用户名: 密码: 验证码:
利用金属—介质纳米结构增强LED发光的FDTD数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米结构是现代光电子器件的基本结构之一,半导体器件中金属-介质纳米结构在电磁场的作用下更是具有一系列与表面等离激元相关的电磁场强局域、表面拉曼增强、异常光传输、电偶极耦合等新奇的物理效应,通过计算机数值仿真技术深入研究其中的局域耦合增强效应和相关基础物理问题具有重要的科学意义和应用价值,不但为调控发光二极管的光电过程及提高电光转换效率等问题提供了新方向和新方法,同时还为我国节能减排工程提供了新思路。
     研究金属-介质纳米结构在电磁场中的场局域效应、能量的传输和耦合效应等基本物理问题,深刻认识和理解电磁场与金属-介质纳米结构相互作用产生的传播、局域和耦合等效应的物理规律,可以为利用金属-介质纳米结构提高发光二极管的效率提供理论指导。
     特别是通过对金属-介质纳米结构调控发光二极管的电光转换,近场局域,远场辐射和异常光传输的研究,掌握金属-介质纳米结构与半导体量子阱的耦合规律和调控发光二极管增强效应的机制,可以为制备高效率的大功率发光二极管提供新的思路。
     围绕以上科学问题,本论文紧密围绕金属-介质纳米结构和氮化镓基蓝光发光二极管,以提高发光效率为目的,以计算机模拟仿真和理论分析为手段,研究的主要内容包括:
     1)通过金属的色散模型结合时域有限差分方法,实现金属-介质纳米结构发光二极管的计算机数值仿真;
     2)通过研究发光二极管的发光原理和光电转换过程,探索提高LED发光效率的途径和相关的理论依据;
     3)通过麦克斯韦方程组,推导无限厚度和有限厚度金属-介质纳米结构与电磁场相互作用激发表面等离激元的基本物理性质;
     4)通过对金属纳米颗粒的电磁场数值仿真,研究金属-介质纳米结构表面等离激元局域耦合效应增强电偶极的发光效率,并验证数值仿真方法的正确性;
     5)通过对金属薄膜在发光二极管中的理论分析和电磁场数值仿真,研究金属-介质纳米结构表面等离激元局域耦合效应增强发光二极管发光的物理过程及增强因子对金属薄膜发光二极管结构参数和材料参数的依赖;
     6)根据金属薄膜发光二极管结构参数和材料参数对发光强度影响的规律,并结合理论分析和数值仿真结果,对银膜氮化镓基蓝光发光二极管的结构进行参数优化。
     本论文主要通过计算机数值仿真,研究金属-介质纳米异质结构中的局域耦合效应及其在提高光电转换器件效率中的作用。并紧密结合国民经济和社会发展过程中与节能减排、环境保护相关的关键技术,通过在发光二极管中构筑具有特殊场耦合效应的金属-介质纳米结构,在深入研究电偶极发光和表面等离激元之间相互作用物理机理及控制规律的基础上,探索提高蓝光二极管内量子效率的新方法,为实验和生产提供思路和方向。
     根据上述研究内容和目标,本论文的创新工作共分为以下几个部分:
     Ⅰ.通过金属色散模型实现了金属-介质纳米结构在发光二极管中的三维时域有限差分方法的数值仿真。针对倒装氮化镓基蓝光发光二极管的发光和材料特性,引入纳米金属薄膜建立了数值仿真模型,并验证了方法的正确性。
     Ⅱ.根据发光二极管的发光原理和特性分析了各种提高发光效率的途径,针对提高内量子效率,通过对Purcell效应和金属表面等离激元电磁场特性的分析,为金属表面等离激元增强电偶极发光提高发光二极管内量子效率建立了理论依据。
     Ⅲ.利用金属纳米颗粒使电偶极辐射得到了近千倍的增强,根据仿真结果获得了电偶极辐射增强与金属纳米颗粒的材料和结构参数的关系,获得了金属纳米颗粒的半径、长度、环境等因素影响辐射增强的规律,并通过填充电介质的方法获得了更有效控制金属纳米颗粒共振波长的手段,充分证实了金属纳米颗粒的表面等离激元不仅可以通过域场应用Purcell效应引起电偶极辐射增强,而且具有异常光传输特性,为金属-介质纳米颗粒增强LED发光奠定了理论基础。
     Ⅳ.在无限厚度金属表面等离激元色散特性的基础上,对有限厚度金属薄膜两侧为同种介质和异种介质的情况下表面等离激元色散特性进行了分析和修正。并在氮化镓基蓝光发光二极管中引入金属薄膜,通过仿真结果验证了对无限厚度金属和有限厚度金属薄膜的表面等离激元电磁特性的理论分析和研究,获得了金属薄膜和发光二极管材料参数及结构参数对发光增强影响的规律,并通过优化参数在蓝光波段内得到了很高的自发辐射增强及17倍的发光增强。
     本论文选题来源于国家重点基础研究发展计划项目:金属/介质纳米异质结构中的局域耦合效应及其在光电转换器件中的应用。通过对金属-介质纳米结构在发光二极管中局域耦合效应的数值仿真研究,加深了可见光与金属相互作用的认识和理解,为研发具有新技术、新工艺、新流程的高亮度蓝光/白光发光二极管提供了思路和方向,为利用金属-介质纳米结构增强发光二极管发光提供了理论依据和创新的可能。
Nano structures have been serving as fundamental components in contemporary optoelectronic devices. Upon interactions with electromagnetic field, nano structures on metal-dielectric interface in semiconductor devices particularly demonstrate new physical properties, in aspects like localized electromagnetic field, surface Raman enhancement, extraordinary optical transmission and coupling process related to surface plasmon. Thus intensive studies on the local coupling effect and corresponding fundamental physical problems, by means of computer numerical simulations, have great values in science and for potential applications. This not only provides new approaches to modulate the optoelectronic process and increase the electro-optical conversion efficiency in LEDs, but also enlightens a new way of energy saving and emission reduction.
     Focusing on metal-dielectric nano structures and electro-optical device GaN based LED, this dissertation investigates the fundamental physical problems such as local coupling, energy transmission and conversion within metal-dielectric nano structures by computer simulation and theoretical analysis, to get a profound understanding concerning the physical mechanisms responsible for electromagnetic wave propagation, localization and coupling on metal-dielectric nano structures. It contributes in providing theoretical guidance to increase the efficiency of LEDs through local coupling effect.
     Especially, this dissertation opens new paths to fabricate high efficiency LEDs. For this purpose, it studies how to increase the light emission of LED with adjusting and controlling the electic-optic conversion, near field localization, far field emission, extraordinary optical transmission by metal-dielectric nano structures. Then the adjusted mechanism, the coupling law between SPPs and semiconductor QWs are obtained.
     Around the above scientific topics, for the purpose to improve light emission efficiency, by using computer simulation and theoretical analysis, this dissertation studies on the related characteristics on metal-dielectric nano structures and GaN blue LED, and covers the following aspects:
     1) Computer simulation of LED containing metal-dielectric nano structures by using FDTD method and metal dispersion model;
     2) Exploration of approaches to increase the efficiency of LEDs by investigating the light emitting mechanism and electro-optical conversion processes in LEDs;
     3) Deriving from Maxwell's equations the physical characteristics of surface plasmon on infinitely and finitely thick metal-dielectric nano structures inside a electromagnetic field;
     4) Verification of the enhancement of electric dipole light emission through metal-dielectric nano structures by the surface plasmon local coupling effects on metal nano particles, and the validity of the numerical methods in the study of electric dipole emission enhancement;
     5) Introduction of easy-to-make silver film in GaN based LED to enhance light emission after investigation of the physical process of electric dipole emission enhancement by surface plasmon local coupling effect on metallic thin film surface and the dependence of enhancement factor on material and structural parameters.
     6) Optimization of structural parameters after combination of obtained simulation results with theory as well as based on the fact of better enhancement effect with silver thin film in GaN LEDs than with metallic reflectors.
     The main purpose of this dissertation is to numerically investigate the local coupling effect in metal-dielectric nano structures and its applications to the enhancement of electro-optical conversion efficiency. In close combination with key technologies in energy saving and emission reduction, environment protection in national economy and social developments, by introducing metal-dielectric nano structures and field coupling effect in LEDs and investigating the mechanism and controlling law of electric dipole light emission interacting with surface plasmon, this dissertation explores new approaches to increase the internal quantum efficiency of blue LEDs, and serves as the guidelines for experiments and manufacture.
     According to the above research objects and purposes, this dissertation is organized into the following innovation parts:
     Ⅰ. The 3D FDTD simulation of metal-dielectric nano structures in LED is realized with modified Drude model. A numerical simulation model is established to study the light emission and the characteristics of flip-chip GaN based LEDs containing metal nano thin film, and the validity of the method is verified.
     Ⅱ. According to the working principles and characteristics of LEDs, the approaches to increase lighting efficiency are analyzed. In order to increase internal quantum efficiency, based on the theoretical derivation of Purcell's effect and the characteristics of the electromagnetic field of metal surface plasmon, the theoretical foundation is established to increase the internal quantum efficiency of LEDs by metal surface plasmon enhanced electric dipole light emission.
     Ⅲ. With metal nano particles, the emission of electric dipole is enhanced by nearly a thousand times. According to the simulation results, the relation between the enhancement factor and the material and structural parameters of metal nano particles is concluded. It is well established that the localized field of surface plasmon on metal nano particles can enhance the emission of electric dipole by Purcell's effect.
     Ⅳ. Based on the analysis of dispersion relation of surface plasmon from a infinitely thick metal, the dispersion characteristics of finitely thick metal films sandwiched between dielectrics of the same type and/or different types are analyzed and modified. Metallic film is introduced into GaN based LEDs, and the theoretical derivation of the electromagnetic characteristics of the infinitely thick metal and finitely thick metal film is verified according to the simulation results. The dependence of light emission enhancement on the material and structural parameters of metallic film and LED is concluded. After optimization,17 fold enhancement of light emission is obtained in blue light region.
     The work in this dissertation is supported by National Fundamental Program of China. Through numerical simulation research on local coupling effect in LEDs based on metal-dielectric nanostructures, this work has deepened the knowledge and understanding on the interactions between visible light and metals. It also sheds light on development of high brightness blue/white LEDs with new technology, new engineering, and new process, and provides theoretical background to enhance light emission of LEDs with metal-dielectric nano structures.
引文
[I]Schubert EF. Light.Emitting.Diodes [M]. Cambridge, UK:Cambridge Univ. Press,2006.
    [2]G. B. Stringfellow, M. George Craford. High Brightness Light Emitting Diodes [M]. Academic Press,1997.
    [3]Arturas Zukauskas, Michael S. Shur, Gaska R. Introduction to Solid-State Lighting [M]. Wiley-Interscience,2002.
    [4]Krames MR, Shchekin OB, Mueller-Mach R, et al. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting [J]. J Disp Technol, 2007,3(2):160-75.
    [5]Koike M, Shibata N, Kato H, et al. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2002,8(2):271-7.
    [6]J.R. Coaton AMM. Lamps and Lighting [J].1990,
    [7]Schubert EF, Kim JK. Solid-state light sources getting smart [J]. Science,2005, 308(5726):1274-8.
    [8]Fujii T, Gao Y, Sharma R, et al. Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening [J]. Applied Physics Letters,2004,84(6):855-7.
    [9]Hung-Wen H, Kao CC, Chu JT, et al. Improvement of InGaN-GaN light-emitting diode performance with a nano-roughened p-GaN surface [J]. Photonics Technology Letters, IEEE,2005,17(5):983-5.
    [10]Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J]. Nature Materials,2005,4.
    [11]Wierer JJ, David A, Megens MM. Ⅲ-nitride photonic-crystal light-emitting diodes with high extraction efficiency [J]. Nature Photonics,2009,3:163-9.
    [12]Wiesmann C, Bergenek K, Linder N, et al. Photonic crystal LEDs-designing light extraction [J]. Laser & Photon Rev,2009,3(3):262-86.
    [13]McGroddy K, David A, Matioli E, et al. Directional emission control and increased light extraction in GaN photonic crystal light emitting diodes [J]. Appl Phys Lett,2008,93:103502-4.
    [14]Long DH, Hwang I-K, Ryu S-W. Design Optimization of Photonic Crystal Structure for Improved Light Extraction of GaN LED [J]. IEEE J Sel Top Quantum Electron,2009,15(4):1257-63.
    [15]Vuckovic J, Loncar M, Scherer A. Surface plasmon enhanced light-emitting diode [J]. Quantum Electronics, IEEE Journal of,2000,36(10):1131-44.
    [16]Gontijo I, Boroditsky M, Yablonovitch E, et al. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons [J]. Physical Review B,1999,60(16):11564.
    [17]Hecker NE, Hopfel RA, Sawaki N, et al. Surface plasmon-enhanced photoluminescence from a single quantum well [J]. Applied Physics Letters, 1999,75(11):1577-9.
    [18]Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells [J]. Nat Mater,2004,3(9):601-5.
    [19]Horng-Shyang C, Dong-Ming Y, Chih-Feng L, et al. White light generation with CdSe-ZnS nanocrystals coated on an InGaN-GaN quantum-well blue/Green two-wavelength light-emitting diode [J]. Photonics Technology Letters, IEEE, 2006,18(13):1430-2.
    [20]Cheng-Yu C, Yuh-Renn W. Study of Light Emission Enhancement in Nanostructured InGaN/GaN Quantum Wells [J]. Quantum Electronics, IEEE Journal of,2010,46(6):884-9.
    [21]Chen C-Y, Yeh D-M, Lu Y-C, et al. Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure [J]. Applied Physics Letters,2006,89(20):203113-3.
    [22]Dong-Ming Y, Chi-Feng H, Cheng-Yen C, et al. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode [J]. Applied Physics Letters,2007,91(17):171103.
    [23]Sharma AK, Jha R, Gupta BD. Fiber-Optic Sensors Based on Surface Plasmon Resonance:A Comprehensive Review [J]. Sensors Journal, IEEE,2007,7(8): 1118-29.
    [24]Hutter E, Fendler JH. Exploitation of Localized Surface Plasmon Resonance [J]. Advanced Materials,2004,16(19):1685-704.
    [25]Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode [J]. Chemical Physics Letters,1974,26(2):163-6.
    [26]Ebbesen TW, Lezec HJ, Ghaemi HF, et al. Extraordinary optical transmission through sub-wavelength hole arrays [J]. Nature,1998,391(6668):667-9.
    [27]Turner MJ, Clough RW, Martin HC, et al. Stiffness and deflection analysis of complex structures [J]. Journal of Aeronautical Sciences,1956,23(9):805-23.
    [28]Hanington RF. Field Computation by Moment Methods [M].1st ed. New York: The Macmillan Company,1968.
    [29]Zienkiewicz OC, Taylor RL. The beam propagation method:an analysis of its applicability [J]. Optical and Quantum Electronics,1983,15(5):433-9.
    [30]Roey JV, van der Donk J, Lagasse PE. Beam propagation:analysis and assessment [J]. J Opt Soc Am,1983,71:10.
    [31]Kawano K, Kitoh T. Introduction to Optical Waveguide Analysis:Solving Maxwell's Equation and the Schrodinger Equation [M]. Wiley-Interscience, 2004.
    [32]Ho KM, Chan CT, Soukoulis CM. Existence of a photonic gap in periodic dielectric structures [J]. Physical Review Letters,1990,65(25):3152-5.
    [33]Xu F, Zhang Y, Hong W, et al. Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide [J]. Microwave Theory and Techniques, IEEE Transactions on,2003,51(11): 2221-7.
    [34]Beilenhoff K, Heinrich W, Hartnagel HL. Improved finite-difference formulation in frequency domain forthree-dimensional scattering problems [J]. Microwave Theory and Techniques, IEEE Transactions on,1992,40(3):540-6.
    [35]Yee KS. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media [J]. Antennas and Propagation, IEEE Transactions on,1966,14(3):302-7.
    [36]Johns PB. Application of the transmission-line matrix method to homogeneous waveguides of arbitrary cross-section [J]. Proc IEE,1972,119(8):1086-91.
    [37]Purcell EM, Pennypacker CR. Scattering and absorption of light by nonspherical dielectric grains [J]. The Astrophysical Journal,1973,186:705-14.
    [38]Hrennikoff A. Solution of problems of elasticity by the framework method [J]. Journal of Applied Mechanics,1941,8(4):169-75.
    [39]McHenry D. A lattice analogy for the solution of plane stress problems [J]. Journal of Institute of Civil Engineers,1943,21(2):59-82.
    [40]Cournt R. Variational Methods for the Solution of Problems of Equilibrium and Vibrations [J]. Bulletin of the American Mathematical Society,1943,49(1): 1-23.
    [41]Clough RW. The Finite Element Method in Plane Stress Analysis; proceedings of the Proceeding 2nd ASCE on Electronic Computation, Pittsburg,1960 [C]. American Society of Civil Engineers.
    [42]Winslow AM. Numerical Calculation of Static Magnetic Fields in an Irregular Triangle Mesh [J]. Journal of Computational Physics,1966,1(1):149.
    [43]Yariv A. Introduction to Optical Electronics [M]. Holt, Rinehart and Winston New York,1976.
    [44]Chung Y, Dagli N. An assessment of finite difference beam propagation method [J]. Quantum Electronics, IEEE Journal of,1990,26(8):1335-9.
    [45]Hadley GR. Wide-angle beam propagation using Pade approximant operators [J]. Opt Lett,1992,17(20):1426-8.
    [46]Huang WP, Xu CL. A wide-angle vector beam propagation method [J]. Photonics Technology Letters, IEEE,1992,4(10):1118-20.
    [47]Taflove A, Brodwin ME. Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations [J]. Microwave Theory and Techniques, IEEE Transactions on,1975,23(8):623-30.
    [48]Mur G. Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations [J]. Electromagnetic Compatibility, IEEE Transactions on,1981, EMC-23(4): 377-82.
    [49]Guiffaut C, Mahdjoubi K. A parallel FDTD algorithm using the MPI library [J]. Antennas and Propagation Magazine, IEEE,2001,43(2):94-103.
    [50]Wenhua Y, Hashemi MR, Mittra R, et al. Massively Parallel Conformal FDTD on a BlueGene Supercomputer [J]. Advanced Packaging, IEEE Transactions on, 2007,30(2):335-41.
    [51]李康.光波导器件的高阶FDTD并行仿真分析[D];山东大学,2006.
    [52]NVIDIA. NVIDIA CUDA Programming Guide 2.3 [M].2009.
    [53]NVIDIA. The CUDA Compiler Driver NVCC [M].2009.
    [54]Debye PJW. Polar Molecules [M]. The Chemical Catalog Company, inc.,1929.
    [55]Drude P. Electronic theory of metals I,' [J]. Ann Phys,1900,1:566-613.
    [56]Taflove A, Hagness SC. Computational Electrodynamics:The Finite-Difference Time-domain method [M].3rd ed. Boston:Artech House Norwood, MA,2005.
    [57]葛德彪,闫玉波.电磁波时域有限差分方法[M].2nd ed西安:西安电子科技大学出版社,2005.
    [58]Berenger JP. A perfectly matched layer for the absorption of electromagnetic waves [J]. Journal of Computational Physics,1994,114(2):185-200.
    [59]Gedney SD. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices [J]. Antennas and Propagation, IEEE Transactions on,1996,44(12):1630-9.
    [60]Roden JA, Gedney SD. Convolution PML (CPML):An efficient FDTD implementation of the CFS-PML for arbitrary media [J]. Microwave and Optical Technology Letters,2000,27(5):334-9.
    [61]Jackson JD, Author Ronald FF, Reviewer. Classical Electrodynamics,3rd ed [J]. American Journal of Physics,1999,67(9):841-2.
    [62]叶玉堂,饶建珍,肖峻.光学教程[M].清华大学出版社,2005.
    [63]Max Born, Emil Wolf Principles of Optics [M]. Cambridge University Press, 1999.
    [64]Fox M. Optical Properties of Solids [M]. Oxford University Press,2010.
    [65]S. Nakamura, N. Iwasa, M. Senoh. Method of manufacturing p-type compound semiconductor [J]. US Patent 5,306,662,,1994,
    [66]Zheludev N. The life and times of the LED-a 100-year history [J]. Nature Photonics,2007,1(3):4.
    [67]Wikipedia. Light-emitting diode [M]. http://en.wikipedia.org/wiki/Light-emitting_diode.2010.
    [68]史国光.半导体发光二极管及固体照明[M].科学出版社,2005.
    [69]Kittel C. Introduction to Solid State Physics [M]. Wiley,1995.
    [70]S.M.Sze. Modern Semiconductor Device Physic [M]. Wiley-Interscience,1997.
    [71]Matioli E, Rangel E, Iza M, et al. High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals [J]. Appl Phys Lett,2010, 96(031108):10.
    [72]David A, Meier C, Sharma R, et al. Photonic bands in two-dimensionally patterned multimode GaN waveguides for light extraction [J]. Appl Phys Lett, 2005,87(101107):9.
    [73]David A. High-efficiency GaN-based light-emitting diodes:light extraction by photonic crystals and microcavities [D]. Palaiseau; Ecole Polytechnique,2006.
    [74]Purcell EM. Spontaneous emission probabilities at radio frequencies [J]. Physical Review,1946,69:681.
    [75]Kim D-H, Cho C-O, Roh Y-G, et al. Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns [J]. Applied Physics Letters,2005,87(20):203508.
    [76]Lee Y-J, Kim S-H, Huh J, et al. A high-extraction-efficiency nanopatterned organic light-emitting diode [J]. Applied Physics Letters,2003,82(21):3779-81.
    [77]Wiesmann C. Nano-structured LEDs-Light Extraction Mechanisms and Applications [D]. Regensburg; Universitat Regensburg 2009.
    [78]张斗国王,焦小瑾,唐麟,鲁拥华,明海,.表面等离子体亚波长光学前沿进展[J].物理,2005,(7):508-12.
    [79]顾本源.表而等离子体亚波长光学原理和新颖效应[J].物理,2007,(4):280-7.
    [80]王振林.表面等离激元研究新进展[J].物理学进展,2009,29(3).
    [81]Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors:review [J]. Sensors and Actuators B:Chemical,1999,54(1-2):3-15.
    [82]Barnes WL, Dereux A, Ebbesen TW. Surface plasmon subwavelength optics [J]. Nature,2003,424(6950):824-30.
    [83]J M Pitarke, V M Silkin, E V Chulkov, et al. Theory of surface plasmons and surface-plasmon polaritons [J]. Reports on Progress in Physics,2007,70(1).
    [84]Harris J, Griffin A. Surface plasmon dispersion [J]. Physics Letters A,1971, 34(1):51-2.
    [85]Mart, iacute, n-Moreno L, et al. Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays [J]. Physical Review Letters,2001,86(6): 1114.
    [86]Porto JA, Garc, iacute, et al. Transmission Resonances on Metallic Gratings with Very Narrow Slits [J]. Physical Review Letters,1999,83(14):2845.
    [87]Brolo AG, Gordon R, Leathem B, et al. Surface Plasmon Sensor Based on the Enhanced Light Transmission through Arrays of Nanoholes in Gold Films [J]. Langmuir,2004,20(12):4813-5.
    [88]Liedberg B, Nylander C, Lunstrom I. Surface plasmon resonance for gas detection and biosensing [J]. Sensors and Actuators,1983,4:299-304.
    [89]Haes AJ, Van Duyne RP. A Nanoscale Optical Biosensor:[] Sensitivity and Selectivity of an Approach Based on the Localized Surface Plasmon Resonance Spectroscopy of Triangular Silver Nanoparticles [J]. Journal of the American Chemical Society,2002,124(35):10596-604.
    [90]Haes AJ, Zou S, Schatz GC, et al. A Nanoscale Optical Biosensor:? The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles [J]. The Journal of Physical Chemistry B,2003, 108(1):109-16.
    [91]Okamoto T, Yamaguchi I. Surface plasmon microscope,1990 [C]. SPIE.
    [92]Lamprecht B, Krenn JR, Schider G, et al. Surface plasmon propagation in microscale metal stripes [J]. Applied Physics Letters,2001,79(1):51-3.
    [93]Weeber J-C, Lacroute Y, Dereux A. Optical near-field distributions of surface plasmon waveguide modes [J]. Physical Review B,2003,68(11):115401.
    [94]Liu Liu ZH, and Sailing He,. Novel surface plasmon waveguide for high integration [J]. Opt Express,2005,13(17):6.
    [95]Hecker NE, Hopfel RA, Sawaki N. Enhanced light emission from a single quantum well located near a metal coated surface [J]. Physica E: Low-dimensional Systems and Nanostructures,1998,2(1-4):98-101.
    [96]Ghaemi HF, Thio T, Grupp DE, et al. Surface plasmons enhance optical transmission through subwavelength holes [J]. Physical Review B,1998,58(11): 6779.
    [97]Neogi A, Lee C-W, Everitt HO, et al. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling [J]. Physical Review B,2002,66(15):153305.
    [98]L. A. Blanco, F. J. Garcia de Abajo. Spontaneous light emission in complex nanostructures [J]. Physical Review B,2004,69(20):5414.
    [99]Chu W-H, Chuang Y-J, Liu C-P, et al. Enhanced spontaneous light emission by multiple surface plasmon coupling [J]. Opt Express,2010,18(9):9677-83.
    [100]Min-Ki Kwon, Ja-Yeon Kim, Baek-Hyun Kim, et al. Surface-Plasmon-Enhanced Light-Emitting Diodes [J]. General & Introductory Materials Science,2008,20(7):5.
    [101]R. H. Ritchie. Plasma Losses by Fast Electrons in Thin Films [J]. Physical Review,1957,106 (5):7.
    [102]Ritchie RH, Marusak AL. The surface plasmon dispersion relation for an electron gas [J]. Surface Science,1996,4(3):234-40.
    [103]Bozhevolnyi S, Garcia-Vidal F. FOCUS ON PLASMONICS [J]. New Journal of Physics,2008,10(10):105001.
    [104]Wood RW. On a remarkable case of uneven distribution of light in a diffraction grating spectrum [J]. Proceedings of the Physical Society of London,1902, 18(1):7.
    [105]U. FANO. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces [J]. J Opt Soc Am,1941,31(10).
    [106]Stern EA, Ferrell RA. Surface Plasma Oscillations of a Degenerate Electron Gas [J]. Physical Review,1960,120(1):130.
    [107]汪国平.表面等离子体激元纳米集成光子器件[J].物理,2006,(6):280-7.
    [108]Rakic AD, Djurisic AB, Elazar JM, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices [J]. Appl Opt,1998,37(22):5271-283.
    [109]Ashcroft NW, Mermin ND. Solid state physics [M]. Saunders College Philadelphia, Pa,1976.
    [110]Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings [M]. Springer 1988.
    [111]吴民耀,刘威志.表面电浆子理论与模拟[J].物理双月刊,2006,28(2):486-97.
    [112]邱国斌,蔡定平.金属表面电浆简介[J].物理双月刊,2006,28(2):472-86.
    [113]Oubre C, Nordlander P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method [J]. J Phys Chem B, 2004,108(46):17740-7.
    [114]Pernice WHP, Payne FP, Gallagher DFG. An FDTD method for the simulation of dispersive metallic structures [J]. Optical and Quantum Electronics,2006,38(9): 843-56.
    [115]Palik ED. Handbook of Optical Costants of Solids [M]. Academic Press,1998.
    [116]Weber MJ. Handbook of Optical Materials [M]. CRC Press,2002.
    [117]R. Ruppin. Decay of an excited molecule near a small metal sphere [J]. The Journal of Chemical Physics,1982,76(4):1681-4.
    [118]J. R. Krenn, Dereux A, Weeber JC, et al. Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles [J]. Physical Review Letters, 1999,82(12):2590.
    [119]Ekmel Ozbay. Plasmonics:merging photonics and electronics at nanoscale dimensions [J]. Science,2006,311(5758):189-93.
    [120]Blanco LA, Garc, iacute, et al. Spontaneous light emission in complex nanostructures [J]. Physical Review B,2004,69(20):205414.
    [121]Garc, iacute, a de Abajo FJ. Colloquium:Light scattering by particle and hole arrays [J]. Reviews of Modern Physics,2007,79(4):1267.
    [122]F. M. Kong, K. Li, B.-I. Wu, et al. Propagation properties of the spp modes in nanoscale narrow metallic gap, channel, and hole geometries [J]. Progress In Electromagnetics Research, PIER,2007,76:449-66.
    [123]Fanmin Kong, Bae-Ian Wu, Hongsheng Chen, et al. Surface plasmon mode analysis of nanoscale metallic rectangular waveguide [J]. Opt Express,2007, 15(19):12331-7.
    [124]Gantzounis G, Stefanou N, Papanikolaou N. Optical properties of periodic structures of metallic nanodisks [J]. Physical Review B,2008,77(3):035101.
    [125]Colleen L. Nehl, Liao H, Hafner JH. Optical Properties of Star-Shaped Gold Nanoparticles [J]. Nano Letters,2006,6(4):683-8.
    [126]Schuck PJ, Fromm DP, Sundaramurthy A, et al. Improving the Mismatch between Light and Nanoscale Objects with Gold Bowtie Nanoantennas [J]. Physical Review Letters,2005,94(1):017402.
    [127]Jensen TR, Malinsky MD, Haynes CL, et al. Nanosphere Lithography:(?) Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles [J]. The Journal of Physical Chemistry B,2000,104(45):10549-56.
    [128]Muhlschlegel P, Eisler H-J, Martin OJF, et al. Resonant Optical Antennas [J]. Science,2005,308(5728):1607-9.
    [129]A. Mohammadi, V Sandoghdar, Agio M. Gold nanorods and nanospheroids for enhancing spontaneous emission [J]. New Journal of Physics,2008,10(105015.
    [130]Sergei Kuhn, Hakanson U, Rogobete L, et al. Enhancement of Single-Molecule Fluorescence Using a Gold Nanoparticle as an Optical Nanoantenna [J]. Physical Review Letters,2006,97(1):017402-4.
    [131]Agio M., Mori G., Rogobete L., et al. Engineering gold nanostructures to enhance the emission of quantum emitters [J]. Proceedings of SPIE,2007,6717: 67170.
    [132]Mohammadi A., Sandoghdar V., Agio M. Gold, Copper, Silver and Aluminum Nanoantennas to Enhance Spontaneous Emission [J]. Journal of Computational and Theoretical Nanoscience,2009,6(9):7.
    [133]Agio Mario, Mori Giorgio, Kaminski Franziska, et al. Engineering gold nano-antennae to enhance the emission of quantum emitters; proceedings of the Optomechatronic Micro/Nano Devices and Components Ⅲ, Proceedings of the SPIE,2007 [C].
    [134]Salski B, Celuch M, Gwarek W. FDTD for Nanoscale and Optical Problems [J]. Microwave Magazine, IEEE,2010,11(2):50-9.
    [135]Wen-Hung C, Jyh-Yang W, Yang CC, et al. Numerical Study on Quantum Efficiency Enhancement of a Light-Emitting Diode Based on Surface Plasmon Coupling With a Quantum Well [J]. Photonics Technology Letters, IEEE,2008, 20(16):1339-41.
    [136]Sun G, Khurgin JB, Soref RA. Practicable enhancement of spontaneous emission using surface plasmons [J]. Applied Physics Letters,2007,90(11): 111107.
    [137]R. W. Gruhlke, W. R. Holland, D. G. Hall. Optical emission from coupled surface plasmons [J]. Opt Lett,1987,12,(5):364-6.
    [138]Stephen Wedge and W. Barnes. Surface plasmon-polariton mediated light emission through thin metal films [J]. Opt Express,2004,12(16):3673-85.
    [139]Paiella R. Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement [J]. Applied Physics Letters, 2005,87(11):111104.
    [140]Pierre Berini. "Plasmon polariton modes guided by a metal film of finite width," [J]. Opt Lett,24(15):1011-3.
    [141]Okamoto K, Scherer A, Kawakami Y. Surface plasmon enhanced light emission from semiconductor materials [J]. physica status solidi (c),2008,5(9):2822-4.
    [142]Wang J-Y, Kiang Y-W, Yang CC. Emission enhancement behaviors in the coupling between surface plasmon polariton on a one-dimensional metallic grating and a light emitter [J]. Applied Physics Letters,2007,91(23):233104.
    [143]Chuang W-H, Wang J-Y, Yang CC, et al. Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter [J]. Applied Physics Letters,2008,92(13):133115-3.
    [144]Jean Cesario, Maria U. Gonzalez, Stephanie Cheylan, et al. Coupling localized and extended plasmons to improve the light extraction through metal films [J]. Opt Express,2007,15(7).
    [145]Yeh D-M, Huang C-F, Chen C-Y, et al. Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode[J]. Applied Physics Letters,2007,91(17):171103.
    [146]Okamoto K, Niki I, Shvartser A, et al. Surface plasmon enhanced super bright InGaN light emitter [J]. physica status solidi (c),2005,2(7):2841-4.
    [147]Koichi Okamoto, Isamu Niki, Alexander Shvartser, et al. Surface plasmon enhanced bright light emission from InGaN/GaN [J]. Solid State Physics,2007, 204(6):2103-6.
    [148]Chettiar U, Nyga P, Thoreson M, et al. FDTD modeling of realistic semicontinuous metal films [J]. Applied Physics B:Lasers and Optics,2010, 100(1):159-68.
    [149]Kaminski F., Sandoghdar V., Agio M. Finite-Difference Time-Domain Modeling of Decay Rates in the Near Field of Metal Nanostructures [J]. Journal of Computational and Theoretical Nanoscience,2007,4(3):9.
    [150]Schubert EF, Wang Y, x, et al. Resonant cavity light-emitting diode [J]. Applied Physics Letters,1992,60(8):921-3.
    [151]Schubert EF, Hunt NEJ, Malik RJ, et al. Temperature and modulation characteristics of resonant-cavity light-emitting diodes [J]. Lightwave Technology, Journal of,1996,14(7):1721-9.
    [152]Politano A, Formoso V, Chiarello G. Dispersion and Damping of Gold Surface Plasmon [J]. Plasmonics,2008,3(4):165-70.
    [153]Liebsch A. Surface plasmon dispersion of Ag [J]. Physical Review Letters,1993, 71(1):145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700