die Wasserkraft, 1922,17:445-449.
    Thevanayagam,S. Effect of fines and confining stress on und rained shear strength of silty sands[J] Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6): 479-491.
    Thevanayagam,S. Closure to Effect of fines and confining strss on undrained shear strength of silty sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999,125(11):1024-1027.
    Thomas,L.,B., Andrew,T.R., Michael,J.D. Drained and undrained strength Interpretation for low-plasticity silts [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006,132(2):250-256.
    Toll. D.G. A framework for unsaturated soil behaviour[J]. Geotechnique,1990,40(1):31-44.
    Toll. D.G, and Ong, B. H. Critical-state parameters for an unsaturated residual sandy caly[J]. Geotechnique,2003,53(1):93-103.
    Trinh Minh thu, Harianto Rahardjo, and Eng-choon Leong. Shear Strength and Pore-Water pressure Characteristics during Constant water content triaxial tests[J]. Journal of geotechnical and geoenvironmental englneering,2006,3:411-419.
    Wang, D. E. Pufahl, and Fredlund D. G. A study of critical state on an unsaturated silty soil [J]. Canadian Geotechnical Journal,2002,39:213-218.
    Wang, J. L., Vivatrat, V. Geotechnical properties of Alaska OCS silts[C]//Proc.,14th Annual Offshore Technology Conf., OTC 4412, Houston, Tex.,1982:415-420.
    Wood. D. M.soil behaviour and critical state soil mechanics[M]. Cambridge University Press,1990.
    Yong, R.N.& Warkentin, B.P., Soil Properties and Behaviour, Development in Geotechnical Engineering 5, Elsevier Sci. Pub. Company, Amsterdam,1975.
    蔡袁,钱磊,凌道盛,吴世明.钱塘江防洪堤地震液化及稳定分析[J].水利学报,2001.(1):57-61.
    陈来华,徐有成,杨永楚.钱塘江强潮河段修建护岸丁坝技术探讨[J].水利学报,2004,4:86-90.
    陈建生,李兴文,赵维炳.堤防管涌产生集中渗流通道机理与探测方法[J].水利学报,2000,9:48-54.
    陈希海,周素芳,朱冠天.强潮河口海塘基础防冲设计研讨[J].2000,18(1):75-81.
    崔荣方.无粘性土的渗透特性及其管涌破坏机理研究[D].河海大学硕士论文.2006.
    Dovidenkoff.水工建筑物中土滤层的应用[J].水利水运科技情报,1977,2:23-29
    刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992.
    刘杰.土石坝渗流控制理论基础及工程经验教训[M].北京:中国水利电力出版社,2006.
    刘建刚.堤基渗透变形理论与渗漏探测方法研究[D].河海大学博士论文.2002.
    陈国兴,刘雪珠等.苏南地区新近沉积土的动力特性研究.第八届全国青年岩石力学与工程学术大会暨第八届全国岩石破碎与粉碎学术大会,2005.
    陈国兴,刘雪珠等.江苏长江以南地区新近沉积土动剪模量和阻尼比的试验研究[J]工程抗震与加固改造,2005(s1):212-216.
    曹宇春,王天龙.上海粉土液化特性及孔压模型的试验研究[J].上海地质,1998,3: 60-64.
    冯秀丽,沈渭铨,杨荣民,杨中卿.现代黄河口区沉积环境与沉积物工程性质的关系[J].青岛海洋大学学报,1994:21-28.
    冯秀丽、沈渭铨等.现代黄河口区沉积环境与沉积物工程性质的关系[J].青岛海洋大学学报,1994(s3):21-28.
    冯秀丽,林霖,庄振业,潘树春.现代黄河水下三角洲全新世以来土层岩土工程参数与沉积环境之间的关系[J].海岸工程,1999,18(4):1-7.
    冯秀丽,马艳霞等.现代黄河水下三角洲粉土临界水力坡降探讨[J].海岸工程,2002,18(4):54-57.
    冯秀丽,周松望,林霖,刘涛,吴世强.现代黄河三角洲粉土触变性研究及其应用[J].中国海洋大学学报,2004,34(6):1053-1056.
    龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    国函[2007]19号,国务院关于杭州市城市总体规划的批复,2007年2月16日.
    国家标准,GB50007-2002.建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    国家标准,GB/T50123-1999.土工试验方法标准[S].北京:中国计划出版社,1999.
    国家行业标准,SL237-1999.土工试验规程[S].北京:中国水利水电出版社,1999.
    杭州市勘测设计研究院.杭州第四纪地层工程地质单元体划分标准的研究与建立研究报告[R].杭州,2001.
    杭州市建筑业管理局.深基坑支护工程实例.中国建筑工业出版社,1996.
    韩海骞,赵渭军,李来武,余祈文.钱塘江河口治理后建港方案初步研究[A].第十二届中国海岸工程学术讨论会论文集[C],2005.
    韩非.粉土地区地下降水对土体变形的影响研究[R].浙江大学,2004.
    郝中堂,周均长.应用流体力学[M].杭州:浙江大学出版社,1991.
    黄文熙.土的工程性质[M].北京:水利电力出版社出版,1983.
    黄博.粉土和粉砂的动力特性及地震液化研究[D].浙江大学博士学位论文,2000.
    黄传兵.粉砂粉土地基钻孔咬合桩围护结构渗流及管涌分析[D].浙江大学硕士学位论文,2006.
    胡琦.超深基坑水、土与围护结构相互作用及设计方法研究[D].浙江大学博士学位论文,2008.
    胡再强,刘兰兰,李宏儒,焦黎杰,王军星.非饱和黄土等效吸力的研究[J].岩石力学与工程学报.2010,(9):1901-1906.
    贾永刚,霍素霞,许国辉,单红仙,郑建国,刘红军.黄河水下三角洲沉积物强度变化原位测试研究[J].2004,25(6):876-877.
    贾永刚,史文君,单红仙,许国辉,刘红军,郑建国.黄河口粉土强度丧失与恢复过程现场振动试验研究[J].岩土力学,2005,26(3):351-358.
    贾永刚,栾海晶,许国辉,刘红军,单红仙.振动导致黄河口粉质土性质与起动流速的变化[J].岩土力学,2007,28(6)1123-1128.
    贾永刚,董好刚,单红仙,刘小丽,刘红军.黄河三角洲粉质土硬壳层特征及成因研究[J].岩土力学,2007,28(10):2029-2035.
    贾永刚,付元宾,许国辉,单红仙,曹雪晴.水动力条件差异导致潮坪分形特征变化实例研究[J].海洋学报,2003,25(3):60-66.
    符策简.高含盐粉土的力学特性试验研究[J].岩土力学,2010,31(s1):193-197.
    李辉煌.钻孔咬合桩围护结构工程基坑涌水事故案例分析[J].土木工程学报,2005,38(s1): 93-96.
    李苏春,蒋刚.南京地区粉土的不排水三轴压缩试[J].南京工业大学学报(自然科学版),2007,29(2):40-44.
    李广信.高等土力学[M].北京:清华大学出版社,2004.
    李广信,郭瑞平.土的卸载体缩与可恢复剪胀[J].岩土工程学报,2000,(2):159-161.
    梁伟、李全斌.应力铲试验在粉土场地的应用[J].工程勘察,1998,1:9-14.
    林本海,李业茂.粉土工程性质的探讨[J].岩土工程师,1999,11(3):1-4
    凌华,殷宗泽,蔡正银.非饱和土的应力-含水率-应变关系试验研究[J].岩土力学,2008(3):651-655.
    凌华,殷宗泽.非饱和土强度随含水量的变化[J].岩石力学与工程学报,2007,(7):1499-1503.
    刘辉,石磊.论徐州市饱和粉土的工程地质特性[J].江苏煤炭,2003,3:69-71.
    刘连喜.武汉地区粉土的工程特性的探讨[J].土工基础,1996,10(1):17-20.
    刘汉龙,曾长女,周云东.饱和粉土液化后变形特性试验研究[J].岩土力学,2007,28(9):1866-1870.
    刘红军,吕文芳等.黄河三角洲粉质土初始干密度和黏粒含量对稳态强度的影响研究 [J].岩土工程学报,2009,8:43-53.
    刘杰,缪良娟.分散性粘性土的抗渗特性[J].岩土工程学报,1987,9(2):90-97.
    刘杰,缪良娟.一般粘性土的抗渗强度及时性影响因素的研究[J].水利学报,1984,(4):11-19.
    刘杰.混凝土防渗墙渗流控制几个问题实例分析[J].大坝观测与土工测试,1992,16(5):39-43.
    刘杰.土的渗透稳定与渗流控制[M].北京:水利电力出版社,1992.
    刘杰.土石坝渗流控制理论基础及工程经验教训[M].北京:水利电力出版社,2006.
    骆晓明,陈剑锋,吴关岳,王建国,吴柏荣.钱塘江海塘沉井丁坝设计与施工浙江水利科技[J].2000,2:21-23.
    宁宝宽,杨军.沈阳粉质土工程指标的概率统计及分布模型[J].沈阳工业大学学报,2004,26(4):461-471.
    牛琪瑛,裘以惠,史美筠.粉土抗液化特性的试验研究[J].太原工业大学学报,1996,27(3):5-9.
    孟毅.潍坊市区低塑性粉土标贯击数与承载力标准值回归关系探讨[J].西部探矿工程,1997,5:33-36.
    毛昶熙.渗流计算分析与控制[M].北京:水利电力出版社,1990(2003再版).
    毛昶熙,段祥宝,毛佩郁.堤防渗流与防冲[M].北京:中国水利水电出版社,2003.265-267.
    毛昶熙,段祥宝,冯玉宝.管涌与滤层的研究(Ⅱ):滤层[J].岩土力学,2005,26(5):680-686.
    缪林昌,殷宗泽,刘松玉.非饱和膨胀土强度特性的常规三轴试验研究[J].东南大学学报(自然科学版),2000,1:121-125.
    彭丽云,刘建坤,肖军华,陈立宏,朱瑞龙.压实粉土非线性应力-应变关系的试验研究[J].工程地质学报,2007,15(1):50-55.
    彭丽云,刘建坤,陈立宏.非饱和击实粉土的强度和屈服特性研究[J].岩土力学,2008,29(8):2241-2245.
    钱家欢.土工原理与计算[M].北京:中国水利电力出版社出版,1996.
    阮永芬,巫志辉.饱和粉土的若干动力特性研究[J].岩土工程学报,1995,17(4):100-106.
    上海轨道交通4号线事故纪实简介,岩石力学与工程学报,2003,23:1038.
    沙金煊.多孔介质中的管涌研究[J].水利水运科学研究,1981,3:89-93.
    邵生俊,谢定义.土的变形非线性与剪缩剪胀性新认识[J].岩土工程学报,2000,(1):72-76.
    太沙基.泼克.工程实用土力学[M].蒋彭年译,水利电力出版社,1960.
    魏道垛,李振明,陈忠汉.郑州东区粉土地基承载力的研究与确定[C]//中国土木工程学会第七届土力学及基础工程学术会议论文集,1994:280-283.
    魏建栋.粉砂粉土中深基坑水土压力及围护结构受力性状研究[D].浙江大学硕士学位论文,2006.
    王跃新.原状与重塑粉土静力三轴试验的对比研究[D].大连理工大学硕士论文,2009.
    王小花,刘红军,贾永刚.黄河口粉质土矿物成分特征及对水动力条件响应的研究[J].2004
    王卫标,韩曾萃,金伟良.钱塘江某海塘整体稳定可靠度分析[J].浙江大学学报(工学版),2002,36(4):366-370.
    吴全立.高水位砂质粉土层工程地质特性及其对策[J].现代隧道技术,2004(s1)168-172.
    许国辉,单红仙,贾永刚,霍素霞.风暴浪导致的黄河口水下土体破坏试验研究[J].青岛海洋大学学报,2003,33(5):675-679.
    杨少丽,Lars Grande等.桶基负压沉贯下粉土中水力梯度的变化过程[J].岩土工程学报,2003,25(6):662-665.
    杨少丽.静动荷载下砂和粉土行为的研究及其本构模型[D].青岛海洋大学博士学位论文,1999.
    《岩土工程手册》编写委员会.岩土工程手册[M].北京,中国建筑工业出版社,1994.
    叶银灿,来向华.杭州湾粉质土动强度特性研究[J].海洋科学,2003,27(2):56-59.
    阎明礼等.重塑饱和亚粘土应力应变关系的非线性模型[J].岩土工程学报,1981,3(4):43-53.
    于洪治,何广钠.饱和粉土软化特性试验研究[J].试验技术与试验机,1991,31(4):30-32.
    张钧.循环应力历史对粉土小应变剪切模量的影响[D].浙江大学硕士学位论文, 2006.
    张杰清,戚辉,汤晓光.汉口地区浅层粉土对深基坑开挖的影响[J].城市勘测,1997,1:5-7.
    张明义,邓安福,温学智.不同应力路径加荷时粉土的应力应变关系[J].青岛建筑工程学院学报1992,13(2):1-6.
    赵宇.不同动应力路径下粉土动力特性试验研究[D].浙江大学硕士学位论文,2006.
    张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,(1):12-17.
    张福海,王保田,张文慧等.粗颗粒土渗透系数及土体渗透变形仪的研制[J].水利水电科技进展,2006,26(4):31-33.
    浙江省标准,J10252-2003.建筑地基基础设计规范[S].杭州:浙江省建设厅,2003.
    郑继民,沈谓铨,陆念祖.黄河口及渤海中南部沉积物工程特性及其机理[J].青岛海洋大学学报,1994,24(2):231-238.
    周胜,倪浩清,赵永明,杨永楚,王一凡,吕文德,梁保祥.钱塘江水下防护工程的研究与实践[J].水利学报,1992,(1):20-30
    朱志铎,刘松玉,孙海军.江苏徐宿地区粉土的基本特性及加固方法研究[J].岩土力学,2004,25(7):1155-1158.
    朱志铎,刘松玉,邵光辉,郝建新.粉土及其稳定土的三轴试验研究[J].岩土力学,2005,26(12):1967-1971.
    朱小可,胡敏云等.循环荷载作用下近海粉土工作性状的试验研究[J].浙江工业大学学报,2008,36(2):214-220.
    朱思哲等.三轴试验原理与应用技术[M].北京:中国电力出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700