用户名: 密码: 验证码:
飞轮控制系统研究与设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究用于卫星姿态控制系统的飞轮的控制。飞轮是卫星姿态控制系统的力矩执行元件,理想的飞轮输出力矩应该严格复现输入指令。但是,实际工程使用的飞轮一直存在诸多非理想因素,严重制约卫星姿态控制系统的精度。本论文从工程实际提出的问题出发,应用现代控制理论解决工程问题。
     论文首先从工程角度出发介绍了飞轮的结构、工作原理、国内外发展现状,指出目前工程应用的飞轮存在的问题,提出改进飞轮性能的方法。
     论文详细研究了飞轮控制系统存在的干扰和噪声,为深入研究飞轮控制系统奠定良好的基础。通过分析表明,在飞轮中存在两个影响飞轮性能的关键因素:一是非线性摩擦力矩干扰,二是大范围变速率运行造成的参数变化。这两个因素的存在严重制约了飞轮的性能。
     飞轮内部的摩擦力矩在零转速附近具有非线性特性,干扰飞轮输出力矩。论文提出了基于速率反馈的飞轮控制系统结构方案,目的在于消除飞轮系统内部非线性摩擦力矩干扰对输出力矩的影响。飞轮控制系统采用脉宽调制和线性调整组合的驱动结构,避免了惯用的脉宽调制结构存在的切换扰动。
     论文指出目前工程实践中的速率模式飞轮和力矩模式飞轮都可以通过速率反馈的方式抑制干扰从而提高飞轮性能,这一思想是飞轮各种模式的控制系统设计的基础,通过在飞轮系统中引入积分输出反馈,将系统内存在的干扰包括在反馈环内,从而抑制系统内部干扰。这个构造性工作具有重要的理论和工程意义。
     由于飞轮运行速率范围很宽,参数变化大,在全速率范围内保证速率反馈控制系统的性能具有挑战性。针对飞轮参数变化特性,论文设计了基于增益调度理论的飞轮控制器,使控制系统的动态特性得到提高。该控制器应用于速率模式和力矩模式的飞轮,有效克服了低速非线性摩擦干扰,使飞轮的速率/力矩在全速度工作范围内的动态性能得到有效保证。
     论文最后给出一个设计的飞轮控制系统在某一卫星应用的例子。比较分析显示,应用本文设计的带有速率反馈飞轮的卫星姿态控制系统性能有明显提高。
     本论文的研究成果已经直接应用在前不久成功发射的“风云三号”气象卫星和“神舟七号”伴随卫星中,遥测数据显示应用新型飞轮明显提高了卫星的性能,论文工作的工程意义得到实践的验证。
This thesis is on the study of flywheel control used in satellite attitude control system. Flywheel is used as torque executive component in attitude control system. Ideal flywheel torque output is identical with torque instruction. Unfortunately, there are some undesirable factors in flywheel applied in engineering, which limit satellite attitude control system accuracy. In this thesis, this problem is solved with control theory in an engineering way.
     Firstly, the state of art, the structure and principle of flywheel are introduced. The problems in flywheel engineering are pointed out, and the way to improve flywheel performance is put forward.
     A deeply analysis of noise and disturbance in flywheel control system gives a sound foundation of flywheel control system study. Analysis reveals there are two factors playing key role in depressing flywheel performance, nonlinear friction torque disturbance and parameters varying with flywheel velocity changing in large range.
     The friction torque in flywheel is nonlinear in the vicinity of zero velocity which disturbs flywheel output. A velocity feedback control scheme is adopted to eliminate this disturbance. To avoid jitter in flywheel working state change, the control system is constructed with pulse width modulation and linear adjusting. Flywheels are used as velocity mode or torque mode in satellite engineering. It is proven in this thesis that the performance of flywheel in these two modes could be improved by suppressing unavoidable disturbance with velocity feedback, this theory is a new type of flywheel control system foundation. Using integral of output as feedback in flywheel system, including disturbance in feedback loop to suppress disturbance effect, is an important constructive work.
     Flywheel operates in a wide range of velocity, which induces parameters to vary greatly, to keep feedback system stable and performance in large velocity range is a challenge. In this thesis, a Gain Scheduling Controller is designed to cope with parameters varying, and the designed system has desirable dynamic performance. The controller is used in velocity mode or torque mode flywheel, as a result the effect of friction torque is greatly suppressed especially in low velocity band, and the dynamic performance and static accuracy of flywheel torque/velocity output are met in full velocity range.
     An application of designed flywheel system in a satellite is given in the thesis; comparative analysis shows the performance of attitude control system with velocity feedback flywheel is distinctly improved.
     The study result was used in“FY-3”satellite and“SZ-7”companion satellite lunched lastly, remote data showed the designed flywheel contributed a lot in satellites attitude performance, this proved the thesis work is valuable in engineering point of view.
引文
1 C. A. Andrew, E. B. Charles. Optimal Design of Press-fitted Flament Wound Composite Flywheel Rotors. Composite Structrues. 2006,72:47~57
    2 R. Carlos, K. Christopher, K. Renjith, B. David. Integrated Power and Attitude Control with Spacecraft Flywheels and Control Moment Gyroscopes. Journal of Guidance, Control, and Dynamics. 2004,27(5):859~873
    3 K. H. Sung, T. K. Hyung. Effects of Rotor Sizes and Epoxy System on the Process-induced Residual Strains within Multiring Composite Rotors. Journal of Composite Materials. 2004,38(10):871~885
    4 K. H. Sung, Y. J. Jae. Effects of Winding Angles on Through-thickness Properties and Residual Strains of Thick Flament Wound Composite Rings. Composites Science and Technology. 2005,65:27~35
    5林来兴.空间控制技术.宇航出版社. 1992:1~26,87~102
    6钱桂山编译.国外卫星应用的几个热门领域.国外卫星动态. 1998,(1):1~24
    7林来兴.空间控制技术的新进展.控制工程. 1989,(2):34~43
    8 B. Blakw. A Combined Earth and Momentum Wheel for Attitude Determination and Control of Small Spacecraft. N92-25078:1~13
    9余成伟,谌德荣,杨建峰,李湘滨,陆建华.卫星姿态抖动对LASlS成像质量的影响.光电工程. 2004,31(5):4~6
    10崔敏,马铁华.利用Simulink实现飞行体运动的虚拟现实.计量与测试技术. 2004,31(10):29~30
    11饶鹏,孙胜利,陈桂林.高精度CCD太阳敏感器的研制.红外技术. 2007,29(8):475~479
    12王俊璞,田蔚风,金志华.模糊神经网络预测在卫星姿态测量中的应用.中国惯性技术学报. 2004,12(1):43~48
    13汪毅,朱振才. FPGA在微小卫星姿态控制系统中的应用.红外. 2005,11:34~38
    14胡玉琛,赵洪峰,唐琤 .飞轮状态反馈控制系统.控制工程. 1991,(3):4~14
    15刘胜忠,平菊英.卫星飞轮产品和技术的商业化发展.上海航天.2002,(4):37~40
    16陈日敏.空间飞轮壳体设计研究.控制工程. 1989, No. 1: 10~13
    17雍恩米,唐国金.一种利用动量轮的弹头姿态控制系统概念研究.宇航学报. 2006,27(3):396~401
    18雍恩米,唐国金.动量轮控制弹头姿态控制系统设计.系统工程与电子技术. 2006,28(9):1384~1387
    19靳国栋,姜维,马小梅,高飞.轴承对动量轮飞轮体结构设计的影响分析.轴承. 2008,6:30~32
    20王峰,张世杰,曹喜滨.小卫星飞轮低速摩擦补偿观测器及半实物仿真.系统仿真学报. 2005,17(3):613~616
    21李连军,戴金海.反作用轮低速特性观测补偿方法.国防科技大学学报. 2005,27(1):39~43
    22 J. B. Jr. Stetson. Reaction Wheel Low-Speed Compensation Using a Dither Signal. Journal of Guidance, Control, and Dynamics. 1993,16(4):617~622
    23李连军,戴金海.反作用轮系统内干扰建模与仿真分析.系统仿真学报. 2005,17(8):1855~1858
    24尹秋岩,赵健康,戴金海.反作用飞轮内干扰抑制方法研究.电子与信息学报. 2007,29(6):1521~1524
    25王全武,虎刚.飞轮扰动原因与测量技术现状.空间科学学报. 2009(1):39~44
    26陈新龙,杨涤,翟坤.某挠性卫星姿态控制系统设计.哈尔滨工业大学学报. 2008,40(5):678~682
    27 S. Taniwaki, Y. Ohkami. Experimental and Numerical Analysis of Reaction Wheel Disturbances. JSME International Journal. 2003,46(2):519~526
    28 U. O. Hyun, I. Katsuhiko, T. Shigemune. Development of Variable-Damping Isolator Using Biometal Fiber for Reaction Wheel Vibration Isolation. Smart Materials and Structures. 2005,10(5):928~933
    29 U. O. Hyun, T. Shigemune, K. Naofumi, I. Katsuhiko. Flywheel Vibration Isolation Test Using a Variable-Damping Isolator. Smart Materials and Structures, 2006,4(2):365~370
    30 T. Shigemune, K. Masahito, S. Makoto, O. Yoshiaki. Analysis of Retainer Induced Disturbances of Reaction Wheel. Journal of System Design and Dynamics. 2007,1(2):307~317
    31邓以高,田军挺,王亚锋,雷军委.飞行器姿态控制方法综述.战术导弹控制技术. 2006,2:7~13
    32费从宇,李英堂.飞轮转速过零时卫星姿态的非线性控制.中国空间科学技术. 2001,21(5):21~24
    33 R. A. Masterson, D. W. Miller, R. L. Grogan. Development and Validation of Reaction Wheel Disturbance Model: Empirical Model. Journal of Sound and Vibration. 2002,3(249):575~598
    34 B. Bialke. High Fidelity Mathematical Modeling of Reaction Wheel Performance. In 21st Annual American Astronautical Society Guidance and Control Conference. American Academy of Sciences. 1998:483~496
    35 R. Bauer, EUVE Reaction Wheel Assembly In-Flight Performance. Advances in Astronautical Sciences. 1997:97~71
    36 B. Bialke, A Complication of Reaction Wheel Induced Spacecraft Disturbances. Advances in Astronautical Sciences. 1997:97~38
    37 R. A. Masterson, D. W. Millery, R. L. Groganz. Development of Empirical and Analytical Reaction Wheel Disturbance Models. AIAA, Structures, Structural Dynamics and Materials Conference. St. Louis, MO, USA. 1999,12:1~10
    38 N. Yoshida, K. Ichimoto, T. Kosugi, K. Ninomiya, et al. System Technology for the Achievewent of Ultra-High Pointing Accuracy of Solar-B. 45th Space Sciences and Technology Conference. 2001:1002~1114
    39 M. D. Hasha. Reaction Wheel Mechanical Noise Variations. 1986 Space Telescope Program Engineering Memorandum SSS 218, LMSC. 1986,6:819~824
    40 U. Scott, M. David, B. Carl. Uncertainty Characterization in Integrated Modeling. 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Austin, Texas. 2005,4:18~21
    41 U. Scott, M. David. Numerical Conditioning and Reduction of Large Spacecraft Models for Dynamic Analysis. 45th AIAA/ASME/ASCE/AHS /ASC Structures, Structural Dynamics and Materials Conference, Palm Springs, California, 2004,4:19~22
    42王全武,虎刚.飞轮扰动原因与测量技术现状北京控制工程研究所.空间科学学报. 2009,1:39~44
    43 Y. Zhao, J. Sun, H. Tian. Development of Methods Identifying Parameters in Reaction Wheel Assembly Disturbance Model. Aircraft Engineering and Aerospace Technology. 2006,4(78):326~330
    44 S. S. Narayana, P. S. Naira, A. Ghosal. Dynamic Interaction of Rotating Momentum Wheels with Spacecraft Elements. Journal of Sound and Vibration. 2008,315:970~984
    45 S. Lee, S. M. Meerkov. Generalized Dither. IEEE Transactions on Information Theory. 1991, 37(1):50~56
    46 L. Horowitz, S. Oidak, A. Shapiro. Extensions of Dithered Feedback Systems. International Journal of Control. 1991,54(1):83~109
    47 P. E. Dupont. Avoiding Stick-Slip through PD Control. IEEE Transactions on Automatic Control. 1994, 39(5):1094~1097
    48 P. Vedagarbha, D. M. Dawson, M. Feemster. Tracking Control of Mechanical Systems in the Presence of Nonlinear Dynamic Friction Effects. IEEE Transactions on Control Systems Technology. 1999,7(4):446~456
    49 C. Canudas-De-Wit, S. S. Ge. Adaptive Friction Compensation for Systems with Generalized Velocity/Position Friction Dependency. In Proceedings of the 36th Conference on Decision & Control. 1997:2465~2470
    50 B. Armstrong, D. Neevel, T. Kusik. New Result in NPID Control: Tracking, Integral Control, Friction Compensation and Experimental Result. In Proceedings of the 1999 IEEE International Conference on Robotics & Automation. 1999:837~842
    51 M. T. White, M. Tomizuka, C. Smith. Improved Track Following in Magnetic Disk Drives Using a Disturbance Observer. IEEE/ASME Transactions on Mechatronics. 2000,5(1):3~11
    52 P. I. Ro, W. Shim, S. Jeong. Robust Friction Compensation for Submicrometer Positioning and Tracking for a Ball-Screw-Driven Slide System. Precision Engineering. 2000,24:160~173
    53 H. S. Lee, M. Tomizuka. Robust Motion Controller Design for High-Accuracy Positioning Systems. IEEE Trans. on Control Systems Technology. 1996,43(1): 48~55
    54 C. Canudas-De-Wit, R. Horowitz. Observers for Tire/Road Contact Friction Using Only Wheel Angular Velocity Information. In Proceedings of the 38th Conference on Decision & Control. 1999:3932~3937
    55 O. Seungrohk, K. K. Hassan. Nolinear Output-Feedback Tracking Using High-Gain Observer and Variable Structure Control. Automatica. 1999,33(10): 1845~1856
    56陈义武.离散滑动模态控制方法在转台中的应用.北京航空航天大学. 1998:201~210
    57 S. C. Southward, C. J. Radcliffe, C. R. MacCluer. Robust Nonlinear Stick-Slip Friction Compensation. ASME Journal of Dynamic Systems, Measurement, and Control. 1991,113:639~645
    58 M. S. Kang. Robust Digital Friction Compensation. Control EngineeringPractice. 1998,6(3):359~367
    59 K. D. Young. A Variable Structure Control Approach to Friction Force Compensation. In Proceedings of the American Control Conference. 1998: 3138~3142
    60 S. Sivakumar, K. Farshad. Model Independent Friction Compensation. In Proceedings of the American Control Conference. 1998:463~466
    61 S. Sivakumar, K. Farshad. Friction Compensation via Variable Structure Control: Regulation and Low-Velocity. In Proceedings of the 1997 IEEE International Conference on Control Applications. 1997:645~650
    62 B. Friedland, Y. J. Park. On Adaptive Friction Compensation. IEEE Trans. on Automatic Control. 1992,37 (10):1609~1612
    63 J. Amin, B. Friedland, A. Harnoy. Implementation of a Friction Estimation and Compensation Technique. IEEE Control Systems. 1997:71~76
    64 S. Tafazoli, W. De-Silva-C, P. D. Lawrence. Tracking Control of an Electrohydraulic Manipulator in the Presence of Friction. IEEE Transations on Control Systems Technology. 1998,6:401~411
    65 Weiping L, Cheng X. Adaptive High-Precision Control of Positioning Tables-Theory and Experiments. IEEE Transations on Control Systems Technology. 1992,2:265~270
    66 S. M. Phillips, K. R. Ballou. Friction Modeling and Compensation for an Industrial Robot. Journal of Robotic Systems. 1993,10(7):947~971
    67扬元凯,郎需英.精密转台中摩擦力矩的动态补偿.自动化学报. 1983, 9(4):248~252
    68 Y. P. Yang, J. S. Chu. Adaptive Velocity Control of DC Motors with Coulomb Friction Identification. ASME Journal of Dynamic Systems, Measurement, and Control. 1993,115:95~102
    69 K. C. Cheok, H. Hu, N. K. Loh. Modeling and Identification of a Class of Servomechanism Systems with Stick-Slip Friction. ASME Journal of Dynamic Systems, Measurement, and Control. 1988,110:324~328
    70 T. J. Craig, R. D. Lorenz. Experimental Identification of Friction and Its Compensation in Precise, Position Controlled Mechanisms. IEEE Transations on Industry Applicatons. 1992,28(6):17~26
    71 S. W. Lee, J. H. Kim. Friction Identification Using Evolution Strategies and Robust Control of Positioning Tables. ASME Journal of Dynamic Systems Measurement, and Control. 1999,121:619~624
    72 J. Y. Yen, S. J. Huang. S. S. Lu. A New Compensation for Servo Systems with Position Dependent Friction. ASME Journal of Dynamic Systems,Measurement, and Control. 1999,121:612~618
    73 C. D. Walrath. Adaptive Bearing Friction Compensation Based on Recent Knowledge of Dynamic Friction. Automatica. 1984,20(6):717~727
    74 C. Canudas-De-Wit. A New Model for Control of Systems with Friction. IEEE Transations on Automatic Control. 1995, 40(3): 419~425
    75 P. Lischinsky, C. Canudas-De-Wit, G. Morel. Friction Compensation for an Industrial Hydraulic Robot. IEEE Control Systems. 1999, 2:25~32
    76 R. M. Hirschorn, G. Miller. Control of Nonlinear Systems with Friction. IEEE Transations on Control Systems Technology. 1999,7(5):588~595
    77 K. M. Misovec, A. M. Annaswamy. Friction Compensation Using Adaptive Nonlinear Control with Persistent Excitation. International Journal of Control. 1999, 72(5):457~479
    78 C. Canudas-De-Wit. Control Design for Ultrasonic Motors With Dynamic Friction Interface. In the 14th World Congress of IFAC, Beijing. 1999:487~491
    79 A. Bonsignore, G. Ferretti, G. Magnani. Coulomb Friction Limit Cycles in Elastic Positioning Systems. ASME Journal of Dynamic Systems, Measurement, and Control. 1999,121:298~301
    80 C. Canudas-De Wit. Robust Control for Servo-Mechanisms under Inexact Friction Compensation. Automatica, 1993,29(30):757~761
    81张伟英,张友安.非线性观测器用于高精度甚低速系统的动态补偿.控制与决策. 1989(1):35~37
    82 E. D. Tung, G. Anwar, M. Tomizuka. Low Velocity Friction Compensation and Feedforward Solution Based on Repetitive Control. ASME Journal of Dynamic Systems, Measurement, and Control. 1993,115:279~284
    83 S. I. Cho, I. J. Ha. A Learning Approach to Tracking in Mehcanical Systems with Friction. IEEE Transations on Automatic Control. 2000,45(1):111~116
    84胡恒章,冯幼田,邓志东.自学习控制在转台控制中的应用.宇航学报. 1992,4:73~77
    85 J. T. Teeter, M. Y. Chow, J. Jame. A Novel Fuzzy Friction Compensation Approach to Improve the Performance of a DC-Motor Control System. IEEE Transations on Industrial Electronics. 1996,43(1):113~120
    86 A. Tzes, P. Y. Peng, J. Guthy. Genetic-Based Fuzzy Clustering for DC-Motor Friction Identification and Compensation. IEEE Transations on Control Systems Technology. 1998,6(1):462~472
    87 Z. Kovacic, S. Bogdan, M. Balenovic. A Model Reference & Sensitivity Model-Based Self-Learning Fuzzy Logic Controller as a Solution for Controlof Nonlinear Servo Systems. IEEE Transations on Energy Conversion. 1999,14(4): 1479~1484
    88 G. A. Larsen, S. Cetinkunt, A. Donmez. CMAC Neural Network Control for High Precision Motion Control in the Presence of Large Friction. ASME Journal of Dynamic Systems, Measurement, and Control. 1995,117:415~420
    89 S. I. Lee, J. H. Kim. CMAC Network-Based Robust Controller for Systems with Friction. In Proceedings of the 34th Conference on Decision & Control. 1995: 2938~2939
    90 H. L. Du, S. S. Nair. Modeling and Compensation of Low-Velocity Friction with Bounds. IEEE Transations on Control Systems Technology. 1999,7(1):110~121
    91 Y. H. Kim, F. L. Lewis. Reinforcement Adaptive Learning Neural Network Based Friction Compensation for High Speed and Precision. In Proceedings of the 37th IEEE Conference on Decision & Control. 1998:1064~1069
    92 E. Y. Sidi, P. Sicard, D. Massicotte, et al. Adaptive High Precision Position Control for a Flexible Joint with Friction and Parameter Uncertainties Using Neural Networks. IEEE Transations on Electrical and Computer Engineering. 1998:325~328
    93 D. R. Seidl, S. L. Lam, J. A. Putman, R. D. Lorenz. Neural Network Compensation of Gear Backlash Hysteresis in Position-Controlled Mechanisms. IEEE Transations on Industry Applications. 1995,31(6): 1475~1483
    94 W. J. Rugh, J. S. Shamma. A Survey of Research on Gain Scheduling. Automatica. 2000,36(10):1401~1425
    95 D. J. Stilwell. W. J. Rugh. Interpolation of Observer State Feedback Controllers for Gain Scheduling. IEEE Transactions on Automatic Control. 1999,44(6): 1225~1229
    96 W. Tan, Y. G. Niu, J. Z. Liu. A Robust Control for a Nonlinear Boiler-Turbine System. Control Theory and Applications. 1999,16(6):863~867
    97 D. J. Stilwell, W. J. Rugh. Interpolation Methods for Gain Scheduling. Proceedings of the 37th IEEE Conference on Decision & Control. 1998:3003~3009
    98 B. Clement, G. Duc. An Interpolation Method for Gain-Scheduling. Proceedings of the 40th IEEE Conference on Decision and Control. 2001:1310~1315
    99 J. S. Shamma. Analysis and Design of Gain Scheduled Control Systems. Massachusetts Institute of Technology Cambridge. Mass. 1988:10~15
    100 W. J. Rugh. Analytical Framework for Gain Scheduling. IEEE Control System Magazine. 1991,11(1):79~84
    101 S. Carsten, W. Siep. Lecture Notes DISC Course on Linear Matrix Inequalities in Control. 1999:104~110
    102郑吉,王学普.无刷直流电机控制技术综述.微特电机. 2002,30(3):11~13
    103 E. S. Tehrani, K. Khorasani, S. Tafazoli. Dynamic Neural Network-Based Estimator for Fault Diagnosis in Reaction Wheel Actuator of Satellite Attitude Control System. IEEE International Joint Conference on Neural Networks. 2005,4:2347~2352
    104 N. Tudoroiu, K. Khorasani. Fault Detection and Diagnosis for Satellite's Attitude Control System (ACS) Using an Interactive Multiple Model (IMM) Approach. Proceedings of 2005 IEEE Conference on Control Applications. 2005:1287~1292
    105 N. Tudoroiu, K. Khorasani. Satellite Fault Diagnosis Using a Bank of Interacting Kalman Filters. IEEE Transactions on Aerospace and Electronic Systems. 2007,43(4):1334~1350
    106 Z.Q. Li, L. Ma, K. Khorasani. A Dynamic Neural Network-based Reaction Wheel Fault Diagnosis for Satellites. International Joint Conference on Neural Networks, IJCNN. 2006:3714~3721
    107 T. Jiang, K. Khorasani. A Fault Detection, Isolation and Reconstruction Strategy for a Satellite’s Attitude Control Subsystem with Redundant Reaction Wheels. IEEE International Conference on Systems, Man and Cybernetics, ISIC. 2007:3146~3152
    108 H. Azarnoush, K. Khorasani. Fault Detection in Spacecraft Attitude Control System. IEEE International Conference on Systems, Man and Cybernetics, ISIC. 2007:726~733
    109 Z. Q. Li, L. Ma, K. Khorasani. Dynamic Neural Network-Based Fault Diagnosis for Attitude Control Subsystem of a Satellite. Lecture Notes in Computer Science. 2006,4099:308~318
    110王培垣.高精度反作用飞轮系统分析.全国第十一届空间及运动体控制技术学术年会论文. 2004,8:261~267
    111周秀兰.飞轮电机的研制.控制工程. 1990,6:25~30
    112 F. Van-De-Velde, P. De-Baets, J. Degrieck. The Friction Force during Stick-Slip with Velocity Reversal. Wear. 1998,2(16):138~149
    113 D. P. Hess, A. Soom. Friction at Lubricated Line Contact Operating at Oscillating Sliding Velocities. Journal of Tribology. 1990,112(1):80~86, 147~152
    114 P. Dahl. A Solid Friction Model. Aerospace Corp. 1968:132~141
    115 C. Canudas-De-Wit. Comment on a New Model for Control of Systems with Friction. IEEE Trans. on Automatic Control. 1998,43(8):1189~1190
    116 P. Dupont, V. Hayward. Single State Elasto-Plastic Models for Friction Compensation. IEEE Transactions on Automatic Control. 2001,2:1~19
    117 E. A. Boesiger, M. H. Warner. Spin Bearing Retainer Design Optimization, Proceedings of the 25th Aerospace Mechanisms Symposium. 1991,5:161~178
    118 E. A. Boesiger, A. D. Donley, S. Loewenthal. An Analytical and Experimental Investigation of Ball Bearing Retainer Instabilities. Journal of Tribology. 1992,114: 530~539
    119 B. Bialke. Experiences with Differentiating Ball Bearing Retainer Instabilities. Proceedings of 32nd Aerospace Mechanisms Symposium. NASA/CP-1998-20719. 1998:12~37
    120 J. W. Kannel, S. S. Bupara. A Simplified Model of Cage Motion in Angular Contact Bearings Operating in the EHD Lubrication Regime. Journal of Lubrication Technology. 1978,100:395~403
    121 S. Taniwaki, Y. Hatsutori, Y. Ohkami. Development of Lower Frequency Disturbance Detector for Reaction Wheel Analysis. Proceedings of IMECE2005. 2005 ASME International Mechanical Engineering Congress and Exposition. IMECE2005-79318. 2005,11:111~134
    122 Y. Hatsutori, Y. Ohkami, S. Taniwaki. Experiment and Analysis of Reaction Wheel Disturbance with Periodical Torque Applied. Journal of the Japan Society of Mechanical Engineers, Series C. 2004,70(695):56~62
    123 S. Marble, D. Tow. Bearing Health Monitoring and Life Extension in. Satellite Momentum/Reaction Wheels. Proceedings of the IEEE Aerospace Conference. Big Sky, MT, 2006,3:4~11
    124杨作起,白越,黄敦新,吴一辉.卫星姿态控制飞轮轴承不同润滑状态下功耗分析.润滑与密封. 2007,32(5):144~146
    125臧稳通,梁波.卫星飞轮用轴承的设计及应用.轴承. 1999,8:2~6
    126龚铁裕.反作用飞轮控制方案及其稀土永磁电机变结构控制研究.国防科学技术大学工学硕士学位论文. 2004:1~12
    127 P. McMahon. Hibernation Storage Testing of a Reaction Wheel for the Resetta Programme. ESA Publications Division. Proceedings of the 9th European Space Mechanisms and Tribology Symposium. Noordwijk, Netherlands. 2001,9:263 ~ 269
    128上官璇峰,王海星.永磁无刷直流电动机的转矩脉动及其削弱方法.微电机. 2001,34(3):48~50
    129 P. Pillay, R. Krishman. An Investigation into the Torque of a Brushless DC Motor Drive. IEEE-IAS Conf. Rec. 1998:201~208
    130 R. Carlson. Analysis of Torque Ripple Due to Phase Commutation in Brushless DC Machines. IEEE Transactions on Industrial Electronics. 1992,28(3):632~639
    131 Y. Murai, Y. Kawase, K. Ohashi, K. Nagatake, K. Okuyama. Torque Ripple Improvement for Brushless DC Miniature Motors. IEEE Transactions on Industry Applications. 1989,25(3):441~450
    132 R. Ibtiouene. Steady-state Torque Analysis of a Brushless Direct Current Motor with Inset Permanent. Eletric Machines and Power Sysems. 1999,27:11~23
    133张志忠,孙力.无刷直流电动机的力矩波动间接测量方法.微电机. 1996,29(3):35~38
    134杜坤梅,李铁才.电机控制技术.第二版.哈尔滨工业大学出版社.2002:79:13
    135张志忠,杨贵杰.无刷直流电动机系统的波动力矩仿真研究.微电机. 1999,32(5):3~5
    136王京锋,马瑞卿,孙纯祥.无刷直流电动机换相转矩波动的分析研究.微电机. 2006, 39(6):52~55
    137李连军,戴金海.反作用轮系统内干扰建模与仿真分析.系统仿真学报. 2005,17(8):1855~1858
    138 D. O. Weck. Reaction Wheel Disturbance Analysis. MIT. SSL. NGST. 1998,1: 1~22
    139叶金虎.无刷直流电动机的设计(19).微特电机。2006,7:61~62
    140杨宁,王昊,田蔚风,糜长军.高精度飞轮控制系统方案分析研究.航天控制. 2004,22(3):50~53
    141卢靖华,钱德富.飞轮力矩模式控制方案的一种选择.控制工程(北京). 1991,5:14~23
    142王广雄.控制系统设计.宇航出版社.北京. 1992: 162~163 178~181
    143李连军,戴金海.反作用轮低速特性观测补偿方法.国防科技大学学报. 2005,2(1):39~43
    144袁斌,阮启刚.飞轮转动惯量的确定.黄石高等专科学校学报. 2004,20(4):40-42
    145李化义,张迎春,李葆华,李建国.高精度转动惯量测量仪分析与设计.计量学报. 2004,3:60-63
    146 W. M. Cdsdday. Reaction Wheel with Brushless DC Motor Drive. NASA Contractor Report. 1966,4:1~64
    147 W. Kupferschmitt, G. Dallafina, R. Seiler. New Wheel Developments for Small Spacecraft. ESMATS. 2001,9:19~21
    148卢靖华,陈小江.大惯量飞轮电机的制动控制.微特电机. 1995,5:30~33
    149郭永东,卢靖华.飞轮制动切换研究.微特电机. 1998,26(3):2~5
    150 C. Benoit, D. Gilles, M. Sophie. Aerospace Launch Vehicle Control: a Gain Scheduling Approach. Control Engineering Practice. 2005,13:333~347
    151 J. Zhou. Spacecraft Control Principle. Xi’an: Northwestern Polytechnical University Press, 2001:157~170
    152 H. K. Marshall. Modern Space Dynamics & Control. Canada: John Wiley & Sons. 1976:31~78
    153 Y. Kim, Y. Park, H. Bang, M. Tahk. Covariance Analysis of Spacecraft Attitude Control System. Processing of IEEE Conference on Control. 2003, Istanbul, Turkey:480~485

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700