用户名: 密码: 验证码:
云南省盘龙河流域河流悬移质输移变化及其对环境变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:河流泥沙浓度的变化是区域生态环境发生变化的结果,不仅会直接引起河道的冲淤演变,对所处流域的工程、湿地、环境、生物多样性等也将产生难以预测的影响。我国多沙河流众多,泥沙问题非常严重,水沙灾害严重地制约着国民经济的持续快速发展,对泥沙的深入认识也成为了水文学研究的当务之急。本研究以红河支流盘龙河流域为研究区域,利用小波分析、混沌、分形、神经网络、“3S"技术等数学方法,研究了龙潭寨水文站输沙的变化规律,探讨了流域内气候、人类活动的各要素与泥沙之间的相互影响和响应状况,取得如下成果和认识:
     1.时间序列特征分析结果表明,盘龙河流域河流输沙率自1953至1997年一直呈现出波动上升的趋势,而1998年以来有下降的倾向;输沙率的变化具有多时间尺度特征,不同时段振荡强度不同;就周期性而言,输沙率存在有4、7、22年的振荡周期,其中22年的振荡周期最为明显,贯穿整个研究时段,4年和7年尺度上局部特征突出;在4、7、22年时间尺度上分析输沙率的突变特征得知,4年尺度上的突变有27次,7年尺度上的突变有15次,22年尺度上的突变有5次,长时间尺度上嵌套着短时间尺度。此外,输沙率时间序列的多时间尺度、周期性、突变性特征是由气候要素所决定。
     2.非线性特征分析结果表明,流域悬移质的输移过程具有混沌和分形这两种主要的非线性特征。从混沌特征来看,控制站龙潭寨水文站月均输沙率的最小嵌入维m=11,饱和关联维D2=1.8387,最大Lyapunov指数λ1=0.108,Kolmogorov熵K=0.1818,表征了盘龙河月均输沙率的最大可预报时间约为9个月,平均可预报时间约为6个月。从分形分析的结果来看,盘龙河月均输沙率的Hurst指数H=0.7781>0.5,分形维数D=1.2219。
     3.分析河流悬移质输移变化与土地利用变化之间的对应关系时表明,盘龙河流域河流悬移质输沙的趋势性特征是其对土地利用变化,特别是其中的林地面积变化的趋势性所作出的响应。这主要是由于土地利用与土壤侵蚀之间有密切的关系,土地利用方式变迁必然导致土壤侵蚀强度发生改变,从而引起侵蚀产沙与河流输沙的相应调整的结果。
     4.输沙率预测的小波神经网络耦合模型的因子选取结果表明,在构建气候水文变化对悬移质的影响模型中:加入径流量要素和考虑大雨及暴雨的影响后模型的预测效果更好;有一个月的滞后比没有滞后好,但不宜超过二个月;小波神经网络耦合模型的预测精度比普通BP模型高。在构建人类活动变化对悬移质的影响模型中:考虑林地面积和水库控制面积,及两者分别滞后一年,模型的预测精度有较大的提高,而加入耕地面积、水库库容、公路修建里程、水土保持面积、裸地面积、年采矿量、流域年末总人口等要素后,模型的预测精度有所提高,但没有明显的变化。
     5.气候变化对河流悬移质输移的影响分析结果表明,相对于基准期,气候变化对输沙变化的综合影响在不同时段有所不同。但总体而言,随着时间的推移,气候变化对输沙变化的贡献呈现出逐渐减弱的趋势。此外,不同气候要素对输沙变化还具有不同的影响作用,降雨量对输沙变化的贡献最为重要,均超过了85%;气温的贡献为负作用,并且小于3%;大雨和暴雨对输沙也有一定的影响,但在6%以内。
     河流悬移质对气候变化的响应分析结果为,降雨不变而气温升高将导致输沙的减少;气温不变,降雨增加则输沙增加,反之则减少,且降雨增加相同的幅度比减少相同幅度对输沙的影响更显著;气温升高同时降雨减少,则输沙朝减少的方向发展;气温升高同时降雨增加,输沙的变化相对较为复杂。此外,在人类活动加剧的情景下,输沙对同样的气候变化情景将变得更为敏感。
     6.人类活动对河流悬移质输移的影响分析结果表明,相对于基准期,人类活动变化对输沙变化的综合影响在不同时段也不尽相同。总体而言,随着时间的推移,人类活动对输沙的控制有逐渐加强的态势。此外,不同人类活动要素对输移变化的影响具有不同的作用,林地对输沙变化的贡献最大,均超过了70%;对于耕地,从1958年至2005年一直趋于减少状态,对减少输沙的贡献也相应增加;就水库控制面积和库容而言,减沙贡献主要表现在研究时段初期;公路修建和采矿,在研究时段初期,两者对输沙增加的贡献相对较小,而进入90年代以来,它们对输沙的增加已经不可忽视;就水土保持面积而言,进入2000年以来,对减沙的贡献才达5.64%;裸地面积对输沙的贡献在初期为4.23%,90年代达到11.26%,进入21世纪以来,又降为10.57%;流域年末总人口对输沙的贡献均在4%左右。
     河流悬移质对人类活动变化的响应分析结果为,耕地面积维持不变的情况下,林地面积的减少将导致输沙的升高,而林地面积增加将导致输沙减少;林地面积维持不变的情况下,耕地面积的减少将导致输沙的减少,反之则升高;耕地减少同时林地增加会导致输沙的减少;耕地增加同时林地减少将导致输沙的增加。此外,在气候变为较干旱时,输沙对同样的人类活动情景不敏感,反之则较为敏感。
     7.未来气候变化下输沙的可能变化预测结果为,以2000-2005年的输沙为基准,至2050年研究区输沙的可能变化范围是增加0.15~16.8%。如若考虑到人类控制的加剧,输沙总体将朝减少的方向发展。
     上述方法、思路与成果,为流域泥沙的研究注入了新的方法,拓展了泥沙研究的方向,丰富和完善了水文学的理论体系,加深了人类对流域泥沙过程的认知与理解,弥补了研究区相应领域的空白,具有积极的意义。
Abstract:The change of river sediment is the results that change of regional ecosystem environment. It will directly cause the scour and silting evolution of river channel, which seriously affect the engineering, wetland, environment, biodiversity, etc. There are many high sediment concentration rivers in China, and the sediment problem is very serious. Water and sediment disasters seriously restrict the sustainable, rapid development of the national economy. So further understanding of the sediment has become a very urgent task of hydrological research. This paper takes Panlonghe basin, the branch of Red river as the studied area, the wavelet, chaos, fractal, neural network, "3S" technology and various traditional mathematics methods as the study methods, to research the change regulation of sediment flux in Longtanzhai gauging station. Moreover, this paper also has researched the mutual influence and response among climate, human activity and sediment. At the last, we come to the conclusions as following:
     1. The results of time series analysis showing that the suspended sediment flux of Panlonghe had been present a trend of waving ascension from 1953 to 1997 year. However, it had been present a trend of descendent tendency from 1998. The change of suspended sediment flux has multi-time scale characteristic, and the oscillation strength is different in different time period. To the periodic characteristic, the suspended sediment flux has the oscillation period of 4,7 and 22 year, in which the oscillation period in 22 year time scale is the most obvious, it run throughout the whole researched time. However, the local characteristic is outstanding both in 4 and 7 year time scale. If we analyze the abrupt characteristic in the 4,7 and 22 year time scale, we can come to the conclusion that in the 4 year time scale, abrupt change has 27 times, and in the 7 year time scale, abrupt change has 15 times, and in the 22 year time scale, abrupt change has 5 times. The long term time scale contains the short term time scale. In additional, the multi-time scales, periodic and abrupt change characteristic are controlled by the climate factors.
     2. The results of nonlinear features analysis showing that the transportation processes of suspended sediment have the two kinds of nonlinear characteristics, that is, chaos and fractal. Firstly, from the aspects of chaos characteristic, to the mean month suspended sediment flux of Longtanzhai gauging station of Panlonghe river, the minimum embedding dimension m=11, saturation correlation dimension D2=1.8387, maximum Lyapunov exponentλ1=0.108, Kolmogorov entropy K=0.1818, which mean that the maximum possible forecast time is about 9 months, and the mean possible forecast time is about 6 months. Secondly, from the analysis results of fractal, to the mean month suspended sediment of Panlonghe river, the Hurst exponent H=0.7781>0.5, fractal dimension D=1.2219.
     3. When analysis the relationship between river suspended sediment transportation and land use change in Panlonghe basin, we can come to the conclusions that the change trend characteristics of suspended sediment flux in Panlonghe basin is the results of land use change, and in particularly the changing of forest area. This was mainly due to land use and soil erosion have closely relationship, and the land use mode change will lead to soil erosion intensity change, thus leading to erosion and sediment transportation make corresponding adjustment.
     4. This paper uses the Wavelet Network in the process of suspended sediment prediction. Firstly, in the model of sediment-climate, the input factors include four climate factors and only one hydrological factor. That is, rainfall, air temperature, the accumulative amount of daily rainfall≥25 and≥50 mm, and water discharge. After this step, we divided the models into four groups according to the different combination. The first group only includes rainfall and air temperature; the second group adds downfall and rainstorm except the two factors that the first group used; the third group adds the water discharge except the factors that the third group used; the fourth group only includes the water discharge. When come to the delay effect, we consider four conditions, that is, have no delay effect, one month delay, two and three months delay and four months delay respectively. The results are as following:if add the water discharge and consider the influence of downfall and rainstorm, the prediction precision will be improved; the best delay time is one month, the prediction precision will reduce if the models have no time delay or time delay excesses two months; the prediction precision of the Wavelet Network is better than the Back Propagation model. Secondly, in the model of suspended sediment and human activities, the input factors include nine factors, that is, woodland area, farmland area, capability and controlled area of reservoir, length of highway construction, the water and soil conservation area, year mining amount, bare land area and the total population in the studied area. The results are as following:add the on time and delay one year of woodland and reservoir controlled area to the sediment-climate models can improve the prediction precision. However, if add the farmland area, reservoir controlled area, length of highway construction, the water and soil conservation area, bare land area, year mining amount and the total population in the studied area to the model, the prediction precision improved slightly. It is clear that these factors influence the production and transportation of suspended sediment, but their effects are limited in the studied area.
     5. The result of the influence of climate change to the suspended sediment flux showing that the influence of climate to the change of suspended sediment flux is different in the different period. In generally speaking, the contribution rate of climate change to the change of suspended sediment flux is weakening.
     In this paper, we mainly consider the rainfall, temperature, downfall and rainstorm when study the influence of climate factors to sediment. The results are as following:comparing to the standard period, the contribution rate of rainfall to suspended sediment change is the most important, all excess 85%; the contribution of temperature to the suspended sediment flux change is counteractive, and less than 3%; downfall and rainstorm have certain influence to sediment, but the contribution rate are less than 6%.
     After analyzing the response of sediment transportation to the climate change, we can come to some interesting conclusions. For the climate factors:the air temperature rising will lead to the sediment transportation decrease if the rainfall is not change; if the air temperature is not change, the influence of increase rain to sediment transportation is more observably when the rainfall have same decrease and increase range; if the air temperature rising with the rainfall decrease, the sediment transportation will decrease; if the air temperature rising with rainfall decrease, the sediment transportation change is more complicated. The sediment transportation will become more sensitive to the same climate change scenario under the scenario of human activity intensified.
     6. The results of the influence of human activities to the suspended sediment flux showing that the influence of human to the change of suspended sediment flux is different in the different period too. In generally speaking, with the development of society, the control of human to the sediment is intensified.
     From the results we know that:the contribution of woodland to the sediment transportation is the most important factor, it contribution all excess 70% in the four periods, so it is clear that the sediment transportation rising is caused by the woodland decrease; for the farmland, from 1958 to 2005 year, it has been presented decrease trend, so its contribution to sediment transportation decrease was increase; for the reservoir controlled area and capability, because almost all of the reservoir were built at 50 and 60's, so their effect of decrease sediment transportation were presented in the fore period, after 2000 its decrease sediment effect was very limited; for the road construction and mining, in the early period of the studied stage, their contribution to the sediment increase were very limited, but their contribution to the increase of sediment are can not be ignored since 1990s; for the water and soil conservation, it developed very slowly, and its contribution reaches to 5.64% since 2000s; for the bare land, its contribution to the sediment increase was 4.23% in the early period, and reached 11.26% in 90's, but decreased towards 10.57% when we got into 21st centuries; for the year-end total population, it does not contribute to the sediment transportation directly, but it influence sediment transportation through the other factors, and its contribution is about 4%.
     After analyzing the response of sediment transportation to the human activities change we can come to the conclusions as following:when the farmland area doses not change, the decrease of woodland area will cause the sediment transportation increase, but the sediment will decrease if the woodland area decreases; when the woodland area doses not change, the decrease of farmland will cause the sediment transportation decrease, but the increase of farmland will cause the sediment transportation increase; woodland area increase with the farmland decrease, the sediment transportation will decrease; woodland area decrease with the farmland area increase, the sediment transportation will increase. So when we analyze the response of sediment transportation to both of the farmland and woodland area change, we need to analyze the special conditions based on the given environment. For the response of sediment transportation to the human activity under the climate change, the sediment transportation is not so sensitive when the climate becomes wetness.
     7. For the possible change of sediment under the future climate in the studied area, if take the sediment transportation of 2000~2005 years as the reference, the possible change range of sediment transportation is 0.15~16.8%. However, if take the human controlling abilities are improved into the consideration, the total direction of sediment transportation may tend to decrease, which is alike many basins in the world.
     In a word, the above mentioned results infused new scientific theories and mathematics method into the research of sediment in the basin, and developed new research direction. Not only they advanced the people's cognition and comprehension to the sediment transportation process, but also provided a theories basis for the establishment strategy to the sediment controlling in the basin, which have useful meaning.
引文
[1]中华人民共和国水利部.2000年中国河流泥沙公报[M].北京:水利水电出版社,2001.
    [2]Kerr R A. Greenhouse skeptic out in the cold [J]. Science,1989,246:1118-1119.
    [3]张二凤.长江中下游人类活动对河流泥沙来源及入海泥沙的影响研究[D].华东师范大学博士学位论文,2004.
    [4]Thomas H E. Effects of drought in the Colorado River Basin [J]. U.S. Geol Surv., Prof. Pap, 1962, (372-F):50pp.
    [5]Thompson K R. Annual suspended-sediment loads in the Colorado River near Cisco, Uath. 1930-1982. U.S. Geol Surv [R]. Resour Invest Rep.1984a, (85-4011):19pp.
    [6]Thompson K R. Annual suspended-sediment loads in the Green River at Green River, Utah.1930-1982. U.S. Geol Surv[R]. Resour Invest Rep.1984b, (84-4169):17pp.
    [7]Gellis Allen, Hereford Richard, Schumm S A, et al. Channel evolution and hydrologic variations in the Colorado River basin:Factors influencing sediment and salt loads [J]. Journal of Hydrology,1991, (124):317-344.
    [8]Meade R H, Parker R S. Sediment in rivers of the United States. In:National Water Summary 1985 [C]. U.S.Geol. Surv. Water Supply Pap,1985, (2275):49-60.
    [9]Carriquiry J D, Sanchez A. Sedimentation in the Colorado River delta and Upper Gulf of California after nearly a century of discharge loss [J].Marine Geology,1999,(158):125-145.
    [10]Carriquiry J D. Sedimentation in the northern Gulf of California after cessation of the Colorado River discharge [J].Sedimentary Geology,2001,144(1-2):37-62.
    [11]Michael J, Christine Henges Jeck, Gerardo Castillo Moreno. A preliminary water balance for the Colorado River delta,1992-1998[J]. Journal of Arid Environments,2001(49):35-48.
    [12]Williams S, Jeffress. Coastal erosion and land loss around the United States:strategies to manage and protect coastal resources-examples from Louisiana[R].Coastal Ecosystems and Federal Activities Technical Training Symposium Proceedings,Gulf Shores State Park, AL, August,2001,20-22.
    [13]Kesel R H, Yodis E J, Mccraw D J. An approximation of the sediment budget of the lower Mississippi river prior to major human-modification [J]. Earth surface processes and landforms,1992,17(7):711-722.
    [14]Kesel R H. Human modifications to the sediment regime of the Lower Mississippi River flood plain [J]. Geomorphology,2003,56,325-334.
    [15]Hammad H Y, Khafagy A A, Sidky S. A short note on the sediment regime ofthe River Nile [J]. Bulletin Institute Oceangraphy and Fish A.R.E. (Alexandria) 1979, (7):314-322.
    [16]Shahin M. Hydrology of the Nile Basin [M]. Elsevier, Amsterdam,1985,575pp.
    [17]Fanos A M. The impact of human activities on the erosion and accretion of the Nile delta coast [J] Journal of Coastal Research,1995, 11(3):821-833.
    [18]Berkamp G, McCartney M, Dugan P, McNeely J, Acreman M. Dams, Ecosystem Functions and Environmental Restoration Thematic Review Ⅱ.1 prepared as an input to the World Commission on Dams, Cape Town,2000.
    [19]Guiilen J, Palanques A. A historical perspective of the morphological evolution Ebro River [J]. Environmental Geology,1997,30(3-4):174-180.
    [20]Mikhailova M V. Transformation of the Ebro river delta under the impact of intense human-induced reduction of sediment runoff [J]. Water Resources,2003,30(4):370-378
    [21]Mauro Coltori. Human impact in the Holocene fluvial and coastal evolution of the Marche region, Central Italy [J]. Catena,1997,30(4):311-335.
    [22]Petre Gastescu, Romulus Stiuca, Danube Delta. In:Summaries of Background Papers to the Report of the Workshop on the Planning and Management of Modified Mega Deltas. The Hague, Netherlands,2001,24-26.
    [23]Panin N, Jipa D. Danube River Sediment Input and its Interaction with the North-western Black Sea [J]. Estuarine, Coastal and Shelf Science,2002,54:551-562.
    [24]Tran Van Dien, Tran Duc Thanh, Nguyen Van Thao.Monitoring Coastal Erosion in Red River Delta,Vietnam-A Contribution from Remote Sensing Data [J]. Asian Journal of Geoinformatics,2003,3(3):73.
    [25]Tran Duc Thanh, Yoshiki Saito, Dinh Van Huy.Regimes of human and climate impacts on coastal changes in Vietnam [J].Regional Environmental Change,2004,4(1):49-62.
    [26]Abamt K S. Impact of dams on the hydrology of the Niger Delta[R]. Bulletin of Engineering Geology and the Environment.1999,57(3):239-251.
    [27]Coleman James M, Oscar K.Huh.Major world deltas:a perspective from space,2003. (http://cires.colorado.edu/science/pro/wdn/).
    [28]Malini B, Hema, Rao K Nageswara. Coastal erosion and habitat loss along the Godavari delta front-a fallout of dam construction [J].Current science,2004,87(9-10):1232-1236.
    [29]Willianms J R, Berndt H D. Sediment yield prediction based on watershed hydrology [J]. Transactions of the ASAE.1977,20(6):1100-1104.
    [30]Kumar Santosh, Rastogi R A. A conceptual catchment model for estimating suspended sediment flow [J]. Journal of Hydrology,1987, (95):155-163.
    [31]Chang Howard H, Douglas A Stow. Sediment delivery in a semi-arid coastal stream [J]. Journal of Hydrology,1988, (99):201-214.
    [32]Gregory K J, Park C C. Adjustment of river channel capacity downstream from a reservoir [J]. Water resource research,1974, (Ⅰ0):870-873.
    [33]Douglas L, Man, vegetation and the sediment yield of rivers [J]. Nature,1967,(215):925-928.
    [34]Ludwig Wolfgang, Probst Jean-Luc. River sediment discharge to the oceans:Present-day controls and global budgets [J]. American Journal of Science,1998,298(4):265-295.
    [35]James P M, Syvitski C V, Albert J K. Impact of humans on the flux of terrestrial sediment to the global coastal ocean [J]. Science,2005, (308):376-380.
    [36]程天文,赵楚年.我国沿岸入海河川径流量与输沙量的估算[J].地理学报,1984,39(4):418-427.
    [37]刘昌明,成立.黄河干流下游断流的径流序列分析[J].地理学报,2000,55(3):257-265.
    [38]李勇,黎桂喜,潘贤娣.黄河干流径流泥沙特性变化[J].泥沙研究,2002,(4):1-7.
    [39]Xu Jiongxin. Sediment Flux to the Sea as Influenced by Changing Human Activities and Precipitation:Example of the Yellow River, China [J]. Environmental Management,2003, 31(3):328-341.
    [40]Xu Jiongxin. Sedimentation rates in the lower Yellow River over the past 2300 years as influenced by human activities and climate change [J]. Hydrological Processes,2003, 17(16):3359-3371.
    [41]许炯心.人类活动对公元1194年以来黄河河口延伸速率的影响[J].地理科学进展,2001,20(1):1-9.
    [42]许炯心,不同来源水沙对黄河入海泥沙通量的影响[J].海洋与湖沼,2002,33(5):536-545.
    [43]樊辉.黄河口泥沙输移及三角洲的近期演变[D].中国科学院博士学位论文,2005.
    [44]胡荣轩.黄河中游区水、沙变化趋势及其预测[J].地理学报,1992,47(4):315-324.
    [45]倪晋仁.黄河中游水保措施对入黄干支流泥沙特性的影响:1泥沙粒径变化[J].自然资源学报,1997,12(1):1-9.
    [46]张学成,王玲,高贵成.黄河泥沙动态分析[J].泥沙研究,2002,(1):43-52.
    [47]卢金发,黄秀华.土地覆被对黄河中游流域泥沙产生的影响[J].地理研究,2003,22(5):571-578.
    [48]陈吉余,陈沈良.河口海岸环境变异和资源可持续利用[J].海洋地质与第四纪地质,2002,22(2):1-7.
    [49]陈沈良,谷国传,虞志英.长江口南汇东滩淤涨演变分析[J].长江流域资源与环境,2002,11(3):239-244.
    [50]杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究-近期证据分析和未来趋势估计[J].海洋学报,2003,25(5):83-91.
    [51]Yang S L, Ding P X, Chen S L.Changes in progradation rate of the tidal flats at the mouth of the Chanjiang (Yangtze) River, China [J]. Geomorphology,2001,38(1-2):167-180.
    [52]Yang S L, Zhao QY, Belkin L M.Temporal variation in the sediment load of the Yangtze River and the influences of the human activities [J]. Journal of Hydrology,2002,263:56-71.
    [53]Yang S L, Beikin I M, Belkina A 1. Delta Response to Decline in Sediment Supply from the Yangtze River:Evidence of the Recent Four Decades and Expectations for the Next Half-Century[J]. Estuarine, Coastal and Shelf Science,2003,57:589-599.
    [54]Yang S L, Shi Z, Zhao H Y, Li P. Effects of human activities on the Yangtze River suspended sediment flux into the estuary in the last century [J]. Hydrology and Earth System Sciences, 2004,8(6):1210-1216.
    [55]Yang S L, Zhang J, Zhu J.Impact of dams on Yangtze River sediment supply to the sea and delta intertidal wetland response [J]. Journal of Geophysical Research,2005, VOL.110, F03006, doi:10.1029/2004JF000271.
    [56]戴仕宝.中国流域自然作用和人类活动对(河流)入海泥沙的影响-以长江为重点[D].华东师范大学博士学位论文,2006.
    [57]钱春林.引滦工程对滦河三角洲的影响[J].地理学报,1994,49(2):158-166.
    [58]周永青,陈宗团.黄河断流与黄河三角洲环境[J].海洋通报,1998,17(5):58-62.
    [59]程进豪,王维美,王华.黄河断流问题分析[J].水利学报,1998,(5):75-79.
    [60]王国庆,王云璋.渭河流域产流产沙模型及径流泥沙变化原因分析[J].水土保持学报,2000,14(4):22-25.
    [61]冉大川,刘斌,罗全华.径河流域水沙变化水文分析[J].人民黄河,2001,23,(2)9-11.
    [62]崔树强.黄河断流对黄河三角洲生态环境的影晌[J].海洋科学,2002,26(7):42-46.
    [63]张士华.黄河三角洲岸线变迁和保护措施的研究[J].海洋科学,2003,27(10):38-41.
    [64]万晔,韩添丁,段昌群,等.云南水土流失态势、分区与区域特征研究[J].中国沙漠,2005,25(3):442-447.
    [65]谭继中,张兵.云南省土地石漠化特征初步研究[J].地质灾害与环境保护,2003,14(1):32-37.
    [66]Kumar P, Foufoula-Georgiou E.A multieomponent decomposition of spatial rainfall fields 1.segregufion of large-and Small-Scale features using Wavelet transforms [J]. Water resource research.1993,29(8):2515-2532.
    [67]王文圣,丁晶,向红莲.小波分析在水文学中的应用研究及展望[J].水科学进展,2002,13(4):515-520.
    [68]Venckp V,Foufoula-Georgiou E.Energy decomposition of rainfall in the time-frequency-scale domain using wavelet packets [J].Journal of Hydrology,1996,27(3):3-27.
    [69]邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象,1997,16(1):81-93.
    [70]胡增臻,石伟.子波变换在大气科学中的应用研究[J].大气科学,1997,21(1):58-71.
    [71]纪忠萍,谷德军.广州近百年来气候变化的多时间尺度分析[J].热带气象学报,1999,15(1):48-55.
    [72]杨辉,宋亚山.华北地区水资源多时间尺度分析[J].高原气象,1999,18(4):496-507.
    [73]孙力,安刚,丁立,等.中国东北地区夏季降水异常的气候分析[J].气象学报,2000,58(1):72-80.
    [74]孙卫国,程炳岩.河南省近50年来旱涝变化的多时间尺度分析[J].南京气象学院学报,2000,23(1):251-255.
    [75]谢庄,曹鸿兴.近百年北京气候变化的小波特征[J].气象学报,2000,58(3):362-369.
    [76]段旭,尤卫红,郑建萌.云南旱涝特征[J].高原气象,2000,19(1):84-89.
    [77]姚建群.连续小波变换在上海近100年降水分析中的应用[J].气象学报,2001,27(1):20-24.
    [78]郑显,张闻胜.基于小波变换的水文序列的近似周期检测法[J].水文,1999,19(6):22-25.
    [79]杨梅学,姚檀栋.近300a来古里雅冰芯记录的气候突变事件[J].冰川冻土,2002,24(6):717-722.
    [80]吴慧,陈小丽.海南省四十年来气候变化的多时间尺度分析[J].热带气象学报,2003,19(2):213-218.
    [81]张利平,朱存稳,夏军.华北地区降水变化的多时间尺度分析[J].干旱区地理,2004,27(4):548-552.
    [82]蒋艳,周成虎,程维明.阿克苏河流域径流补给及径流变化特征分析[J].自然资源学报,2005,20(1):27-34.
    [83]严汾,蒙吉军.贵州省清镇市近50年来气候系统的多时间尺度分析[J].水土保持研究,2005,12(4):93-95,118.
    [84]张学真,刘燕.灞河出山径流序列变化的小波分析[J].水资源保护,2006,22(3):12-15.
    [85]董前进,王先甲,李匡,王建平.长江上游日径流变化的多时间尺度分析[J].武汉大学学报(工学版),2006,39(4):33-36.
    [86]胡安焱,郭生练,陈华,等.基于小波变换的汉江径流量多时间尺度分析[J].人民长江,2006,37(11):61-62,89.
    [87]陈克龙,李双成,周巧富.江河源区达日县近50年气候变化的多尺度分析[J],地理研究,2007,26(3):526-533.
    [88]段虞荣.小波分析在油气田地球物理勘探中的应用[J].重庆大学学报(自然科学版),1996,19(6):44-53.
    [89]张河,张庆.调频高斯小波变换及其程序[J].信号处理,1997,13(3):221-226.
    [90]王航.用小波变换提取局部放电信号[J].清华大学学报(自然科学版),1998,38(6):119-122.
    [91]刘晓宏,秦大河,邵雪梅.西藏林芝地区近350a来降水变化及突变分析[J].冰川冻土,2003,25(4):375-379.
    [92]杨建平,丁永建,陈仁升.长江黄河源区水文和气象序列周期变化分析[J].中国沙漠,2005,25(3):351-355.
    [93]李远平,杨太保.柴达木盆地气温、降水突变与周期特征分析[J].地理与地理信息科学,2007,23(3):105-108.
    [94]刘建梅.韩江下游径流周期变化特征的小波分析[J].广东水利水电,2007,(1):59-62.
    [95]张代青,高军省.基于小波分析的黄河上游径流变化周期研究[J].灌溉排水学报,2007,26(3):75-78.
    [96]李贤彬,丁晶,等.水文时间序列的子波分析法[J].水科学进展,1999,10(2):144-149.
    [97]Shozo,Tokinaga,et al. Forecasting of time series with fractal geometry by using scale trandormatious and parameters estimation obtained by the wavelet transform,Electronics and Communications in Japan[J].Paas3,1997,80(8):20-30.
    [98]Abry P, Veitch D.Wavelet analysis of long-rang-dependent on traffic [J].IEEE Transactions on information Theros,1999,4(1):2-15.
    [99]Cao Hangyue. Predicting chaotic time series with wavelet network [J]. Physical D,1995, 85:225-238.
    [100]尤卫红,杞明辉,段旭.小波变换在短期气候预测模型研究中的应用[J].高原气象,1999,18(1):39-46.
    [101]李贤彬,丁晶,李后强.基于子波变换序列的人工神经网络组合预测[J].水利学报,1999,(2),1-4.
    [102]金龙,秦伟良,姚华栋.多步预测的小波神经网络预报模型[J].大气科学,2000,24(1):71-86.
    [103]刘晓安,王金文,王海伟.基于小波分析的月径流ARIMA预测方法[J].水电自动化与大坝监测,2006,30(4):77-80.
    [104]王文圣,袁鹏,丁晶.小波分析及其在日流量过程随机模拟中的应用[J].水利学报,2000,(11):43-48.
    [105]郭其一,路向阳,李维刚.基于小波分析和模糊神经网络的水文预测[J].同济大学学报(自然科学版),2005,33(1):130-133.
    [106]黄锡全水文学[M].北京:高等教育出版社,1993,68-70.
    [107]林振山,邓子旺.小波气候诊断技术的研究[M].北京:气象出版社,1999.
    [108]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.358.
    [109]高成.Matlab小波分析与应用(第二版)[M].北京:国防工业出版社.2007.105
    [110]王文圣,丁晶,李跃清.水文小波分析[M].北京:化工出版社,2005,65.
    [111]尤卫红,段旭,杞明辉.连续小波变换在云南近百年气温和降水分析中的应用[J].高原气象,1999,18(1):50-53.
    [112]张秀丽,郑柞芳,何金海.近百年武汉市主汛期降水特征分析[J].气象科学,2002,22(4):380-381.
    [113]胡昌华,李国华,刘涛,等.基于Matlab6.x的系统分析与设计-小波分析(第二版)[M].西安:西安电子科技大学出版社,2004,302.
    [114]刘式达,梁福明.自然科学科学中的混沌和分形[M].北京:北京大学出版社,2004.
    [115]Grassberger P, Pocaccia I. Measuring the strangeness of strange attractors [J]. Physica,1983, D9:189-208.
    [116]Grassberger P, Procaccia I.Estimation of the Kolmogorov entropy from a chaotic signal [J]. Physical Review A-General Physics,1983,28(4):2591-2593.
    [117]Wolf A, Swifi J B, Swinney H L,et al. Determining Lyapunov exponents from a time series [J].Physica D(9),1985,16:285-317.
    [118]王红瑞,宋宇,刘昌明,等.混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407.
    [119]Hense A. On the possible existence of a strange attractor for the southern oscillation [J]. Beitr Phys Atmos,1987,60 (1):34-47.
    [120]Rodriguez Iturbe I, De Power F B, et al. Chaos in rainfall [J]. Water resource research,1989, 25(7):1667-1675.
    [121]Sharifi M B, Georgakakos K P, Rodriguez Iturbe I. Evidence of deterministic chaos in the pulse of storm rainfall [J]. Journal of Atmosphere Science,1990,47(7):888-893.
    [122]Tsonis A A, Elsner J B, Georgakakos K P. Estimating the dimension of weather and climate attractors:important issues about the procedure and interpretation[J].Journa of Atmosphere Science,1993,50(15):2549-2555.
    [123]Islam S, Bras R L, Rodriguez Iturbe Ⅰ. A possible explanation for low correlation dimension estimates for the atmosphere [J]. Journal of. Applied Meteorology,1993,32:203-208.
    [124]丁晶.洪水混沌分析[J].水资源研究,1993,13(3):14-18.
    [125]王文均,叶敏,陈显维.长江径流时间序列混沌特性的定量分析[J].水科学进展,1994,5(2):87-94.
    [126]Georgakakos K P, Sharifi M B, Sturdevant P L. Analysis of high-resolution rainfall data[A]. In:Kundzewicz ZW.New Uncertainty Concepts in Hydrology and Water Resources[C]. New York:Cambridge University Press,1995.114-120.
    [127]Sogoyomi T B, Lall U, Abarbanel H D Ⅰ. Nonlinear dynamics of the Great Salt Lake: dimension estimation [J]. Water resource research,1996,32(1):149-159.
    [128]傅军,丁晶,邓育仁.洪水混沌特性初步研究[J].水科学进展,1996,7(3):226-230.
    [129]Porato A, Ridofi L. Nonlinear analysis of river time sequences [J]. Water resource research, 1997,33(6):1353-1367.
    [130]Liu Q, Islam S, Rodriguez Iturbe I, et al. Phase-spaceanalysis of daily streamflow: characterization and prediction [J]. Water Resource,1998,21:463-475.
    [131]Wang Q, Gan T Y. Biases of comelation dimension estimates of steamflow data in the Canadian prairies [J]. Water resource research,1998,34(9):2329-2339.
    [132]魏一鸣,孙国栋,胡平昭,等.九江年降水时间序列的混沌特性[J].江西科学,1999,16(3):141-145.
    [133]Sivakumar B. Chaos theory in hydrology:important issues and interpretations [J]. Journal of Hydrology,2000,227:1-20.
    [134]Sivakumar B, Liong S Y, Liaw C Y, et al. Singapore rainfall behavior:chaotic[J]. Journal of Hydrologic Engineering, ASCE,1999,4(1):38-48.
    [135]Sivakumar B, Phoon K K, Liong S Y, et al. A systematic approach to noise reduction in observed chaotic time series [J]. Journal of Hydrology,1999,219 (3-4):103-135.
    [136]陈亚宁,杨思全.高山区突发洪水混沌机制研究[J].自然灾害学报,1999,6(1):48-52.
    [137]周尹康,王腊春,张捷.淮河流域洪涝变化混沌特征[J].自然灾害学报,1999,8(1):42-74.
    [138]李强,徐桂明,黄耘.地下水位的混沌和多重分形特征演化及其中短期预报意义[J].地震,1999,19(3):274-280.
    [139]王宝灵,谢金南,俞亚勋.西北地区降水混沌特性的初步分析[J].高原气象,2000,19(1):25-31.
    [140]袁鹏,李谓新,王文圣,等.月降雨量时间序列中的混沌现象[J].四川大学学报,2002,34(1):16-19.
    [141]陈云浩,史培军,李晓兵.不同热力背景对城市降雨暴雨的影响Ⅱ-降雨时序的混沌分析[J].自然灾害学报,2001,10(3):20-25.
    [142]王德智,夏军,张利平.东北地区月降雨时间序列的混沌特性研究[J].水电能源科学,2002,20(3):32-34.
    [143]丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究-Ⅰ相空间嵌入滞时的确定[J].水科学进展,2003,14(4):407-411.
    [144]丁晶,王文圣,赵永龙.长江日流量混沌变化特性研究-Ⅱ相空间嵌入维数的确定[J].水科学进展,2003,14(4):412-416.
    [145]宋宇,陈家军,孙雄.地下水水位时间序列中的混沌特征[J].水文地质工程地质,2004,(1):14-18.
    [146]徐敏,曾光明,苏小康.混沌理论在水质预测中的应用初探[J].环境科学与技术,2004,27(1):51-54.
    [147]李眉眉,丁晶,王文圣.基于混沌理论的径流降尺度分析[J].四川大学学报(工程科学版),2004,36(3):14-19.
    [148]门宝辉,赵燮京,梁川.长江上游川中地区降水时间序列的混沌分析[J].长江科学院院报,2004,21(1):43-46.
    [149]石教智,陈晓宏,林汝颜.东江流域降水时间序列的混沌特征分析[J].中山大学学报(自然科学版),2006,45(4):111-115.
    [150]王红娟,愈健,董奎.乌鲁木齐河年最大流量的混沌特征研究[J].新疆大学学报(自然科学版),2005,22(1):94-97.
    [151]黄胜,梁川.一种基于混沌吸引子的降雨降尺度分析[J].哈尔滨工业大学学报,2006,38(3):339-442.
    [152]李国良,付强,冯艳.基于混沌的三江平原月降水时间序列分析[J].数学的实践与认识,2007,37(6):76-81.
    [153]刘国,黄胜,许模.金沙江流域月径流时间序列的混沌分析[J].成都理工大学学报(自然科学版),2007,34(4):390-393.
    [154]丁涛,胡国建,唐子文.钱塘江径流系统的混沌特性分析[J].浙江水利科技,2007,(3):1-3.
    [155]Jawardena A W, Lai F. Analysis and prediction of chaos in rainfall and stream fiow time series [J]. Journal of Hydrology,1994,153:23-52.
    [156]Waelbroeck H, Lopez Pena R, Morales T, et al. Prediction of tropical rainfall by local phase space reconstruction [J]. Journal of Atmosphere Science,1994,51(22):3360-3364.
    [157]Puente C E, Obregon N. A deterministic geometric representation of temporal rainfall: results for a storm in Boston [J]. Water resource research,1996,32(9):2825-2839.
    [158]赵永龙,丁晶,邓育仁.相空间小波网络模型及其在水文中长期预测中的应用[J].水科学进展,1998,9(3):252-257.
    [159]金菊良,丁晶,魏一鸣.基于遗传算法的门限自回归模型在浅层地下水位预测中的应用[J].水利学报,1999(7):230-234.
    [160]蒋传文,陈实.混沌分析在水文径流预报中的应用[J].系统工程,1999,17,6(96):69-71.
    [161]权先璋,蒋传文,张勇传.径流预报的混沌神经网络理论及应用[J].武汉城市建设学院学报,1999,16(3):33-37.
    [162]尤卫红,杞明辉,段旭.小波变换在短期气候预测模型[J].高原气象,1999,18(1):39-46.
    [163]王文圣,袁鹏,丁晶,等.门限自回归模型及其在水文随机模拟中的应用[J].四川水力水电,2001,20(增刊):47-50.
    [164]蒋传文,侯志俭,李涛,等.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1053-1056.
    [165]刘少华,丁贤荣,毛红梅.水文时间序列的混沌神经网络预报[J].人民长江,2002,33(9):13-15.
    [166]丁涛,周惠成.混沌时间序列局域预测方法[J].系统工程与电子技术,2004,26(3):338-341.
    [167]岳毅宏,韩文秀,王健.基于加权平均一阶发散度的混沌序列预测法[J].系统工程与电子 技术,2004,26(5):602-604.
    [168]马军海,陈予恕,辛宝贵.基于非线性混沌时序动力系统的预测方法研究[J].应用数学和力学,2004,25(6):551-557.
    [169]蒋伟进,许宇胜,孙星明.非线性混沌时序预测研究及应用[J].武汉理工大学学报(交通科学与工程版),2005,29(1):60-63.
    [170]张文鸽,黄强,佟春生.径流混沌时间序列局域多步预测模型及其在黄河上游的应用[J].水力发电学报,2007,26(4):11-15.
    [171]刘媛媛,练继建,朱云.遗传算法改进的BP神经网络在混沌径流时间序列预测中的应用[J].2007,27(2):45-48,70.
    [172]李红霞,许士国,范垂仁.月径流序列的混沌特征识别及Volterra自适应预测法的应用[J].2007,38(6):760-766.
    [173]张少文,王文圣,丁晶.分形理论在水文水资源中的应用[J].水科学进展,2005,16(1):141-146.
    [174]Gupta V K. Statistical self-similarity in river networks parameterized by elevation [J]. Water Resources Bulletin,1989,25(3):72-75.
    [175]Barbera L, Rosso R. On fractal geometry of river networks [J]. Water resource research, 1989,25(4):735-741.
    [176]Rosso R, Bacchi B, Barbera P L. Fractal relation of mainstream length to catchment area in river networks [J]. Water resource research,1991,27(3):381-387.
    [177]李后强,艾南山.分形地貌学及地貌发育的分形模型[J].自然杂志,1992,(7):516-519.
    [178]冯平,冯炎.河流形态特征的分维计算方法[J].地理学报,1993,52(4):324-330.
    [179]金德生,陈浩,郭庆伍.河道纵剖面分形-非线性形态特征[J].地理学报,1993,52(2):154-161.
    [180]王协康,方铎,姚令侃.非均匀沙床面粗糙度的分形特征[J].水利学报,1999,(7):70-74.
    [181]Nikora V I. Fractal structures of river plan forms [J]. Water resource research,1991, 17(6):1327-1333.
    [182]Nikora V I, Sapozhnikov V B, Noever D A. Fractal geometry of individual river channels and its computer simulation [J]. Water resource research,1993,29(10):3561-3568.
    [183]Nikora V I, Sapozhnikov V B. River network fractal geometry and its computer simulation [J]. Water resource research,1993,29(10):3569-3575.
    [184]Foufpula Georgou E, Sapozhnikov V B. Do the current landscape elevation models show self-organizaed criticality? [J]. Water resource research,1996,32(4):1109-1112.
    [185]Lovejoy S, Schertzer D, Tsonis A A. Functional box-counting and multiple elliptical dimensions in rain [J]. Science,1987,235:1036-1038.
    [186]Sivakumar B. A preliminary investigation on the scaling behaviour of rainfall observed in two different climates [J]. Hydrological Sciences Journal,2000,45(2):203-219.
    [187]Svensson C, Olsson J, Berndtsson R. Multifractal properties of daily rainfall in two different climates [J]. Water resource research,1996,32(8):2463-2472.
    [188]de Lima M I P, grasman J. Multifractal analysis of 15-min and daily rainfall from a semi-arid region in Portugal [J]. Journal of Hydrology,1999,217:1-11.
    [189]Waymire E. Scaling limits and self-similarity in precipitation fields [J]. Water resource research,1985,21 (8):1272-1281.
    [190]Kumar P, Foufpula Georgou E. A Multicomponent decomposition of spatial rainfall fields 11 Segration of large-and small-scale features using wavelet transoms [J]. Water resource research,1993,29(8):2515-2532.
    [191]Kumar P, Foufpula Georgou E. A Multicomponent decomposition of spatial rainfall fields 21 Self2similarity in fluctuations [J]. Water resource research,1993,29(8):2533-2544.
    [192]常福宣,丁晶,姚健.降雨随历时变化标度性质的探讨[J].长江流域资源与环境,2002,11(1):79-83.
    [193]Michele C D, Kottegoda N T. The derivation of areal reduction facton of storm rainfall from its scaling properties [J]. Water resource research,2001,37(12):3247-3252.
    [194]张娜,姚荣.基于分形理论的区域降雨时间序列特征分析[J].南水北调与水利科技,2006,4(5):53-55.
    [195]Gupta V K, Waymire E. Multiscaling properties of spatial rainfall and river flow distributions [J]. Journal of Geophysical Research,1990,95(3):1999-2009.
    [196]Smith J Al Representation of basin scale in flood peak distributions [J]. Water resource research,1992,28(11):2993-2999.
    [197]Bates B C,Rahman A.Climated and physical factors that influence the homogeneity of regional floods in southeastern Australia[J].Water resource research,1998,34(12):3369-3381.
    [198]Robison J S,Sivapalan M.An investigation into the physical causes of scaling and heterogeneity of regional flood frequency[J].Water resource research,1997,33(5):1045-1059.
    [199]常福宣,丁晶.关于大流域洪量历时关系的探讨[J].水利水电技术,2001,32(6):4-7.
    [200]侯玉,吴伯贤,邓国权.分形理论用于洪水分期的初步探讨[J].水科学进展,1999,10(2):140-143.
    [201]魏一鸣,周成虎,万庆.1949-1994年中国洪水灾害成灾面积的时序分形特征[J].自然灾害学报,1998,7(1):83-86,93.
    [202]蔡爱民,查良松.安徽省1949-2003年洪旱灾害时序分形特征研究[J].水土保持通报,2005,25(6):73-77.
    [203]丁晶,刘国栋.日径流过程分维估计[J].四川水力发电,1999,18(4):74-76.
    [204]刘德平.分形理论在水文过程形态特征分析中的应用[J].水利学报,1998,(2):20-25.
    [205]傅军,丁晶,邓育仁.嘉陵江流域形态及流量过程分维研究[J].成都科技大学学报,1995,(1):74-79.
    [206]李贤彬.子波分析及其在水文水资源研究中的应用[D].成都:四川大学,1999,19-98.
    [207]Anderson P L, Meerschaert M M. Modeling river flows with heavy tails [J]. Water resource research,1998,34(9):2271-2280.
    [208]Tokinaga S, Moriyasu H, Miyazaki A, et al. Forecasting of time series with fractal geometry by using scale transformations and parameter estimations obtained by the wavelet transform [J]. Electronics and Communications in Japan, Part3,1997,80(9):2054-2062.
    [209]常福宣.分形理论在水文水资源研究中的应用[D].成都:四川大学,2001.40-45.
    [210]冯平,王仁超.水文干旱的时间分形特征探讨[J].水利水电技术,1997,28(11):48-51.
    [211]王岩法,陈素清,夏敏.分形方法在汛期划分中的应用[J].浙江水利科技,2007,2(150):42-44.
    [212]Liu H H, Molz F J. Multifractal analyses of hydraulic conductivity distributions [J]. Water resource research,1997,33(11):2483-3488.
    [213]Loague K, Kyriakidis. Spatial and temporal variability in the R-5 infiltration data set: rainfall-runoff simulations [J]. Water resource research,1997,33(12):2883-2895.
    [214]Grayson R B, Western A W, Chiew F H S1 Preferred states in spatial soil moisture patterns: local and nonlocal controls [J]. Water resource research,1997,33(12):2897-2908.
    [215]Dooge J C I, Bruen M. Scale effects on moisture fluxes at unvegetated land surfaces [J]. Water resource research,1997,33(12):2923-2927.
    [216]马建华,楚纯洁.黄河流域动力系统泥沙时序混沌特征分析-地理系统综合研究的一种尝试[J].地理研究,2006,25(6):949-958.
    [217]王文,许武成.对水文时间序列混沌特征参数估计问题的讨论[J].水科学进 展,2005,16(4):609-616.
    [218]Packard N H, Crutchfield J R,Farmer J D,et al. Geometry from a time series [J]. Physical Review Letters,1980,459:712-716.
    [219]Grassberger P, Procaccia Ⅰ. Characterization of strange attractors [J]. Physical Review Letters,1983,50(5):.346-349.
    [220]温权,张士军,张周胜.探求径流序列中的混沌特征[J].水电能源科学,1999,17(1):21-23.
    [221]王树禾.微分方程模型与混沌[M].合肥:中国科学技术大学出版社,1991.441-442.
    [222]Wolf A, Swifi J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J].Physica D(9),1985,16:285-317.
    [223]陈予恕.非线性动力学中现代分析方法[M].北京:科学出版社,19921.24-26.
    [224]Rckmanm J P. Ergodc theory of chaos and strange attractors [J]. Review Modern Physics, 1985,57:617-6551.
    [225]Cohen A, Procaccia I. Computing the Kolmogorov entropy from time signals of dissipative conservative dynamical system [J]. Physical Review A,1985,31 (3):1872-1882.
    [226]赵贵兵,石炎福.从混沌时间序列同时计算关联维和Kolmogorov熵[J].计算物理,1999,16(3):309-3151.
    [227]周寅康,付重林,王腊春,等.淮河流域洪涝变化可预报时间研究[J].自然灾害学报,1999,8(4):118-122.
    [228]Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension [J]. Science,1967,156(3775):636-638.
    [229]朱晓华,杨秀春.水旱灾害时间序列的分形研究方法[J].安徽农业科学,2000,28(1):35-36.
    [230]武薇,范影乐,庞全.基于广义维数距离的语音端点检测方法[J].电子与信息学报,2007,29(02):465-468.
    [231]Hurst H E. Long-Term Storage:An Experimental Study [M]. London:Constable,1965.
    [232]Mandelbrot B B, Van Ness J W. Fractional Brownian motion, fractional noise and application [J]. SIAM Review,1968,10:422-437.
    [233]Mandelbrot B B, Wallis J R. Some long-run properties of geographysical records [J]. Water resource research,1969a,5(2):321-340.
    [234]Mandelbrot B B, Wallis J R. Robustness of the rescaled range R/S in the measurement of noncyclic long-run statistical dependence [J]. Water resource research,1969b,5 (4):967-988.
    [235]杨桂芳,姚长宏,殷鸿福.R/S分析在兰州古气候演化中的应用-以红咀寺剖面为例[J].干旱 区资源与环境,2002,16(4):79-82.
    [236]张先起,梁川,刘慧卿.基于混沌相空间技术的输沙量预测BP网络模型[J].水力发电学报,2007,26(1):24-27.
    [237]赵永龙,丁晶,邓育仁.混沌分析在水文预测中的应用和展望[J].水科学进展,1998,9(2):181-186.
    [238]李国良,付强,冯艳,等.混沌理论及其在水文水资源中的应用[J].农业系统科学与综合研究,2006,22(3):173-176.
    [239]马建华,管华.系统科学及其在地理学中的应用[M].北京:科学出版社,2002,10-20.
    [240]赵冬华,阮炯,蔡志杰.混沌时间序列联合预测方法[J].科学通报,2006,51(21):2566-2569.
    [241]张文鸽,黄强,佟春生.径流混沌时间序列局域多步预测模型及其在黄河上游的应用[J].水力发电学报,2007,26(4):11-15.
    [242]中华人民共和国水利部.土壤侵蚀分类分级标准[S].北京:中国水利水电出版社,1997.
    [243]庄大方,邓祥征,战金艳,等.北京市土地利用变化的空间分布特征[J],地理研究,2002,11(6):667-674.
    [244]王思远,王光谦,陈志祥.黄河流域土地利用与土壤侵蚀的耦合关系[J].自然灾害学报,2005,14(1):32-37.
    [245]刘权,王忠静.GIS支持下辽河中下游流域不同土地利用的土壤侵蚀变化分析[J].水土保持学报,2004,18(4):105-107.
    [246]王思远,王光谦,陈志祥.黄河流域土地利用与土壤侵蚀的耦合关系[J].自然灾害学报,2005,14(1):31-37.
    [247]王茜,王卫,吕昌河.基于GIS和RS的土地利用与土壤侵蚀关系研究-以冀北地区为例[J].中国水土保持科学,2006,4(6):37-41.
    [248]许月卿,蔡运龙,彭建.地利用变化的土壤侵蚀效应评价-西南喀斯特山区的一个研究案例[M].北京:科学出版社,2008.
    [249]王库,史学正,于东升.红壤丘陵区不同土地利用方式下的土壤侵蚀特征[J].西南农业大学学报(自然科学版),2006,28(5):697-701.
    [250]周跃,朱云梅,吕喜玺.人为活动对金沙江一级支流龙川江流域输沙量的影响分析[J].昆明理工大学学报(理工版),2006,31(1):77-82.
    [251]王剑.漾濞江流域(平坡乡以上段)土地利用变化及其与土壤侵蚀关系研究[D].昆明理工大学硕士学位论文,2006.
    [252]张洪江,程金花,陈宗伟.长江三峡地区森林变化对径流泥沙的影响[J].水土保持研究,2007,14(1):1-3.
    [253]许炯心.长江上游干支流的水沙变化及其与森林破坏的关系[J].水利学报,2001,(1):72-79.
    [254]李养龙.森林植被对河川径流及泥沙影响的分析[J].水资源与水工程学报,2007,18(3):84-86,90.
    [255]张海斌.基于SWAT模型的小流域产沙产流的研究-以三峡地区张家冲小流域为例[D].华中农业大学硕士学位论文,2006.
    [256]吴险峰,刘昌明.流域水文模型的若干进展[J].地理科学进展,2002,21(4):341-348
    [257]Saleh A, Arnold J C. Application of SWAT for the upper north Bosque river watershed [J].Transactions of the ASAE,2000,43(5):1077-1087.
    [258]Freeze R A, Harlan R L. Blueprint of a physically-based digitally-simulated hydrological response model [J]. Journal of Hydrology,1969,9:237-258
    [259]Abbott M B, Bathurst J C. An introduction to the European Hydrological System-Systeme Hydrologique European, "SHE"1:history and philosophy of a physically based distributed modeling system [J]. Journal of Hydrology,1986a,87:45-59.
    [260]Abbott M B, Bathurst J C. An introduction to the European Hydrological System-Systeme Hydrologique European, "SHE" 2:structure of a physically based distributed modeling system[J]. Journal of Hydrology,1986b,87:61-77.
    [261]Wischmeier W H, Mannering J V. Relation of soil properties to its erodibility [J]. Soil Science Society of American Proceedings,1969,33(1):131-137.
    [262]Wischmeier W H, Smith D D. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains[G]. USDA Agricultural Handbook,1965,282.
    [263]Wischmeier W.H., Johnson C. B., Cross B.V, A soil erodibility nomograph for farmland and construction cites [J]. Journal of Soil and Water Conservation,1971,26(5):189-193.
    [264]Wischmeier W H, Smith D D. Predicting rainfall erosion losses [G]. USDA Agricultural Handbook,1978,537.
    [265]N Karunanithi. Neural Network for River Flow Prediction [J]. Journal of Computer Civil Engneering,1994,8(2):201-220.
    [266]吴超羽,徐海亮.珠江河口网河区水位变化过程的神经网络模型[J].人民珠江,1997,(1):15-19.
    [267]刘国栋,丁晶.运用BP网络预测地下水位[J].西安地质学院学报,1997,19(2):52-57.
    [268]宋立松,魏高峰.感潮河段水位过程预报探讨[J].水科学进展,2000,11(3):302-306
    [269]李荣,李义天.基于神经网络理论的河道水情预报模型[J].水科学进展,2000,11(5):427-431.
    [270]洪小康.像河下游洪水预报的人工神经网络模型研究[J].西北农林科技大学学报(自然科学版),2001,29(4):93-96.
    [271]龚政.张东生,曹春玲.基于BP神经网络的河道水位推算模型研究[J].河海大学学报,2001,29(5):96-99.
    [272]薛联青,崔广柏,陈凯麒.非平稳时间序列的动态水位神经网络预报模型[J].湖泊科学,2002,14(1):19-24.
    [273]谢作涛,张小峰,谈广呜.长江螺山站水位预报研究[J].水电能源科学,2003,21(3):7-9.
    [274]刘国华,钱镜林,王建江.小波软阈值技术和人工神经网络在洪水预报中的研究[J].水力发电学报,2004,23(4):5-10.
    [275]吴超羽,张文.水文预报的人工神经网络方法[J].中山大学学报(自然科学版),1994,33(1):79-90.
    [276]朱承山,潘英杰.欧阳海水库径流量预报的模糊神经网络方法[J].水电能源科学,2000,18(3):16-18.
    [277]刘素一,权先璋,张勇传.小波变换结合BP神经网络进行径流预测[J].人民长江,2003,34(7):38-39.
    [278]卢华友.水文时间序列预报的人工神经网络模型[J].广东水利水电,2000,(4):41-44.
    [279]刘国栋,丁晶.BP网络用于水文预测的几个问题探讨[J].水利学报,1999,(1):65-70.
    [280]王文圣,熊华康,丁晶.日流量预测的小波网络模型初探[J].水科学进展,2004,15(3):382-386.
    [281]李伟钢,石立华.气象卫星云图的多分辨小波分解及人工神经网络降水估计研究[J].南京气象学院学报,2000,23(2):277-282.
    [282]蒋晓辉,刘昌明.基于小波分析的径向基神经网络年径流预测[J].应用科学学报,2004,22(3):411-414.
    [283]曹广学,张世泉.BP模型在降雨径流预报中的应用研究[J].太原理工大学学报,2005,36(3):350-353
    [284]李存军,邓红霞,朱兵,等.BP神经网络预测日径流序列的数据适应性分析[J].四川大学学报(工程科学版),2007,39(2):25-29.
    [285]姜铁兵,虞锦江.流域汇流的非线性分析及基于ANN流域汇流预报模型[J].水电能源科学,1995,13(1):62-66.
    [286]杨荣富,丁晶,刘国栋.神经网络模拟降雨径流过程[J].水利学报,1998,(10):69-73.
    [287]王日莲,董曼玲.人工神经网络在水文预报中的应用[J].水利水电科技进展,2002,22(5):33-37.
    [288]刘国栋,丁晶.应用BP网络研究气候变化对雅砻江和嘉陵江流域水资源环境的影响[J].中国环境科学,1997,17(5):414-417.
    [289]林鲁生,李东.人工神经网络在水文预报应用中的探讨[J].广东水利水电,1999,(6):5-7.
    [290]蔡煜东,许伟杰.运用自组织人工神经网络作汛期降水预报[J].贵州气象,1994,(4):22-24.
    [291]刘阳,李海英,王连元.基于BP神经网络的坡面降雨产流预测[J].吉林大学学报(信息科学版),2007,25(2):188-192.
    [292]张小峰,许全喜,裴莹第.流域产流产沙BP网络预报模型的初步研究[J].水科学进展,2001,12(1):17-22.
    [293]邓新民,李祚泳.流域年均含沙量的B-P网络预测模型及其效果检验[J].成都气象学院学报,1997,12(2):119-123.
    [294]彭清娥,刘兴年,曹叔尤.流域年均含沙量的人工神经网络模型[J].水利学报,2000,(11):79-83.
    [295]彭荔红,方志山,李祚泳.流域输沙量和输沙率的B-P人工神经网络预测[J].水土保持学报,2001,15(5):22-25.
    [296]李祚泳,邓新民.气象水文要素对流域产沙量和输沙量影响研究[J].四川环境,1997,16(4):47-51.
    [297]许全喜.人工神经网络模型在流域水沙预报中的应用[J].人民长江,2000,31(5):30-32.
    [298]李义天,李荣.具有河网水沙运动特点的人工神经网络模型[J].水利学报,2001,(11):1-7.
    [299]于东生,田淳.基于BP算法的泥沙含量预测研究[J].三峡大学学报(自然科学版),2003,25(2):47-51.
    [300]张先起,刘慧卿,梁川.流域产沙量预测的神经网络模型[J].云南水利发电,2005,21(6):11-14.
    [301]侯建才,李占斌,李勉.流域次降雨侵蚀产沙的BP神经网络模拟[J].水土保持通报,2007,27(3):79-83.
    [302]汤丽妮,李祚泳.基于遗传算法的人工神经网络在降水酸度预测中的应用[J].重庆环境科学,2003,25(9):59-61.
    [303]曾光明,卢宏伟,金相灿,等.洞庭湖水体水质状况及运用-小波神经网络对营养状态的评价[J].湖南大学学报.2005,32(1):91-94.
    [304]许全喜,张小峰,等.河道深泓线变化神经网络预报模型研究与应用[J].人民长江,2002,33(11):35-37.
    [305]沈焕庭,茅志昌,朱建荣.长江河口盐水入侵[M].北京:海洋出版社,2003,116-121.
    [306]蔡煜东,姚林声.预报台风风暴潮极值的人工神经网络方法[J].海洋预报,1994,11(1):77-81.
    [307]杨建强,罗先香,丁德文.赤潮预测的人工神经网络方法初步研究[J].海洋科学进展,2003,21(3):318-324.
    [308]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006,1-20.
    [309]仲京臣.基于小波神经网络的故障诊断研究[D].中国海洋大学硕士学位论文.2005.15-45.
    [310]王玲.基于人工神经网络的水文过程模拟研究[D].河海大学博士学位论文,2002,38.
    [311]鞠琴.基于人工神经网络的水文模拟研究[D].河海大学硕士学位论文,2005,19.
    [312]Nash J E, Sutcliffe J V. River flow forecasting through conceptual models part I-A discussion of principlesournal[J]. Journal of Hydrology,1970,10(3):282-290.
    [313]ZHU Yun-mei. The impact of climate change and human activity on water and sediment: Artificial Neural Network modelling in the Longchuanjiang catchment, Upper Yangtze River [D].Theses for the degree of doctor for National Uviversity of Singapore,2007.
    [314]刘耦耕,李圣清,肖强晖.多层前馈人工神经网络结构研究[J].湖南师范大学自然科学学报,2004,27(1):26-30.
    [315]王万忠.黄土高原降雨特性与土壤流失关系的研究-关于侵蚀性降雨的标准问题[J].水土保持通报,1984,4(4):58-63.
    [316]胡春宏.黄河水沙过程变异及河道的复杂相应[M].北京:科学出版社,2005,14-15.
    [317]孙长江,孙瑶,王磊.人类活动对柳河水沙影响分析[J].水资源与水工程学报,2007,18(3):98-100.
    [318]王存荣,冉大川.三川河流域水沙变化水文分析[J].水土保持通报.2002.22(6):15-19.
    [319]王宏,秦百顺,赵光耀.渭河流域水沙变化的水文分析与计算[J].人民黄河,2002,24(8):19-20.
    [320]Zhu Y M, Lu X X, Zhou Y. Sediment flux sensitivity to climate change:A case study in the Longchuanjiang Catchment of the Upper Yangtze River, China [J]. Global and Planetary Changes,2008,60(3-4):429-442.
    [321]武晓林.湫水河流域水沙变化现状及成因分析[J].水资源与水工程学报,2007,18(3):56-59.
    [322]张明波,郭海晋,徐德龙.嘉陵江流域水保治理水沙模型研究与应用[J].水土保持学报,2003,17(5):110-113.
    [323]许全喜,石国钰,陈泽方.长江上游近期水沙变化特点及其趋势分析[J].水科学进展,2004,15(4):420-426.
    [324]徐建华,李雪梅,李世民.延河流域水沙还原计算方法探讨[J].人民黄河,1978,(8):21-26.
    [325]吴建华,雷强,王岩.人工神经网络在河道水量还原计算中的应用[J].太原理工大学学报,2005,36(5):580-584.
    [326]张信宝,文安邦.长江上游干流和支流河流泥沙近期变化及其原因[J].水利学报2002,(4):56-59.
    [327]许炯心.人类活动和降水变化对嘉陵江流域侵蚀产沙的影响[J].地理科学,20064,26(4):32-437.
    [328]沈大军,刘昌明.水文水资源系统对气候变化的响应[J].地理研究,1998,17(4):435-443.
    [329]许吟隆,薛峰,林一骅.不同温室气体排放情景下中国21世纪地面气温和降水变化的模拟分析[J].气候与环境研究,2003,8(2):209-217.
    [330]吴金栋,王馥棠.气候变化情景生成技术研究综述[J].气象,1998,24(2):3-9.
    [331]Johns T C, R E Carnell, J F Grossley. The second Hadley Center coupled ocean-atmosphere GCM:model description, spinup and validation [J], Climate Dynamics,1997,13,103-134.
    [332]Murphy J M. Transient response of the Hadley Centre coupled ocean-atmosphere model to increasing carbon dioxide. Part Ⅰ:Control climate and flux adjustment [J].Journal of Climate, 1995,8,36-56.
    [333]许炯心.中国江河地貌系统对人类活动的响应[M].北京:科学出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700