用户名: 密码: 验证码:
尖晶石型钛酸锂的制备及电化学行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型Li4Ti5O12由于具有良好的循环性能、突出的安全性能、十分小的体积变化及低廉的成本而成为目前的研究热点,它被美国能源部列为第二代锂离子动力电池的负极材料。本文采用TG(Thermogravimetry analysis,热重分析法)、XRD(X-ray radial diffraction,X射线衍射分析)、XPS(X-ray photoelectron spectroscopy,X射线光电子能谱)、SEM(Scanning electron microscope,扫描电子显微镜观察)、循环伏安(Cyclic Voltammetry,CV)、充放电试验、电化学阻抗谱(Electrochemical impedance spectroscopy,EIS)等测试手段,从制备、掺杂改性、结构特征、电化学性能、理论容量、嵌锂机制等方面对尖晶石型Li4Ti5O12进行了深入的研究。
     通过对高温固相和液相法合成工艺的优化,制备出了性能优良的尖晶石型钛酸锂。研究表明,Li/Ti配比、焙烧温度和焙烧时间均对材料的结构和电化学性能有较大影响。高温固相法优化后的工艺条件为:以Li/Ti配比为0.86的比例投料后于800℃焙烧12h。在此工艺条件下所合成的尖晶石型Li4Ti5O12结晶好、粒度分布均匀,在0.1C下,其可逆容量为158mAh·g-1左右,50次循环后的容量保持率高达97.5%。由于液相法前驱体粒度分布十分均匀而且水解所产生的TiO2为非晶态,其在较低Li/Ti配比、较低的合成温度和较短的反应时间的条件下就能合成出性能优良的尖晶石型Li4Ti5O12。最佳工艺条件为:以Li/Ti配比为0.83的比例投料后于750℃焙烧8h。在此工艺条件下所合成的尖晶石型Li4Ti5O12结晶良好且粒度分布十分均匀,在0.1C下,其可逆容量为169mAh·g-1左右,50次循环后的容量保持率高达99.5%。降低反应物料的粒度和反应激活能能够有效地降低焙烧温度和缩短反应时间,进而降低了目标产物的平均粒度,为电极材料获得良好的电化学性能奠定基础。
     为了改善尖晶石型Li4Ti5O12的倍率性能,研究了16d位Li掺杂和体相Ag掺杂对材料结构和电化学行为的影响。Li掺杂能够有效地改善Li4+xTi5-xO12-δ(0≤x≤0.2)样品的电导率和锂离子扩散系数,进而显著地提高材料的倍率性能。随Li含量的升高,Li4+xTi5-xO12-δ(0≤x≤0.2)样品的电导率和锂离子扩散系数逐渐增大。但当Li掺杂量较大时,Li4+xTi5-xO12-δ(0≤x≤0.2)样品中较多的O空位会降低材料自身结构的稳定性,进而影响材料的循环性能。当Li掺杂量x=0.1时,材料Li4+xTi5-xO12-δ(0≤x≤0.2)具有良好的循环性能和高倍率性能;由于Ag+的半径较大,无论是采用简单的液相法还是超声波分散辅助法均不能使Ag进入尖晶石型Li4Ti5O12的晶格。Ag的存在能够有效地提高Li4Ti5O12/Ag样品的电导率,随Ag含量的增加,材料的电导率逐渐增大。但由于Ag不能嵌锂,较高的Ag含量会使Li4Ti5O12/Ag样品的可逆容量受到影响。与简单的液相法相比,超声波分散辅助法能够提高Ag颗粒的分散性、降低Ag颗粒的粒度,在较低Ag含量时,就能显著提高Li4Ti5O12/Ag样品的电导率,从而使Li4Ti5O12/Ag样品具有良好的倍率性能和较高的可逆容量。
     本文还深入地研究了尖晶石型钛酸锂在2.0~1.0V电压范围内的电化学行为。因为Li7Ti5O12具有较高的电导率和锂离子扩散系数,所以,尖晶石型钛酸锂展现出了十分优良的高倍率充电性能。根据材料的这一特点,我们考察了不同工作模式对其倍率性能的影响。在慢放-快充模式下,尖晶石型钛酸锂的高倍率性得到了极大的改善,即使在30C下,其可逆容量仅比0.5C时减少9.6%。
     为了进一步挖掘尖晶石型钛酸锂的可逆容量和倍率性能,本文首次研究了其在低电位下的电化学行为并阐述了乙炔黑对材料电化学行为的影响。将放电截止电压由1.0V扩至0.01V后,尖晶石型钛酸锂的可逆容量得到了提高,但其循环稳定性没有受到影响。在0.6V以下,由于导电剂乙炔黑开始嵌锂,其既是电子传导剂又是锂离子传导剂,所以电极的反应面积显著地得到了提高,进而使得尖晶石型钛酸锂在0.6V以下具有十分优良的高倍率性能。因此,将放电截止电压由1.0V扩至0.01V,尖晶石型钛酸锂的可逆容量和高倍率性能均得到了明显的提高。
     最后,根据对尖晶石型钛酸锂结构的分析,结合相应的XRD和充放电测试结果,我们阐述了尖晶石型钛酸锂在低电位下的嵌锂机制,并修正了尖晶石型钛酸锂的理论容量值。在0.6V以下,Li离子能够嵌入了Li7Ti5O12的四面体空位。尖晶石型Li4Ti5O12的理论容量受其得电子能力限制而不是由空位数所决定的,对应的理论容量为291.8mAh·g-1,而不是175.1mAh·g-1或350.2mAh·g-1。由于锂离子在2.0~0.6V和0.6~0.01V之间的嵌入方式不同,因此尖晶石型钛酸锂在这两个电压范围内的放电曲线形态截然不同。
Spinel Li4Ti5O12 is a promising candidate of negative electrode materials for lithium-ion batteries due to its excellent cycle performance and safety, low volume change and cost. It has been ranked as the secondary negative electrode material for lithium-ions power battery by DOE(Department of Energy, USA). A study on the synthesis, improvements, structural characteristics, electrochemical performance, theoretical capacity and intercalation mechanism of spinel Li4Ti5O12 were carried out systemically and in detail through test measures such as TG, XRD, XPS, SEM, CV, EIS, etc.
     Spinel Li4Ti5O12 with excellent performances was prepared via optimized solid state method and hydrolyzation method, respectively. Experiment results indicated that the ratio of raw materials Li/Ti, calcination temperature and reaction time played an important role in the electrochemical performances. The optimized condition for solid state method was: The raw materials Li/Ti with the ratio of 0.86 were calcinated at 800℃for 12h. The prepared sample at this developed condition possessed well-distributed morphology, high phase purity and degree of crystallinity, its reversible capacity and capacity retention after 50 cycles were 158mAh·g-1 and 97.5%, respectively. The hydrolyzation method could synthesize spinel Li4Ti5O12 at lower ratio of raw materials Li/Ti and calcination temperature and shorter reaction time for its lower-sized and amorphous TiO2 precursor. The optimized condition for hydrolyzation method was: The raw materials Li/Ti with the ratio of 0.83 were calcinated at 750℃for 8h. The prepared sample at this developed condition possessed well-distributed morphology, high phase purity and degree of crystallinity, its reversible capacity and capacity retentionafter 50 cycles were 169mAh·g-1 and 99.5%, respectively. Reducing the reactants’granularity and the actived energy of reaction could effectively lower the calcination temperature and shorten the reaction time, thus reducing the average size of the obtained samples, make excellent groundwork for electrode materials to possess better electrochemical performance.
     In order to improve the rate performance, the effect of 16d sites Li doping and bulk Ag doping on the structure and electrochemical performances of spinel Li4Ti5O12 were studied, respectively. Li doping could effectively increase the lithium-ion and electronic conductivity of Li4+xTi5-xO12-δ(0≤x≤0.2), evidently improve its rate performance. With the increasing of Li doping amount, lithium-ion and electronic conductivity of Li4+xTi5-xO12-δ(0≤x≤0.2) increased, however its cycling stability was depressed when the Li doping was of x=0.2 for the higher amount of oxygen vacancy. The Li doping of x=0.1, the appropriate Li doping amount, showed improved rate capability and better high rate performance comparing to undoped sample; Because the ionic radius of Ag+ was much bigger than that of the Ti4+, the Ag+ could be doped into the lattice of spinel Li4Ti5O12. Ag could increase the electronic conductivity of Li4Ti5O12/Ag remarkably, the electronic conductivity of Li4Ti5O12/Ag increased with the content of Ag increasing. Because metal Ag could not accommodate Li, the high Ag content would decrease the reversible capacity of Li4Ti5O12/Ag. Compared to simple hydrolyzation method, ultrasonic-assisted method could enhance the dispersity of Ag particles and reduce the particle size of Ag particles. It could evidently increase the electronic conductivity of Li4Ti5O12/Ag at lower Ag content, contributing to the better rate performance and higher reversible capacity of Li4Ti5O12/Ag.
     The electrochemical performances of spinel lithium titanate in the voltage of 2.0~1.0V were also deeply explored. The higher electronic conductivity and lithium-ions diffusion coefficient of the reduction product Li7Ti5O12 contributed to the excellent high power charge performance of spinel lithium titanate. According to this situation, the effect of working modes on the rate performances of spinel lithium titanate were stuied. Under low discharge and fast charge mode, the high rate performances of spinel Li4Ti5O12 were greatly improved. It only lost 9.6% of the reversible capacity of 0.5C even at 30C.
     In order to further empolder the reversible capacity and rate performances of spinel lithium titanates, we had stuied its electrochemical performances under low potential and the influence of acetylene back on its electrochemical performances. When discharge voltage of Li4Ti5O12 extended from 1.0V to 0.01V, its cycling stability was not affected and its reversible capacity was increased. Under 0.6V, acetylene back was both electronic conducting additive and lithium-ion conducting additive for Li4Ti5O12, which made the reaction area of electrode be inhanced markedly and contributd to the excellent high rate performances of spinel lithium titanate under 0.6V. Accordingly, both the reversible capacity and high rate performance of spinel lithium titanate were improved when the discharge voltage extended from 1.0V to 0.01V.
     At last, combining the electrochemical and XRD results with the crystal structure of spinel lithium tinitades, we demonstrated the corresponding reaction mechanism of the low-potential intercalation behavior of Li4Ti5O12 and modified the classical viewpoint on the theoretical capacity of Li4Ti5O12. Under 0.6V, lithium-ions could intercalate into the tetrahedral sites of Li7Ti5O12. The theoretical capacity of Li4Ti5O12 was limited by the number of tetravalent titanium, but not the octahedral or tetrahedral sites to accommodate lithium-ions in the voltage range of 2.0V to 0.01V, corresponding to 291.8mAh·g-1, but not 291.8mAh·g-1 or 291.8mAh·g-1. The shape of the discharge curves of spinel lithium titanate were totally different due to the different way of lithium-ions being accommodated in the interstitial positions in the corresponding voltage ranges of 2.0~0.6V and 0.6~0.01V.
引文
1高阳,谢晓华,谢晶莹等.锂离子蓄电池电解液研究进展.电源技术. 2003, 27(5): 479~483
    2 B. B. Owens, S. Passerini, W. H. Smyrl. Lithion Ion Insertion in Porous Metal Oxide. Electrochimica Acta. 1999, 45(1-2): 215~224
    3 M. Winter, J. O. Besenhard, M. E. Spahr, et al. Insertion Electrode Materials for Rechargeable Lithium Battery. Advanced Materials. 1998, 10(10): 725~765
    4 T. Osaka, T. Momma. Lithium Metal/Polymer Battery. Journal of Power Sources. 2001, 97-98: 765-767
    5 S. Flandrois, S. Imonb. Carbon Materials for Lithium-Ion Rechargeable Batteries. Carbon. 1999(37): 165~172
    6 E. Ndom, K. Imc, N. Ishimurak, et al. Recent Development of Carbon Materials for Li Ion Batteries. Carbon. 2000(38): 183~197
    7 J. Molenda, D. Palubiak. Transport and Electrochemical Properties of the LiyCrxMn2?XO4 Cathode Material. Journal of Power Sources. 2005, 144 (1): 176~182
    8 W. H. Xin, Z. Dan, J. C. Chang. Mass Transfer Phenomena at Nafion Coated Electrodes: Limits of the Membrane Model. Journal of Materials Science. 2005, 40: 2577~2583
    9陈立泉.锂离子电池最新动态和进展.电池. 1998, 28(6): 255~257
    10 K. Zaghib, M. Simoneau, M. Armand, et al. Detection of Intracellular Tumor Necrosis Factor in Stimulated Fetal Cells. Journal of Power Sources. 1999, (81~82): 300~304
    11廖春发,郭守玉,陈辉煌.锂离子电池正极材料的制备研究现状.江西有色金属. 2003, 17(2): 34~138
    12 A. Rougier, P. Gravereau, C. Delmas. Optimization of Composition of the Li1-ZNi1+ZO2 Electrode Material: Structural, Magnetic and Electrochemical Studies. Journal of The Electrochemical Society. 1996, 143(4): 1168~1175
    13陈昌国,刘渝萍,李兰.锂离子电池中钒氧化物电极材料的研究现状.无机材料学报. 2004, 19: 1225~1230
    14时志强,樊丽萍,王成扬.商业化的锂离子电池石墨负极材料的研究进展.碳素. 2006, 1: 3~6
    15郭炳琨,徐徽,王先友等.锂离子电池.中南大学出版社. 2002:93
    16吴宇平,万春荣,姜长印等.锂电池非水电解质盐的制LiPF6.电源技术. 1999, 23: 99~101
    17 M. C. Smart, B. V. Ratnakumar, S. Surampudi, et al. Irreversible Capacities of Graphite in Low Temperature Electrolytes for Lithium-Ion Batteries. Journal of The Electrochemical Society. 1999, 146(11): 3963~3969
    18 W. Murphy, J. Broodhead, B. C. Steel. Materials for Advanced Batteries. New York. Plenum Press.1980, 145: 99~101
    19 M. Lazzari, B. Scrosati. Primary Lithium-Copper Oxysalt of Ganic Electrolyte Batteries. Journal of The Electrochemical Society. 1980, 127: 773~778
    20 B. D. Pietro, M. Patriarca, B. Scrosati, et al. On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries. Journal of Power Sources. 1982, 8: 289~293
    21 M. Winter, J. Brodd Ralph. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Review. 2004, 104(10): 4245~4270
    22 M. S. Whittingham. Lithium Batteries and Cathode Materials. Chemical Review. 2004, 104 (10): 4271~4302
    23胡拥军.锂离子电池用聚合物电解质的制备及性能研究.中南大学博士论文. 2007:6
    24梁英.锡基负极材料的制备及吸脱锂性质.华中师范大学博士论文. 2008:5
    25 K. Zaghib, C. M. Julien. Structure and Electrochemistry of FePO4·2H2O Hydrate. Journal of Power Sources. 2005, 142(1): 279~284
    26 S. Y. heng, L. X. quan. Synthesis and Electrochemical Properties of Phospho-Olivine Type LiFexM(1-x)PO4 (1≥x≥0) Compounds. Chinese Journal of Synthetic Chemistry. 2004, 12(3): 146~148
    27 A. Andersson, B. Kalska, L. Haggstrom. Lithium Extraction/Insertion in LiFePO4: An X-ray Diffraction and Mossbauer Spectroscopy Study. Solid State Ionics. 2000, 130(2): 41~52
    28陈军,陶占良,袁华堂.锂离子二次电池电极材料的研究进展.电源技术. 2007, 31(12): 946~950
    29丁飞.高比能量二次锂电池中金属锂负极材料的研究.哈尔滨工业大学博士论文. 2004:6
    30 R. Z. Hu, M. Q. Zeng, M. Zhu. Cyclic Durable High-Capacity Sn/Cu6Sn5Composite Thin Film Anodes for Lithium Ion Batteries Prepared by Electron-Beam Evaporation Deposition. Electrochimica Acta. 2009, 54(10): 2843~2850
    31 Y. H. Xu, G. P. Yin, P. J. Zuo. Geometric and Electronic Studies of Li15Si4 for Silicon Anode. Electrochimica Acta. 2008, 54(2): 341~345
    32 N. R. A. Huggins. Alternative Materials for Negative Electrodes in Lithium Systems. Solid Statet ioncs, 2002. 152: 61~68.
    33 C. Villevieille, B. Fraisse, M. Womes, et al. Monconduit. A New Ternary Li4FeSb2 Structure Formed upon Discharge of The Fesb2/Li Cell. Journal of Power Sources. 2009, 189(1): 324~330
    34 X. He, J. Ren, L. Wang, et al. Expansion and Shrinkage of the Sulfur Composite Electrode in Rechargeable Lithium Batteries. Journal of Power Sources. 2009, 190(1): 154~156
    35 G. X. Wang, J. Yao, H. K. Liu, et al. Electrochemical Characteristics of Tin-Coated MCMB Graphite as Anode in Lithium-Ion Cells. Electrochimica Acta. 2004, 50(2-3): 517~522
    36 F. M. Wang, H. C. Wu, C. S. Cheng, et al. High Ionic Transfer of A Hyperbranched-Network Gel Copolymer Electrolyte for Potential Electric Vehicle (EV) Application. Electrochimica Acta. 2009, 54(14): 3788~3793
    37 H. Wang, Q. Pan, J. Zhao, et al. Fabrication of Cuo/C Films with Sisal-Like Hierarchical Microstructures and Its Application in Lithium Ion Batteries. Journal of Alloys and Compounds. 2009, 476(1-2): 408~413
    38 J. Song, M. Z. Cai, Q. F. Dong, et al. Structural and Electrochemical Characterization of SnOx Thin Films for Li-Ion Microbattery. Electrochimica Acta. 2009, 54(10): 2748~2753
    39 M. Jayalakshmi, M. M. Rao, N. Venugopal, et al. Hydrothermal Synthesis of SnO2–V2O5 Mixed Oxide and Electrochemical Screening of Carbon Nano-Tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT Electrodes for Supercapacitor Applications. Journal of Power Sources. 2007, 66,(15): 578~583
    40 H. W. Lu, W. Z. Yue, Z. W. Fu. Fabrication and Electrochemical Properties of Three-Dimensional Net Architectures of Anatase TiO2 and Spinel Li4Ti5O12 Nanofibers. Journal of Power Sources. 2007, 64(2): 874~879
    41 Y. N. Li, R. Zeng, P. Zhang, et al. Controlled Synthesis ofΑ-Fe2O3Nanostructures and Their Size-Dependent Electrochemical Properties for Lithium-Ion Batteries. Journal of Power Sources. 2008, 184(2): 456~461
    42 J. Y. Lee, H. K. Liu, S. X. Dou. A study on the Charge–Discharge Mechanism of Co3O4 as An Anode for the Li Ion Secondary Battery. Electrochimica Acta. 2005, 50(18): 3667~3673
    43 A.Y. Shenouda, H. K. Liu. Electrochemical Behaviour of Tin Borophosphate Negative Electrodes for Energy Storage Systems. Journal of Power Sources. 2008, 185(2): 1386~1391
    44 J. Yang, Y. Takeda, C. Capiglia, et al. High-Capacity Composite Anodes with SnSb and Li2.6Co0.4N for Solid Polymer Electrolyte Cells. Journal of Power Sources. 2003, 119~121: 56~59
    45 R. Ju?k?nas, Z. Mockus, S. Kanapeckait?, et al. XRD Studies of the Phase Composition of the Electrodeposited Copper-rich Cu–Sn Alloys. Electrochimica Acta. 2006, 52(3): 928~935
    46 H. Mukaibo, T. Osaka, P. Reale, et al. Optimized Sn/SnSb Lithium Storage Materials. Journal of Power Sources. 2004, 132(1-2): 225~228
    47 W. Plieth. Kinetic Models for Alloy and Semiconductor Electrodeposition. Electrochimica Acta. 2007, 53(1): 245~249
    48 M. Park, Y. Lee, S. Rajendran, et al. Electrochemical Properties of Si/Ni Alloy–Graphite Composite as An Anode Material for Li-Ion Batteries. Electrochimica Acta. 2005, 50(28): 5561~5567
    49 F. Eckermann, T. Suter, P. J. Uggowitzer, et al. The Influence of MgSi Particle Reactivity and Dissolution Processes on Corrosion in Al–Mg–Si Alloys. Electrochimica Acta. 2008, 54(2): 844~855
    50 K.Ozawa. Lithium-Ion Rechargeable Batteries with LiCoO2 and Carbon Electrodes-The LiCoO2-C System. Solide State Ionics. 1994, 69(3~4): 212~221
    51 J. R. Dahn, A. K. Sleigh, H. Shi. Structure of Siloxene and Layered Ploysilane (Si6H6). Electrochimica Acta.1993, 38(9): 1179~1193
    52唐致远,庄新国,翟玉梅.锂离子电池负极材料的研究.电源技术. 2000, 24(2): 108~111
    53魏环.宋庆功.石墨插层化合物的结构与特性.河北理土学院学报. 1999, 21(4): 67~72
    54 H. Shi, J. Barker. Structure and Lithium Intercalation Properties of Syntheticand Natural Graphite. Journal of The Electrochemical Society. 1996, 143(11): 3466~3472
    55马树华,国汉举,李季.锂离子电池负极碳材料的表面改性与修饰.人工施加的固体电解质膜对锂碳负极电池性能的改善.电化学. 1997, 3(1): 86~91
    56吴宇平,万春荣,姜长印等.锂离子二次电池.北京化学工业出版社. 2002: 112
    57任建国,王科,何向明等.锂离子电池合金负极材料的研究进展.化学进展. 2005, 17(4): 597~603
    58尹鸽平,王庆,程新群.锂离子电池新型负极材料的研究进展.电池. 1999, 29(6): 270~274
    59 H. Kobayashi, Y. Uebou, T. Ishida, et al. Electrochemical Property of Tin Oxide Thin Film by Photo-CVD Process. Journal of Power Sources. 2001, 97-98: 229~231
    60 Y. Zhang, Y. Liu, M. Liu. Nanostructured Columnar Tin Oxide "Thin Film Electrode for Lithium Ion Batteries. Chemistry Materials. 2006, 18: 4643~4646
    61 M. Egashira, H. Takatsuji, S. Okada, et al. Properties of Containing Sn Nanoparticles Activated Fiber for A Negative Electrode in Lithium Batteries. Journal of Power Sources. 2002, 107: 56~60
    62 J. Graetz, C. C. Ahn, R. Yazami, et al. Highly Reversible Lithium Nano-Structured Silicon. Electrochemical and Solid-State Letters. 2003, 15(2): A194~A197
    63 H. C. Shin, J. A. Corno, J. L. Gole, et al. Porous Silicon Negative Electrodes for Rechargeable Lithium Batteries. Journal of Power Sources. 2005, 139(2): 314~320
    64 M. Uehara, J. Suzuki, K. Tamura, et al. Thick Suitable Vacuum Deposited Silicon Films for the Anode of Li-ion Battery. Journal of Power Sources. 2005, 146(1): 441~444
    65 W. R. Liu, Z. Z. Guo, W. S. Young, et al. Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive. Journal of Power Sources. 2005, 140(1): 139~144
    66 H. Li, X. Huan, L. Chen. The Crystal Structural Evolution of Nano-Si Anode Caused by Lithium Insertion and Extraction at Room Temperature. Solid State Ionics, 2000, 135(1): 181~191
    67 G. Wang, W. Jiang, G. Z. Bai. Si3N4 Rodlike Crystal-Reinforced MOSi2 Matrix Composites. Materials Letters, 2004, 58(3~4): 308~311
    68王先友,张允什,阎杰.锂离子电池碳负极研究新动向.电源技术. 1999, 23(4): 233~237
    69 T. Ohzuku, A. Yamamoto. Zero-Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cell. Journal of The Electrochemical Society. 1995, 142(5): 1431~1435
    70 K. K. Colbow, J. R. Dahn, R. R. Haering. Polymerizable Aromatic Additives for Overcharge Protection in Non-aqueous Rechargeable Lithium Batteries. Journal of Power Sources. 1989, 26(3~4): 97
    71 M. Wilkening, R. Amade, W. Iwaniak, et al. Ultraslow Li Diffusion in Spinel-Type Structured Li4Ti5O12-A Comparison of Results from Solid State NMR and Impedance Spectroscopy. Physical Chemistry Chemical Physics. 2007, (9): 1239~1246
    72 P. Kubiak, A. Garcia, M. Womes. Phase Transition in the Spinel Li4Ti5O12 Induced by Lithium Insertion Influence of the Substitutions Ti/V, Ti/Mn, Ti/Fe. Journal of Power Sources. 2003, (119~121): 626~630
    73 Ronci F, Reale P, Scrosati B et al. High-Resolution in-Situ Structural Measurements of The Li4/3Ti5/3O4 Zero-Strain" Insertion Material. The Journal of Physical Chemistry B. 2002, (106): 3082~3086
    74卢俊彪,唐子龙,张中太.锂离子二次电池正极材料晶体结构与电化学性能.稀有金属材料与工程. 2005, 34(11): 1681~1685
    75 T. Esaka, M. Hayashi, H. Sakaguchi, et al. Analysis of Lithium Ion Distribution in Electrolyzed Li1.33Ti1.67O4 by Neutron Computed Tomography. Solid State Ionics. 2002, 147: 107~114
    76 J. Junwei, C. Jun, J. R. Dahn. Comparison of the Reactions between Li7Ti5O12 or LiC6 and Nonaqueous Solvents or Electrolytes Using Accelerating Rate Calorimetry. Journal of The Electrochemical Society. 2004, (151~121): A2082~A2087
    77 S. Bach, R. J. P. Pereira, N. Baffier. Electrochemical Properties of Sol-Gel Li4/3Ti5/3O4. Journal of Power Sources. 1999, (81~82): 273~276
    78 T. Sutomuo, A. Tsushiu, N. Orihiroy. Zero-Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cell. Journal of The Electrochemical Society. 1995, 140: 1431~1435
    79 S. Charners, W. Eppnerw, B. Shmid. Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4. Journal of The Electrochemical Society. 1999, 146(3): 857~861
    80 E. M. Sorensen, S. J. Barry, H. K. Jung. Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties. Chemistry Materials. 2006, 18: 482~485
    81宋贵明,王玉金. Li4Ti5O12的合成.稀有金属材料与工程. 2001, 30(4): 299~306
    82 S. H. Ju, Y. C. Kang. Effects of Preparation Conditions on the Electrochemical and Morphological Characteristics of Li4Ti5O12 Powders Prepared by Spray Pyrolysis. Journal of Power Sources. 2009, 189(1):185~190
    83 K. Nakahara, R. Nakajima, T. Matsushima, et al. Preparation of Particulate Li4Ti5O12 Having Excellent Characteristics as An Electrode Active Material for Power Storage Cells. Journal of Power Sources, 2003, (117): 131~136
    84高剑,姜长印. Li4Ti5O12的合成及性能研究.电源技术.2006,(4~5):362~ 365
    85 D. Peramunage, K. M. Abraham. Preparation of Micron-Sized Li4Ti5O12 and Its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells. Journal of The Electrochemical Society. 1998, 145(8): 2609~2615
    86 G. G. Amatucci, F. Badway, D. A. Pasquier. An Asymmetric Hybrid Nonaqueous Energy Storage Cell. Journal of The Electrochemical Society. 2001, 148(8): A930~A939
    87张青红,高濂,孙静.煅烧温度对二氧化钛纳米晶性能的影响.无机材料学报. 2001, 16(5): 833~839
    88杨建文,钟晖.无定形TiO2合成尖晶石Li4Ti5O12的性能过程工程学报. 2005, 5(2): 170~174
    89苏越峰,吴峰,陈朝峰.纳米微晶TiO2合成Li4Ti5O12及其嵌锂行为物理化学学报. 2004, 20(7): 707~712
    90杨建文,钟晖. Li4Ti5O12的合成及其影响因素.中南大学学报.2005, 36(1): 55~59
    91 C. henc, S. pearsm, W. onderf, et al. Crystal Growth and Superconductivity of LiTi2O4 and Li1+1/3Ti2?1/3O4. Journal of Crystal Growth. 2003, 250(12): 139~143
    92傅崇说.有色冶金原理.冶金工业出版社. 1990: 56~58
    93高玲,仇卫华.合成温度对Li4Ti5O12电化学性能的影响.电池. 2004, 34(5):351~353
    94 J. A. Mergos, C. T. Dervos. Structural and Dielectric Properties of Li2O Doped TiO2. Materials Characterization. doi:10.1016/j.matchar.2009.01.019
    95刘东强,赖琼钰. Li4Ti5O12溶胶-凝胶法合成及其机理研究.无机化学学报. 2004, 20(7): 429~533
    96高玲,仇卫华. Li4Ti5O12作为锂离子电池负极材料电化学性能.北京科技大学学报. 2005, 27(1): 82~87
    97 M. Senna, T. Kinoshita, Y. Abe. Smart Soft-Mechanochemical Syntheses of Well-Crystallized Pure Phase Fine Particulates of Mixed Oxides for Electroceramics. Journal of the European Ceramic Society. 2007, 27: 4301 ~4306
    98 Y. Abe, E. Matsui, M. Senna. Preparation of Phase Pure and Well-Crystallized Li4Ti5O12 Nanoparticles by Precision Control of Starting Mixture and Calcining at Lowest Possible Temperatures. Journal of Physics and Chemistry of Solids. 2007, 68: 681~686
    99 J. Gao, C. Y. Jiang, J. R. Ying, et al. Preparation and Characterization of High-Density Spherical Li4Ti5O12 Anode Material for Lithium Secondary Batteries. Journal of Power Sources. 2006, (155): 364~370
    100 K. Kiyoshi, C. Takeshi, D. Kaoru. Preparation of Li4Ti5O12 Spherical Particles for Rechargeable Lithium Batteries. Journal of the European Ceramic Society. 2006 , (26): 577~581
    101 D. H. Kim, Y. S. Ahn. Polyol-Mediated Synthesis of Li4Ti5O12 Nanoparticle and Its Electrochemical Properties. Electrochemistry Communications. 2005, (7): 1340~1344
    102 H. Yan-Jing, L. Qiong-Yu, L. Ji-Zheng. Synthesis and Characterization of Spinel Li4Ti5O12 Anode Material by Oxalic Acid-Assisted sol–gel Method. Journal of Power Sources. 2006, 158: 1358~1364
    103 D. Li, Y. N. Xia. Fabrication of Titania Nanofibers by Electrospinning. Nano Letters. 2003, 3(4): 555~560
    104 D. Li, Y. O. Gong, J.T. McCann. Collecting Electrospun Nanofibers with Patterned Electrodes. Nano Letters. 2005, 5(5): 913~916
    105 D. Li, Y. L. Wang, Y. N. Xia. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Letters. 2003, 3(8): 1167~1171
    106陆海纬,周永宁,曾华.三维尖晶石Li4Ti5O12纳米丝网状电极的构置与电化学性能.无机化学学报. 2006, 22: 1802~1806
    107 J. Fu, Y. Bai, C. Liu, et al. Physical Characteristic Study of Li4Ti5O12 Prepared by Molten Salt Synthesis Method. Materials Chemistry and Physics. 2009, 115(1) 105~109
    108 M. Tabuchi, A. Nakashima, H. Shigemura, et al. Nanostructured Electrodes for Next Generation Rechargeable Electrochemical Devices. Journal of Materials Chemistry. 2003, (13): 1747~1757
    109 C. H. Chen, J. T. Vaughey, A. N. Jansen, et al. Studies of Mg Substituted Li4-xMgxTi5O12 Spinel Electrodes (0≤x≤1) for Lithium Batteries. Journal of The Electrochemical Society. 2001, 148(1): A102~A104.
    110赵海雷,林久.钒掺杂对Li4Ti5O12性能的影响.电池. 2006, 36(2): 124~126
    111 Y. K. Sun, D. J. Jung, Y. S. Lee, et al. Synthesis and Electrochemical Characterization of Spinel Li[Li(1?x)/3CrxTi(5?2x)/3]O4 Anode Materials. Journal of Power Sources. 2004, 125(2): 242~245
    112 H. Shahua, W. Zhaoyin, G. Zhonghua. Preparation and Cycling Performance of Al3+ and F? Co-Substituted Compounds Li4AlxTi5?xFyO12?y. Electrochimica Acta. 2005, 50: 4057~4062
    113 H. Shahua, W. Zhaoyin, G. Zhonghua. Effects of Dopant on the Electrochemical Performance of Li4Ti5O12 as Electrode Material for Lithium Ion Batteries. Journal of Power Sources. 2007, 165: 408~412
    114 S. H. Hung, Z. Y. Wen, J. C. Zhang, et al. Preparation and Electrochemical Performance of Ag doped Li4Ti5O12. Solid State Ionics. 2006, 177: 851~858
    115 H. Shahua, W. Zhaoyin, Z. Jingchao. Improving the Electrochemical Performance of Li4Ti5O12/Ag Composite by An Electroless Deposition Method. Electrochimica Acta. 2006, 52: 3704~3708
    116 H. Liu, Y. Feng, K. Wang, et al. Synthesis and Electrochemical Properties of Li4Ti5O12/C Composite by the PVB Rheological Phase Method. Journal of Physics and Chemistry of Solids. 2008, 69(8): 2037-2040
    117阮艳莉,唐致远,彭庆文.尖晶石型Li4Ti5O12电极材料的合成与电化学性能研究.无机材料学报. 2006, 21(4): 873~879
    118 A. Guerfi, S. Sevigny, M. Lagace, et al. Nano-Particle Li4Ti5O12 Spinel as Electrode for Electrochemical Generators. Journal of Power Sources. 2003, (119-121): 88~94.
    119 K. Zaghib, M. Gauthier, F. Brochu, et al. Li4Ti5O12, Li(4-α)ZαTi5O12 or Li4ZβTi(5-β)O12 Particles, Processes for Obtaining Sameand Use as Electrochemical Generators. US :20040202934. 2004, 10: 141~149
    120何则强,刘文萍,熊利芝.锂离子电池用Li4Ti5O12-碳复合材料的制备与电化学性能.无机化学学报. 2007, 23: 732~737
    121 M. Masatoshi, U. Satoshi, Y. Eriko, et al. Development of Long Life Lithium Ion Battery for Power Storage. Journal of Power Sources. 2001, 143(10): 53~59
    122陈方,梁海潮,李仁贵.负极活性材料Li4Ti5O12的研究进展.无机材料学报.2005 , 20 (3) : 537~544
    123 P. P. Prosini, R. Mancini, L. Petrucci, et al. Li4Ti5O12 as Anode in All Solid State, Plastic, Lithium-Ion Batteries for Low Power Applications. Solid State Ionics, 2001, 144(1~2): 185~1921
    124 D. Peramunage, K. M. Abraham. Preparation of Micron-Sized Li4Ti5O12 and its Electrochemistry in Polyacrylonitrile Electrolyte-Based Lithium Cells. Journal of The Electrochemical Society. 1998, 145(8): 2609~2615
    125杨晓燕,华寿南,张树永.锂钛复合氧化物锂离子电池负极材料的研究.电化学. 2000, 6( 3): 350~356
    126 S. A. Antonino, B. Peter, S. Bruno, et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nature Materials, 2005, 4(5): 366~377
    127 A. D. Pasquier, I. Plitz, J. Gural, et a1. Characteristics and Performance of Asymmetric Hybrid Advanced Supercapacitor Prototypes. Journal of Power Sources. 2003, 113(1): 62~71
    128 A. D. Pasquier, A. Laforgue, P. Simon, et al. A Nonaqueous Asymmetric Hybrid Li4Ti5O12/Poly(Fluorophenylthiophene) Energy Storage Device. Journal of The Electrochemical Society. 2002, 149(11): 62~71
    129 L .Cheng, H. J. Liu, Y. Y. Xia, et al. Nanosized Li4Ti5O12 Prepared by Molten Salt Method as An Electrode Material for Hybrid Electrochemical Supercapacitors. Journal of The Electrochemical Society. 2006, 153(8): 1472~1 477
    130 X. L. Yao, S. Xie, C. H. Chen. Comparisons of Graphite and Spinel Li1.33Ti1.67O4 as Anode Materials for Rechargeable Lithium-Ion Batteries. Electrochimica Acta. 2005, 50: 4076~4081
    131 J. Chunhai, I. Masaki, H. Itaru, et al. Effect of Particle Dispersion on High Rate Performance of Nano-Sized Li4Ti5O12 Anode. Electrochimica Acta. 2007, 52: 6470~6475
    132 L. Yue, Z. Hailei, T. Zhihong, et al. Heat Treatment Effect on Electrochemical Properties of Spinel Li4Ti5O12. Rare Metals. 2008, 27(2): 165~1169
    133 H. Yan Jing, L. Qiong Yu, L. Ji Zheng. Synthesis by Citric Acid Sol–Gel Method and Electrochemical Properties of Li4Ti5O12 Anode Material for Lithium-Ion Battery. Materials Chemistry and Physics, 2005, 94: 382~387
    134 H. Yan Jing, L. Qiong Yu, L. Ji Zheng. Influence of Various Complex Agents on Electrochemical Property of Li4Ti5O12 Anode Material. Journal of Alloys and Compounds. 2007, 439:330~336
    135 S. Jie. Li–Ti–O Compounds and Carbon-Coated Li–Ti–O Compounds as Anode Materials for Lithium Ion Batteries. Electrochimica Acta. 2009, 54(10): 2869~2876
    136 H. Matsui, S. Nagano, S. Karuppuchamy, et al. Synthesis and Characterization of TiO2/MoO3/Carbon Clusters Composite Material. Current Applied Physics. 2009, 9(3): 561~566
    137 M. R. Harrison, P. P. Edwards, J. B. Goodenough. Fabrication of All Solid-State Rechargeable Lithium Battery and Its Electrochemical Properties. Philos. Mag. B. 1985, 52: 679~683
    138 L. H. Yang, C. Dong, J. Guo. Hybrid Microwave Synthesis and Characterization of the Compounds in the Li–Ti–O System. Journal of Power Sources. 2008, 175 (1): 575~580
    139 S. H. Ju, Y. C. Kang. Effects of Preparation Conditions on the Electrochemical and Morphological Characteristics of Li4Ti5O12 Powders Prepared by Spray Pyrolysis. Journal of Power Sources. 2009, 189(1): 185~190
    140 Y. Guofeng, F. Haisheng, Z. Huijuan, et al. Ball Milling-Assisted Sol–Gel Route to Li4Ti5O12 and Its Electrochemical Properties. Journal of Alloys and Compounds. 2009, 470(1-2): 544~547
    141 C. K. Chih, Q. Weihua, W. Ke, et al. Kinetics of Synthesis of Li4Ti5O12 through Solid-Solid Reaction. Rere Metals. 2006, 25(5): 399~406
    142刘智恩.材料科学基础.西北业大学出版社,2000. 179~193
    143李文超.冶金与材料物理化学.冶金业出版社. 2001:336~357
    144叶静雅.锂离子电池负极材料Li4Ti5O12的固相合成和电化学性能研究.浙江大学硕士论文. 2008:31~37
    145郝艳静.锂离子电池负极材料Li4Ti5O12的制备改性及电化学性能研究.四川大学博士论文. 2006:122~138
    146 J. Wolfenstine, J.L. Allen. Electrical Conductivity and Charge Compensation in Ta Doped Li4Ti5O12. Journal of Power Sources. 2008, 180(1): 582-585
    147 K. Kiyoshi, N. Hidetoshi, T. Zen-ichiro. Novel Spinel Oxide Li4/3Ti5/3O4 as Electrochemical Insertion Materials for Rechargeable Lithium Batteries. Chemistry Letters. 1997, 1: 45~46
    148 H. Shahua, W. Zhaoyin, Z. Xiujian. Preparation and Electrochemical Performance of Ag Doped Li4Ti5O12. Electrochemistry Communications. 2004, 6(11): 1093~1097
    149 C. Chen, M. Spears, F. Wondre, et al. Crystal Growth and Superconductivity of LiTi2O4 and Li1+1/3Ti2?1/3O4. Journal of Crystal Growth. 2003, 250: 139~145
    150 J. A. Campá, M. Vélez, C. Ruíz-Valero. Crystal Growth of Superconducting LiTi2O4. Journal of Crystal Growth. 1994, 142(1-2): 87~92
    151 Y. Xia, T. Sakai, T. Fujieda, et al. Electrochemical Performances and Structure of LiMn2O4-x. Journal of The Electrochemical Society. 2001, 148: A723~A729
    152 P. Deák, B. Aradi, T. Frauenheim, et al. Challenges for Ab Initio Defect Modeling. Materials Science and Engineering: B. 2008, (154-155): 187~192
    153 Y. H. Rho, K. Kanamura. Preparation of Li4/3Ti5/3O4 Thin Film Electrodes by a PVP Sol-Gel Coating Method and Their Electrochemical Properties. Journal of The Electrochemical Society. 2004, 151(1): A106~A110
    154贾铮,戴长松,陈玲.电化学测量方法.化学工业出版社. 2006: 7~8
    155曹楚南,张鉴清.电化学阻抗谱导论.科学出版社. 2004: 106~107
    156 R. Cabanel. Determination of the Diffusion Coefficient of An Inserted Species by Impedance Spectroscopy: Application to the H/HxNb2O5 System. Journal of applied electrochemistry. 1993, 23: 93~97
    157 Y. H. Rho, K. Kanamura, T. Umegaki. Preparation of Li4/3Ti5/3O4 Thin Film Anode with High Electrochemical Response for Rechargeable Lithium Batteries by Sol-Gel method. Chemistry Letters. 2001, 1: 1322~1323
    158 A. I. Boronin, S. V. Koscheev, K. T. Murzakhmetov. Associative Oxygen Species on the Oxidized Silver Surface Formed under O2 MicrowaveExcitation. Applied Surface Science. 2000, 165(1): 9~14
    159 B. S. Bhatkhande, S D. Samant. Ultrasound Assisted PTC Catalyzed Saponification of Vegetable Oils Using Aqueous Alkali. Ultrasonics Sono chemistry. 1998, (5): 7~12
    160王雅娟.超声波一沉淀法制备氧化铝超细粉末.北京化工大学学报, 2002,29(4): 8~13
    161 C. Gatumel, F. Espitalier, J. Schwartzentruber, et al. Precipitation of Barium Sulfate Influence of Ultrasound, Acta Polytechnia Scandinacica. Chemical Technology and Metallurgy Series. 1997, 244: 96~98
    162 H. L. Choi, N. Enomoto, Z. E. Nakagawa. Effect of Ultrasonic Irradiation on Precipitation of Lead Oxalate From Aqueous Solution. Journal of Material Science. 1994, 29(12): 3239~3242
    163 E. Savcrun, C. Toy. The Effect of Sonication for Precipitation of Hydrated Aluminum Sulphate in Aqueous A12(SO4)3 Urea System. Journal of Material Science letters. 1997, 16: 1164~1166
    164 R. Oshima, T. A. Yamamoto, Y. Mizukoshi, et al. Electron Microscopy of Noble Metal Alloy Nanoparticles Prepared by Sonochemical Methods. Nanostructured Materials. 1999, 12(1): 111~114
    165 D. Michael. Ultrasonically Incuded Fragmentation and Strain in Alumina Particles. Material Letters, 2000, 42: 246~250
    166 H. Kitaura, A. Hayashi, K. Tadanaga, et al. High-Rate Performance of All-Solid-State Lithium Secondary Batteries Using Li4Ti5O12 Electrode. Journal of Power Sources. 2009, 189(1): 145~148
    167 H. E. Park, I. W. Seong, W. Y. Yoon. Electrochemical Behaviors of Wax-Coated Li Powder/Li4Ti5O12 Cells. Journal of Power Sources. 2009, 189(1): 499~502
    168 D. Wang, H. Y. Xu, M. Gu. Li2CuTi3O8–Li4Ti5O12 Double Spinel Anode Material with Improved Rate Performance for Li-Ion Batteries. Electrochemistry Communications. 2009, 11(1): 50~53
    169 H. F. Xiang, X. Zhang, Q. Y. Jin. Effect of Capacity Matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 Cells. Journal of Power Sources. 2008, 183(1): 355~360
    170 A. D. Pasquier, C. C. Huang, T. Spitler. Nano Li4Ti5O12–LiMn2O4 Batteries with High Power Capability and Improved Cycle-Life. Journal of PowerSources. 2009, 186(2): 508~514
    171査全性.电极过程动力学导论.科学出版社. 2002: 136~145
    172李荻,张鉴清.电化原理.北京航空航天大学出版社. 1999: 324~334
    173 D. R. Gosser. Cyclic Voltammetry. VCH Pubishers Inc. 1994
    174 A. J. Bard, L. R. Faulkner. Electrochemical Methods. John Wiley & Sons. Inc. 1980
    175 C. Y. Ouyang, Z. Y. Zhong, M. S. Lei. Ab Initio Studies of Structural and Electronic Properties of Li4Ti5O12 Spinel. Electrochemistry Communications. 2007, 9(5): 1107~1112
    176 Z. Y. Zhong, C. Y. Ouyang, M. S. Lei. Ab Initio Studies on Li4+xTi5O12 Compounds as Anode Materials for Lithium-Ion Batteries. Chemical Physical Chemistry. 2008, 9: 2104~2108
    177 X. L. Yao, S. Xie, H. Q. Nian, et al. Spinel Li4Ti5O12 as a Reversible Anode Material down to 0 V. Journal of Alloys and Compounds. 2008, 465(1-2): 375~379
    178 J. Shu. Study of the Interface Between Li4Ti5O12 Electrodesand Standard Electrolyte Solutions in 0.0~5.0 V. Electrochemical and Solid-State Letters. 2008, 11(12): A238~A240
    179范长岭,徐仲榆.乙炔黑在锂离子电池负极中的贮锂功能.炭素技术. 2007, 26(1): 19~21
    180孟津.乙炔黑电极材料及其双电层电容器制备与性能研究.浙江大学硕士论文. 2004:33~34
    181苏岳锋,吴锋,包丽颖.乙炔黑掺杂NiOx电极及其应用.2004, 19(3): 192~196
    182 M. M. Thackeray, P. J. Johnson, L. A. D. Picciott, et al. Lithium-Ion Batteries with High Charge Rate Capacity. Materials Research Bulliten. 1984,(19) 179~186
    183 D. C. S. Souza. A Reversible Solid-State Crystalline Transformation in A Metal Phosphide Induced by Redox Chemistry. Science. 2002, 296: 2012~2015
    184 W. Lu, I. Belharouak, J. Liu, et al. Electrochemical and Thermal Investigation of Li4/3Ti5/3O4 Spinel. Journal of The Electrochemical Society. 2007, 154(2): A114~A118
    185 K. Kim, J. H. Jeong, I. J. Kim, et al. Carbon Coatings with Olive Oil,Soybean Oil and Butter on Nano-LiFePO4. Journal of Power Sources. 2007,167:524~528
    186 K. Sato, M. Noguchi, A. Demachi. A Mechanism of Lithium Storage in Disordered Carbons. Science. 1994, 264(22): 556~558
    187 A. Kaufmann, G.H. Frischat. High Temperature Diffusion for the Preparation of Gradient Index Lens Blanks. Solid State Ionics. 1998, 109(3-4): 297~302
    188 K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari. Performance of Layered Li(Ni1/3Co1/3Mn1/3)O2 as Cathode for Li-Ion Batteries. Electrochim Acta. 2002, (48):145~150
    189 M. M. Thackery. Structural Consideration of Layered and Spinel Lithiated Oxidesfor Lithium Ion batteries. Journal of The Electrochemical Society. 1995, 142(8): 2558~2563
    190 K. J.Gummoww, A.Kock, M. W. Thackerym. Improved Capacity Retention in Rechargeable 4V Lithium/Lithium Manganese Oxides (spinel) Cells. Solid State Ionics. 1994, (69): 59~67
    191 J. M. Tarascon, W. R. McKinnon, F. Coowar, et al, Synthesis Conditions and Oxygen Stoichiometry Effects on Li Insertion into the Spinel LiMn2O4. Journal of The Electrochemical Society, 1994, 141(6): 1421~1431
    192 S. Komaba, T. Sasaki, Y. Miki, et al. Electrochemical Characteristics and Manganese Dissolution of Spinel Li1.05M0.2Mn1.75O4 (M = Al, Co, and Cr) Cathodeor Rechargeable Lithium Ion Batteries. Electrochemistry. 2003, 71(12): 1236~1239
    193 U. Olsher. Coordination Chemistry of Lithium Ion: A Crystal and Molecular Structure Review. Chemical Review. 1991, 91: 137-164
    194 L. Yuan, K. Konstantinov, G.. X. Wang. Nano-Structured SnO2-Carbon Composites Obtained by in Situ Spray Pyrolysis Method as Anodes in Lithium Batteries. Journal of Power Sources. 2005, 146: 180~184
    195叶静雅.锂离子二次电池正极材料LiMn2O4的制备、结构和电化学性能研究.浙江大学博士论文. 2005: 8~9
    196 A. V. Nikonov, E. M. Kelder, J. Schoonman, et al. Characteristic Changes under Pulsed Pressure Action in Electrode Materials Based on LiMn2O4 and Li4Ti5O12 Spinels. Solid State Ionics. 2006, 177(26-32): 2779~2785
    197 M. Takahashi, M. Hayashi, T. Shodai. Characterization of All-Solid-State Secondary Batteries with LiCoO2 Thin Films Prepared by ECR Sputtering asPositive Electrodes. Journal of Power Sources. 2009, 189(1): 191~196
    198 K. Wang, R. Cai, T. Yuan, et al. Process Investigation, Electrochemical Characterization and Optimization of LiFePO4/C Composite from Mechanical Activation Using Sucrose as Carbon Source. Electrochimica Acta. 2009, 54(10) 2861~2868
    199刘素琴,李世彩,黄可龙. Li3V2(PO4)3电极过程及其锂离子脱嵌动力学研究(1).化学学报. 2007, 65(1): 10~16
    200刘素琴,李世彩,黄可龙. Ti4+离子掺杂对Li3V2(PO4)3晶体结构与性能的影响.物理化学学报, 2007, 23(4): 537~542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700