用户名: 密码: 验证码:
尖晶石型锰氧化物锂离子筛制备及提锂性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石型锰氧化物(Spinel-type Manganese Oxide,SMO)对溶液中的锂离子显示出特有的选择性,可选择性的从溶液中提取锂离子,因此被称为“锂离子筛”,用于卤水、浓海水等溶液中锂的提取及锂电池等含锂资源的锂回收。SMO型锂离子筛具有选择性高、吸附容量大等优点,是最有前景的锂吸附剂之一。但由于锰具有多种氧化态,如何控制反应条件制各具有结构稳定、提锂性能优良的离子筛,仍是锂离子筛制备方面面临的主要问题;其次研究各种吸附条件对离子筛提锂性能的影响,研究不同条件下的锂离子提取动力学、热力学行为,从而提供离子筛提锂操作过程的工艺参数,描述离子筛脱/嵌锂过程的机理,将对离子筛提锂的工业应用与开发提供实际及理论指导意义。
     本文以SMO型锂离子筛为研究对象,以锰盐和锂盐为主要原料,在采用固相法探讨离子筛前驱体制备条件与离子筛提锂性能关系的基础上,分别采用水热法、共沉淀法为主要合成方法,成功制备了具有高提锂容量、选择性好及结构稳定的两种锂离子筛材料,并研究了合成条件对材料制备及提锂性能的影响。利用制备的两种离子筛对比研究了溶液pH值、锂离子浓度、温度、吸附时间、离子强度等因素对锂离子提取性能的影响,及不同条件下的锂离子提取平衡、动力学和热力学过程,采用不同模型对提锂平衡及动力学进行了拟合,详细研究了在弱碱性缓冲体系下的提锂行为。结合仪器分析和实验现象,对离子筛的脱/嵌锂机制首次提出了“空位效应”作用,并对脱/嵌锂过程中存在的疑问进行了有益的解释。主要研究结果如下:
     随原料锂锰摩尔比在0.5~1之间增加,由固相法制备得到的离子筛前驱体中的锂锰摩尔比也增加,酸洗脱锂后得到的离子筛提锂容量也表现出随之增高的趋势。以LiOH为锂源比以Li_2CO_3为锂源制备的离子筛具有更高的提锂容量。离子筛产物晶粒长大和Mn_2O_3等杂质形成可能是造成离子筛提锂能力下降的主要原因。
     以水热法为主要合成方法,可以制备得到高选择性的锂离子筛MnO_2·0.5H_2O,采用共沉淀法也可以得到相似的产物,但共沉淀法制备的离子筛颗粒小(纳米级)、比表面积大、脱锂产物含H量高,尽管结晶度稍差,但其显示了更高的提锂容量及循环提锂性能。两种离子筛的提锂容量都在34 mg·g~(-1)以上,显示出较高的提锂能力,且在脱/嵌锂过程中,两种离子筛的溶损率都<5%,显示了较高的结构稳定性。
     非缓冲体系下的溶液pH下降现象证实了Li~+-H~+离子交换在当前制备的尖晶石型锰氧化物锂离子筛提锂过程中起主要作用,由于提锂过程中溶液pH逐渐下降致使锂提取不完全,对于通常具有弱碱性或中性缓冲能力的实际溶液中锂资源,研究离子筛在弱碱性缓冲体系下的提锂行为显得尤为必要。pH 8.0缓冲体系下的锂离子提取过程研究表明,锂离子的提取平衡可以用Langmuir模型较好的描述,且当前制备的SMO离子筛的锂离子提取为一自发、熵增的吸热过程,提取平衡可在24h内达到,提锂动力学遵从拟二级动力学模型。离子强度对当前离子筛的提锂行为影响较小,扩散研究结果表明边界层扩散与粒内扩散联合控制离子筛的提锂过程,而两种扩散对限速步的控制程度与离子筛的晶体结构有主要关系。
     最后分别从离子筛本体结构、脱/嵌锂前后结构及Li~+-H~+离子交换过程的讨论出发,综合现有文献及本文实验结果,主要通过对离子筛结构中可交换H的讨论,及脱/嵌锂前后离子筛结构的变化,首次提出了“空位效应”作用,并据此描述SMO离子筛的锂离子脱出/嵌入过程。
The spinel-type manganese oxides(SMO) show the high selectivity to lithium ions in solution and can recover lithium selectively from solutions,so it is named as "Lithium Ion Sieve(LIS)" which can be used in lithium uptake or reclamation from brine,sweater and waste lithium batteries.The SMO-type lithium ion sieve is one of the most promising lithium adsorbents due to its high selectivity and adsorption capacity to Li~+.An element of manganese has several oxidation states,therefore,how to control the reaction conditions to prepare lithium ion sieve with stable structure and good uptake performance is still the main problem of LIS synthesis.Secondly,investigation of the effect of various adsorption conditions on performance of lithium uptake by LIS and study of kinetics and thermodynamics of lithium uptake can provide the process parameters of lithium recovery and the theoretical description of Li~+ extraction/insertion of LIS.It can provide useful information to guide the application in the field and promote the development of lithium recovery by LIS in industry.
     In this paper,the SMO-type lithium ion sieve was the main research object,the manganates and lithium salts were taken as the main raw materials.Two LISs with high uptake capacity,better selectivity and stable structure were successfully prepared by hydrothermal method and coprecipitation method based on the discussion of correlation between Li~+ uptake performance and the preparation conditions of LIS precursors.The effects of preparation conditions on Li~+ uptake were also investigated.Furthermore,the uptake performance with the prepared ion sieves were studied in depth,including the influences of solution pH,effect of lithium ion concentration,temperature,adsorption time and ionic strength on Li~+ uptake.The Li~+ uptake equilibrium,kinetics and thermodynamics were studied under different conditions,with the buffer system and without buffer system,and models were used to describe the experimental isotherms and kinetics.At last,the "Vacancy Effect" was presented to illuminate the lithium extraction/insertion mechanism of LIS,and some problems that exist in the process of lithium extraction/insertion were given helpful explanation basing on the analysis of XRD,XPS and calculated results.The main results were summarized as follows:
     First,the Li/Mn mole ratio of LIS precursor prepared with solid state method increased with the increase of Li/Mn mole ratio of raw material between 0.5~1,and all the Li-extracted materials also showed an ascending trend of lithium uptake with the increase of Li/Mn mole ration of reagent.The LIS synthesized with LiOH usually have higher Li~+ uptake capacity than the one with Li_2CO_3.The LIS particles grow larger and the Mn_2O_3 impurities could be the primary reason for the decrease of Li~+ uptake.
     The MnO_2·0.5H_2O LIS with higher uptake capacity can be prepared by hydrothermal technique.Similar material can also be obtained by coprecipitation technique,and it has smaller LIS particle size(nano-scale),larger specific surface area and higher H content,so it show the higher Li~+ uptake capacity and better recycle performance even if the sample crystallinity is slightly inferior to LIS prepared by hydrothermal method.The Li~+ uptake capacities of both ion sieves reached 34 mg·g~(-1) which showed the excellent uptake performance,and the dissolving rates of both ion sieves were all less than 5%,which showed the good structure stability.
     Second,the results of solution pH decreasing in non-buffer system proved that the Li~+-H~+ ion-exchange played a major role in Li~+ uptake by present SMO-type lithium ion sieves.Due to the decrease of solution pH,Li~+ uptake cannot proceed completely.Moreover, it should be noted that the practical liquid lithium resources usually had weak basic or neutral buffer capacity,so it was very important to study Li~+ uptake by ion sieve in weak basic buffer system.The results of Li~+ uptake in pH 8.0 buffer solution revealed that the equilibrium can be reached in 24 hours and the equilibrium process can be well described by the Langmuir model.The processes of Li~+ uptake by present SMO-type ion sieve were spontaneous,entropy increase and endothermic.The kinetic process obeyed pseudo-second-order kinetics model. The ionic strength only had a slight influence on Li~+ uptake.The results of diffusion study indicated that both boundary layer and intraparticle diffusion may together control the uptake process,while the extent of the rate-controlled step was closely related with the crystal structure of ion sieves.
     At last,the results were integrated based on the discussions about the structure of LIS, precursor,relithiated LIS and the process of Li~+-H~+ exchange,respectively.Especially, through the discussion of the exchangeable H in LIS structure and the structure change of LIS in Li~+ extraction/insertion,the "vacancy effect" was firstly proposed to interpret the process of Li~+ extraction or insertion in SMO-type ion sieves.
引文
[1]陈东文.锂与社会.化学教育,1997,(05):3-4.
    [2]Grady H R.Lithium metal for the battery industry.Journal of Power Sources,1980,5(1):127-135.
    [3]Epstein J A,Feist E M,Zmora J,et al.Extraction of lithium from the dead sea.Hydrometallurgy,1981,6(3-4):269-275.
    [4]Garrett D E.Lithium.Handbook of Lithium and Natural Calcium Chloride.Oxford:Academic Press,2004,1-235.
    [5]刘世友.锂的新用途与展望.金属世界,1994,(6):12-13.
    [6]游清治.锂在高新技术领域中的应用及进展.新疆有色金属,2003,(S2):70-75.
    [7]Ebensperger A,Maxwell P,Moscoso C.The lithium industry:Its recent evolution and future prospects.Resources Policy,2005,30(3):218-231.
    [8]汪家铭.金属锂生产应用及市场分析.无机盐工业2007,39(3):15-17.
    [9]Nicholson P,Evans K.Evaluating new directions for the lithium market.JOM Journal of the Minerals,Metals and Materials Society,1998,50(5):27-29.
    [10]Demeri M,Kipouros G.Processing titanium and lithium for reduced-cost application.JOM Journal of the Minerals,Metals and Materials Society,1997,49(6):20-20.
    [11]Harben P,Edwards G.The global lithium industry:A portrait of rapid flux.JOM Journal of the Minerals,Metals and Materials Society,1997,49(6):21-22.
    [12]Sadoway D.Toward new technologies for the production of lithium.JOM Journal of the Minerals,Metals and Materials Society,1998,50(5):24-26.
    [13]Nicholson P.Past and future development of the market for lithium in the World aluminium industry.Energy,1978,3(3):243-246.
    [14]封国富,张晓.世界锂工业发展格局的变化对中国锂工业的影响和对策.稀有金属,2003,27(1):57-61.
    [15]Whittingham M S.Lithium Batteries and Cathode Materials.Chemical Reviews,2004,104(10):4271-4302.
    [16]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社材料科学与工程出版中心,2002.
    [17]王秀莲,李金丽,张明杰.21世纪的能源金属——金属锂在核聚变反应中的应用.黄金学报,2001,3(4):249-252.
    [18]Fasel D,Tran M Q.Availability of lithium in the context of future D-T fusion reactors.Fusion Engineering and Design,2005,75-79:1163-1168.
    [19]张明杰,郭清富.21世纪的能源金属——锂的冶金现状及发展.盐湖研究,2001,9(3):52-60.
    [20]王高尚.盐湖提锂技术发展对全球锂矿业的影响——由世界锂矿业变革引发的思考.资源·产业,2001,(5):37-38.
    [21]Beyth M,Nissenbaum A.Chapter 13 Recent Evolution and Present Stage of Dead Sea Brines.Developments in Sedimentology:Elsevier,1980.
    [22]Chen Y C,Kenneth J H.Exploitation of Lithium in Brines by nsu's Method.Paradoxes in Geology.Amsterdam:Elsevier Science B.V.,2001,421-428.
    [23]Bale M D,May A Y.Processing of ores to produce tantalum and lithium.Minerals Engineering,1989,2(3):299-320.
    [24]Bukowsky H,Uhlemann E,Steinborn D.The recovery of pure lithiumchloride from "brines"containing higher contents of calcium chloride and magnesium chloride.Hydrometallurgy,1991,27(3):317-325.
    [25]Averill W A,Olson D L.A review of extractive processes for lithium from ores and brines.Energy,1978,3(3):305-313.
    [26]Rona M,Schmuckler G.Separation of lithium from dead sea brines by gel permeation chromatography.Talanta,1973,20(2):237-240.
    [27]Epstein J A.Utilization of the dead sea minerals(a review),nydrometallurgy,1976,2(1):1-10.
    [28]冀康平.锂资源的开发与利用.无机盐工业,2005,37(5):7-9.
    [29]李昱昀,狄晓亮,高洁.国内外盐湖卤水锂资源及开发现状.海湖盐与化工,2005,34(5):31-35.
    [30]郑春辉,董殿权,刘亦凡.卤水锂资源及其开发进展.化工技术与开发,2006,35(12):1-4.
    [31]刘建军.我国锂工业的生产现状和发展对策.新材料产业,2004,126(5):32-37.
    [32]李承元,李勤,朱景和.世界锂资源的开发应用现状及展望.国外金属矿选矿,2001,(8):22-26.
    [33]袁俊生,纪志永.海水提锂研究进展.海湖盐与化工,2003,32(5):29-33.
    [34]世界锂资源分布与开发利用现状.2007,http://www.ttssteel.com/info/ShowDetail.asp?NewsId=688053.
    [35]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展.矿产综合利用,2002,(2):28-33.
    [36]钟辉,杨建元,张艽.高镁锂比盐湖卤水中制取碳酸锂的方法.中国专利,CN13352622001.
    [37]彭正顺,严玉顺,姜长印等.盐湖卤水提锂的研究进展.化学通报,1997,(12):11-13.
    [38]陈延成,钱作华,李博昀.中瑞合作利用“许氏法”开发盐湖卤水中锂资源.化工矿产地质,1998,20(1):49-54.
    [39]常启明.锂溶剂萃取的某些进展.稀有金属,1990,12(5):377-381.
    [40]陈正炎,仇世源,古伟良等.从饱和氯化镁卤水中分离锂镁的新萃取体系研究.稀有金属,1996,20(3):161-164.
    [41]张金才,王敏,戴静.卤水提锂的萃取体系概述.盐湖研究,2005,13(1):42-48.
    [42]钟辉.碳化法从卤水中提取锂的热力学分析及工艺研究.矿物岩石,1991,11(4):105-111.
    [43]Anghel I,Turin H J,Reimus P W.Lithium sorption to Yucca Mountain ruffs.Applied Geochemistry,2002,17(6):819-824.
    [44]Bukowsky H,Uhlemann E.Selective Extraction of Lithium Chloride from Brines.Separation Science and Technology,1993,28(6):1357-1360.
    [45]Hano T,Matsumoto M,Ohtake T,et al.Recovery of lithium from geothermal water by solvent extraction technique.Solvent Extraction and Ion Exchange,1992,10(2):195-206.
    [46]Ma P,Chen X D,Hossain M M.Lithium Extraction from a Multicomponent Mixture Using Supported Liquid Membranes.Separation Science and Technology,2000,35(15):2513-2533.
    [47]Navarrete-Casas R,Navarrete-Guijosa A,Yalenzuela-Calahorro C,et al.Study of lithium ion exchange by two synthetic zeolites:Kinetics and equilibrium.Journal of Colloid and Interface Science,2007,306(2):345-353.
    [48]Navarrete-Guijosa A,Navarrete-Casas R,Yalenzuela-Calahorro C,et al.Lithium adsorption by acid and sodium amberlite.Journal of Colloid and Interface Science,2003,264(1):60-66.
    [49]Pauwels H,Brach M,Fouillac C.Study of Li~+ adsorption onto polymeric aluminium(Ⅲ)hydroxide for application in the treatment of geothermal waters.Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,100:73-82.
    [50]Tsuruta T.Removal and Recovery of Lithium Using Various Microorganisms.Journal of Bioscience and Bioengineering,2005,100(5):562-566.
    [51]Symons E A.Lithium Isotope Separation:A Review of Possible Techniques.Separation Science and Technology,1985,20(9):633-651.
    [52]Ooi K,Miyai Y,Katoh S.Recovery of Lithium from Seawater by Manganese Oxide Adsorbent.Separation Science and Technology,1986,21(8):755-766.
    [53]陈正炎,古伟良,陈富珍.国内外盐湖卤水提锂方法及其发展.新疆有色金属,1996,(1):21-25.
    [54]大井健太,蒋修治.海水中稀有金属的提取.国外稀有金属,1992,(2):21-26.
    [55]Ryabtsev A D,Menzheres L T,Ten A V.Sorption of Lithium from Brine onto Granular LiCl·2Al(OH)_3-mH_2O Sorbent under Dynamic Conditions.Russian Journal of Applied Chemistry,2002.75(7):1069-1074.
    [56]曾英,阎树旺.锂的吸附剂.化学世界,1995,(07):345-348.
    [57]梁尊山.从海水中回收锂.国外制盐工业,1990,(1):56-65.
    [58]Mitsuo A.Chem Sep,Dev Sel Pap Int Conf Sep Sci Technol 1st,1986:187-201.
    [59]刘亦凡,大井健太.离子记忆无机离子交换体.离子交换与吸附,1994,10(3):264-209.
    [60]沈祥木,王学元.离子筛法从水溶液中提锂的研究.化学学报,1981,39(8):711-717.
    [61]Clearfield A.Inorganic ion exchangers,past,present,and future.Solvent Extraction and Ion Exchange,2000,18(4):655-678.
    [62]那平,刘剑锋,张海燕等.Investigation and Preparation of Novel Ionic Sieve for Extracting Neodymium.Journal of Rare Earths,2005,23:97-100.
    [63]张惠源,王榕树,林灿生等.新型提铯离子筛的研制、结构及应用.自然科学进展,2001,11(8):804-810.
    [64]颜庭政,张惠源,王榕树等.新型提锶离子筛的制备及研究.天津大学学报,2001,34(1):59-63.
    [65]张惠源,王榕树,林灿生等.Effect of Rare Earth Elements on Exchange Performances of Cesium Ion-Sieve.Journal of Rare Earths,2003,21(1):42-45.
    [66]屈小英,杨顺林.无机离子筛分材料及其研究进展.化工新型材料,2004,32(8):29-32.
    [67]Chitrakar R,Abe M.Synthetic inorganic ion exchange materials XLⅦ.Preparation of a new crystalline antimonic acid HSbO_3·12H_2O.Materials Research Bulletin,1988,23(9):1231-1240.
    [68]Ogino H,Oi T,袁复怀.过二硫酸铵法从LiMn_2O_4中萃取锂及所获得的吸附剂对锂同位素的选择性.过滤与分离,2000,10(1):41-45.
    [69]闫树旺,钟辉,周永兴.二氧化钛吸附剂的研制及从卤水中提锂.离子交换与吸附,1992,8(3):222-228.
    [70]钟辉.偏钛酸型锂离子交换剂的交换性质及从气田卤水中提锂.应用化学,2000,(03):207-209
    [71]Vol'khin V V,Leont'eva G V,Onorin S A.Neorg Mater,1973,6:1041-1046.
    [72]沈祥木,王学元,张国湘等.离子筛法从卤水中直接提锂试验报告.盐湖研究,1980,(Z1):4-13.
    [73]Hunter J C.Preparation of a new crystal form of manganese dioxide:λ-MnO_2.Journal of Solid State Chemistry,1981,39(2):142-147.
    [74]Endres P,Ott A,Kemmler-Sack S,et al.Extraction of lithium from spinel phases of the system Li_(1+x)Mn_(2-x)O_(4-δ).Journal of Power Sources,1997,69(1-2):145-156.
    [75]Xiaojing Yang,Hirofumi Kanoh,Weiping Tang,et al.Synthesis of Li_(1.33(Mn_(1.67)O_4 spinels with different morphologies and their ion adsorptivities after delithiation.Journal of Materials Chemistry,2000,10(8):1903-1909.
    [76]Wang L,Ma W,Liu R,et al.Correlation between Li~+ adsorption capacity and the preparation conditions of spinel lithium manganese precursor.Solid State Ionics,2006,177(17-18):1421-1428.
    [77]Chitrakar R,Kanoh H,Miyai Y,et al.A New Type of Manganese Oxide MnO_2·0.5H_2O Derived from Li_(1.6)Mn_(1.6)O_4 and Its Lithium Ion-Sieve Properties.Chemistry of Materials,2000,12(10):3151-3157.
    [78]Feng Q,Miyai Y,Kanoh H,et al.Li~+ and Mg~(2+) extraction and Li~+ insertion reactions with LiMg_(0.5)Mn_(1.5)O_4 spinel in the aqueous phase.Chemistry of Materials,1993,5(3):311-316.
    [79]Feng Q,Kanoh H,Miyai Y,et al.Li~+ Extraction/Insertion Reactions with LiZn_(0.5)Mn_(1.5)O_4Spinel in the Aqueous Phase.Chemistry of Materials,1995,7(2):379-384.
    [80]Chung K S,Kim M A,Lee H,et al.Preparation of ion-sieve type(H)[M_(0.5)Mn_(1.5)]O_4(M=Mg,Zn) and their lithium adsorption properties in seawater.Diffusion and Defect Data PtB:Solid State Phenomena,2007,124-126(1):739-742.
    [81]Kim Y-S,No K-S,Chung K-S,et al.Li+ extraction reactions with spinel-type LiM0.5Mnl.504(M=Ti,Fe) and their electronic structures.Materials Letters,2003,57(26-27):4140-4146.
    [82]Aitchison P,Ammundsen B,Roziere J,et al.Local structure and lithium-proton ion exchange in Li_(1.33-x/3)Co_xMn_(1.67-2x/3)O_4 spinels.Solid State Ionics,2005,176(7-8):813-821.
    [83]Liu.Yi-Fan,Feng Q,Ooi K.Li~+ Extraction/Insertion Reactions with LiAlMnO_4 and LiFeMnO_4Spinels in the Aqueous Phase.Journal of Colloid and Interface Science,1994,163(1):130-136.
    [84]董殿权,钟杰,柳敦雷等.尖晶石构造LiCu_(0.5)Mn_(1.5)O_4的合成及其在水溶液中对Li~+的抽出/嵌入反应.应用化学,1998,15(3):114-115.
    [85]Post J E.Manganese oxide minerals:Crystal structures and economic and environmental significance.Proceedings of the National Academy of Sciences,1999,96(7):3447-3454.
    [86]Qi Feng,Hirofumi Kanoh,0oi K.Manganese oxide porous crystals.Journal of Materials Chemistry,1999,9(2):319-333.
    [87]Whittingham M S,Zavalij P Y.Manganese dioxides as cathodes for lithium rechargeable cells:the stability challenge.Solid State Ionics,2000,131(1-2):109-115.
    [88]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(1).电池,2004,34(6):411-414.
    [89]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2).电池,2005,35(1):27-30.
    [90]夏熙,木合塔尔·依米提.γ-MnO_2结构模型现状与EMD的性能.电池工业,2002,7(3,4):169-173
    [91]Ooi K,Miyai Y,Katoh S.Lithium -ion sieve property of λ-type manganese oxide.Solvent Extraction and Ion Exchange,1987,5(3):561-572.
    [92]Julien C M.Local structure of lithiated manganese oxides.Solid State Ionics,2006,177(1-2):11-19.
    [93]Miyai Y,Ooi K,Katoh S.Recovery of Lithium from Seawater Using a New Type of Ion-Sieve Adsorbent Based on MgMn_2O_4.Separation Science and Technology,1988,23(1):179-191.
    [94]雷家珩,弓巧侠,尚建华等.锂离子筛前驱体正尖晶石结构LiMn_2O_4的合成及其特性研究.武汉大学学报(理学版),2001,47(6):707-711.
    [95]袁俊生,孟兴智,纪志永.尖晶石型锂离子筛吸附剂前驱体的合成研究.海湖盐与化工,2005,34(1):6-9.
    [96]Takada T,Hayakawa H,Akiba E.Preparation and Crystal Structure Refinement of Li_4Mn_5O_(12)by the Rietveld Method.Journal of Solid State Chemistry,1995,115(2):420-426.
    [97]Chitrakar R,Sakane K,Umeno A,et al.Synthesis of orthorhombic LiMnO_2 by solid-phase reaction under steam atmosphere and a study of its heat and acid-treated phases.Journal of Solid State Chemistry,2002,169(1):66-74.
    [98]赵磊,蒋开喜,蒋训雄等.大洋多金属结核氨浸渣制备锂离子筛的前驱体合成.有色金属,2006,58(3):62-65.
    [99]Thackeray M M.Manganese oxides for lithium batteries.Progress in Solid State Chemistry,1997,25(1-2):1-71.
    [100]Hon Y M,Lin S P,Fung K Z,et al.Synthesis and characterization of nano-LiMn_2O_4 powder by tartaric acid gel process.Journal of the European Ceramic Society,2002,22(5):653-660.
    [101]孙育斌,雷家珩,陈永熙等.Sol-Gel合成LiMn_2O_4及其锂离子脱嵌/嵌入性能与结构的研究.稀有金属材料与工程,2004,33(6):602-605.
    [102]Feng Q,Kanoh H,Miyai Y,et al.Hydrothermal Synthesis of Lithium and Sodium Manganese Oxides and Their Metal Ion Extraction/Insertion Reactions.Chemistry of Materials,1995,7(6):1226-1232.
    [103]Chitrakar R,Kanoh H,Makita Y,et al.Synthesis of spinel-type lithium antimony manganese oxides and their Li~+ extraction/ion insertion reactions.Journal of Materials Chemistry,2000,10(10):2325-2329.
    [104]Zhang Q-H,Sun S,Li S,et al.Adsorption of lithium ions on novel nanocrystal MnO_2.Chemical Engineering Science,2007,62(18-20):4869-4874.
    [105]Chitrakar R,Kanoh H,Miyai Y,et al.Synthesis of o-LiMnO_2 by Microwave Irradiation and StudyIts Heat Treatment and Lithium Exchange.Journal of Solid State Chemistry,2002,163(1):1-4.
    [106]李艳,齐涛,王丽娜等.离子筛材料的合成及其对盐湖卤水中锂的选择性吸附.过程工程学报,2006,6(5):724-728.
    [107]Zhang Y C,Wang H,Xu H Y,et al.Low-temperature hydrothermal synthesis of spinel-type lithium manganese oxide nanocrystallites.Solid State Ionics,2003,158(1-2):113-117.
    [108]Zhang Q-H,Li S-P,Sun S-Y,et al.Nanostructure ion-sieves for lithium adsorption.International Journal of Chemical Reactor Engineering,2007,5(1):1-10.
    [109]Yah H,Huang X,Chen L.Microwave synthesis of LiMn_2O_4 cathode material.Journal of Power Sources,1999,81-82:647-650.
    [110]沈霞,方建慧,苏毅玲等.锂离子筛的制备和应用.云南大学学报(自然科学版),2005,27(5A):465-467.
    [111]董殿权,张风宝,张国亮等.LiMg_(0.5)Mn_(1.5)O_4的合成及对Li~+的离子交换选择性.无机化学学报,2004,(09):1126-1130.
    [112]Kim J,Manthiram A.Low Temperature Synthesis and Electrode Properties of Li_4MnO_(12).Journal of The Electrochemical Society,1998,145(4):L53-L55.
    [113]Chitrakar R,Kanoh H,Miyai Y,et al.Recovery of Lithium from Seawater Using Manganese Oxide Adsorbent(H_(1.6)Mn_(1.6)O_4) Derived from Li_(1.6)Mn_(1.6)O_4.Industrial & Engineering Chemistry Research,2001,40(9):2054-2058.
    [114]刘亦凡,于慧荣,陈学玺等.无机离子交换体.化学通报,1995,58(1):11-15.
    [115]Shen X M,Clearfield A.Phase transitions and ion exchange behavior of electrolytically prepared manganese dioxide.Journal of Solid State Chemistry,1986,64(3):270-282.
    [116]Ooi K,Miyai Y,Katoh S,et al.Topotactic Li~+ insertion to λ-MnO_2 in the aqueous phase.Langmuir,1989,5(1):150-157.
    [117]Feng Q,Miyai Y,Kanoh H,et al.Li~+ extraction/insertion with spinel-type lithium manganese oxides.Characterization of redox-type and ion-exchange-type sites.Langmuir,1992,8(7):1861-1867.
    [118]Shiu J Y,Lin J R,Lee D C,et al.Method for adsorbing lithium ions from a lithium-containing aqueous solution by a granular adsorbent.US patent,2003231996.2003.
    [119]Miyai Y,Umeno A,Chitrakar R,et al.Method for producing porous granular lithium adsorbent.JP patent,2002282684.2002.
    [120]董丽春,张绍成.MnO_2—聚丙烯酰胺复合吸附剂对Li~+离子吸附的pH滴定研究.离子交换与吸附,1990,6(2):100-106.
    [121]张绍成,戈桦,董丽春.聚丙烯酰肼—MnO_2粒状离子交换剂的制备及对锂的离子交换性质的研究.离子交换与吸附,1991,7(1):33-37.
    [122]马培华,邓小川,李法强等.二氧化锰法从盐湖卤水中提锂的方法.中国专利,CN15119632004.
    [123]袁俊生,李恒,孟兴智.离子筛型锂吸附剂的吸附性能研究.无机盐工业,2006,38(6):27-29
    [124]Umeno A,Miyai Y,Takagi N,et al.Preparation and Adsorptive Properties of Membrane-Type Adsorbents for Lithium Recovery from Seawater.Industrial & Engineering Chemistry Research,2002,41(17):4281-4287.
    [125]雅非群,马伟,王刃等.天然材料改性吸附剂的制备和除氟研究.给水排水,2003,29(12):72-74.
    [126]程国斌,韩梅,王刃等.NH_4~+型斜发沸石吸附钾离子.应用化学,2005,22(10):1092-1095.
    [127]程国斌,张延红,马伟等.沸石吸附钾离子的热力学研究.离子交换与吸附,2005,21(5):385-390.
    [128]Liu R,Ma W,Jia C-y,et al.Effect of pH on biosorption of boron onto cotton cellulose.Desalination,2007,207(1-3):257-267.
    [129]Ma W,Ya F-Q,Han M,et al.Characteristics of equilibrium,kinetics studies for adsorption of fluoride on magnetic-chitosan particle.Journal of Hazardous Materials,2007,143(1-2):296-302.
    [130]王禄,马伟,韩梅等.高效锂离子筛吸附剂MnO_2·0.5H_2O的软化学合成及吸附性能研究.化学学报,2007,65(12):1135-1139.
    [131]A.Robert Armstrong,Bruce P G.Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries.Nature,1996,381(6):399-400.
    [132]Jaekook Kim,Manthiram A.A manganese oxyiodide cathode for rechargeable lithium batteries.Nature,1997,390(6657):265-267.
    [133]纪志永,袁俊生,李鑫钢.锂吸附剂的合成及其吸附性能.化学工程,2007,35(8):9-13.
    [134]赵丽丽,王榕树.锂离子交换剂制备及交换反应动力学.物理化学学报,2003,19(10):933-937.
    [135]Katz M J,Clarke R C,Nye W F.Available Oxygen in Manganese Dioxide.Analytical Chemistry,1956,28(4):507-508.
    [136]陈永熙,周立娟,郭丽萍等.锂锰氧化物中锰的平均化合价的测定研究.武汉理工大学学报,2001,23(10):1-3.
    [137]Ammundsen B,Aitchison P B,Burns G R,et al.Proton insertion and lithium-proton exchange in spinel lithium manganates.Solid State Ionics,1997,97(1-4):269-276.
    [138]Ammundsen B,Jones D J,Roziere J,et al.Mechanism of Proton Insertion and Characterization of the Proton Sites in Lithium Manganate Spinels.Chemistry of Materials,1995,7(11):2151-2160.
    [139]Brauer G.Handbook of Preparative Inorganic Chemistry.2nd ed.New York:Academic Press,1963.
    [140]Ammundsen B,Jones D J,Roziere J,et al.Ion Exchange in Manganese Dioxide Spinel:Proton,Deuteron,and Lithium Sites Determined from Neutron Powder Diffraction Data.Chemistry of Materials,1998,10(6):1680-1687.
    [141]Reimers J N,Eric W F,Erik R,et al.Synthesis and Electrochemical Studies of LiMnO_2Prepared at Low Temperatures.Journal of The Electrochemical Society,1993,140(12):3396-3401.
    [142]Ramana C V,Massot M,Julien C M.XPS and Raman spectroscopic characterization of LiMn_2O_4 spinels.Surface and Interface Analysis,2005,37(4):412-416.
    [143]赵振国.吸附作用应用原理.北京:化学工业出版社,化学与应用化学出版中心,2005.
    [144]Langmuir I.The adsorption of gases on plane surfaces of glass,mica and platinum.Journal of the American Chemical Society,1918,40(9):1361-1403.
    [145]Ammundsen B,Jones D J,Roziere J,et al.Effect of Chemical Extraction of Lithium on the Local Structure of Spinel Lithium Manganese Oxides Determined by X-ray Absorption Spectroscopy.Chemistry of Materials,1996,8(12):2799-2808.
    [146]Ammundsen B,Roziere J,Islam M S.Atomistic Simulation Studies of Lithium and Proton Insertion in Spinel Lithium Manganates.The Journal of Physical Chemistry B,1997,101(41):8156-8163.
    [147]Hamzaoui A H,M'Nif A,Hammi H,et al.Contribution to the lithium recovery from brine.Desalination,2003,158(1-3):221-224.
    [148]Freundlich H M.Adsorption in solution.Phys Chem,1906,57(2):384-410.
    [149]Berber-Mendoza M S,Leyva-Ramos R,Alonso-Davila P,et al.Comparison of isotherms for the ion exchange of Pb(Ⅱ) from aqueous solution onto homoionic clinoptilolite.Journal of Colloid and Interface Science,2006,301(1):40-45.
    [150]M.A.Anderson,Rubin A J.Adsorption of Inorganic at Solid-Liquid Interface.Michigan:Ann.Arbor.Sci.Publ.Inc.,1981.
    [151]Ariza M J,Jones D J,Roziere J,et al.Muon Spin Relaxation Study of Spinel Lithium Manganese Oxides.The Journal of Physical Chemistry B,2003,107(24):6003-6011.
    [152]Ariza M J,Jones D J,Roziere J,et al.Probing the Local Structure and the Role of Protons in Lithium Sorption Processes of a New Lithium-Rich Manganese Oxide.Chemistry of Materials,2006,18(7):1885-1890.
    [153]G.E.Boyd,Schubert.J,Adamson A W.Journal of the American Chemical Society,1947,69(11):2818.
    [154]Misak N Z.Some aspects of the application of adsorption isotherms to ion exchange reactions.Reactive and Functional Polymers,2000,43(1-2):153-164.
    [155]Panday K K,Prasad G,Singh V N.Copper(Ⅱ) removal from aqueous solutions by fly ash.Water Research,1985,19(7):869-873.
    [156]Ni Z-M,Xia S-J,Wang L-G,et al.Treatment of methyl orange by calcined layered double hydroxides in aqueous solution:Adsorption property and kinetic studies.Journal of Colloid and Interface Science,2007,316(2):284-291.
    [157]Li Y-H,Di Z,Ding J,et al.Adsorption thermodynamic,kinetic and desorption studies of Pb~(2+) on carbon nanotubes.Water Research,2005,39(4):605-609.
    [158]安德森M A,鲁宾A J.水溶液吸附化学:无机物在固-液界面上的吸附作用.北京:科学出版社,1989.
    [159]Lagergren S,Svenska B K.Vaternskap sakad Handlingar,1898,24(4):1-39.
    [160](O|¨)zcan A S,(O|¨)zcan A.Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite.Journal of Colloid and Interface Science,2004,276(1):39-46.
    [161] Annadurai G, Krishnan M. Adsorption of basic dye on chitin. Indian Journal of Environmental Protection, 1996, 16: 444-449.
    [162] Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34 (5): 451-465.
    [163] Weber W J, Morriss J C. Kinetics of adsorption on carbon from solution. J Sanitary Eng Div Am Soc Civ Eng, 1963, 89 (1): 31-60.
    [164] Allen S J, McKay G, Khader K Y H. Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environmental Pollution, 1989, 56 (1): 39-50.
    [165] Bhattacharya A K, Venkobachar C. Removal of cadmium (II) by low cost adsorbents. Journal of Environmental Engineering, 1984, 110 (1): 110-122.
    [166] Huang C P, Oliver J H. Removal of some heavy metal by mordenite. Journal of Environmental Technology Letter, 1989, 10 (6): 863-871.
    [167] Singh K K, Rastogi R, Hasan S H. Removal of Cr(VI) from wastewater using rice bran. Journal of Colloid and Interface Science, 2005, 290 (1): 61-68.
    [168] Koyanaka H, Matsubaya O, Koyanaka Y, et al. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ -MnO_2 Journal of Electroanalytical Chemistry, 2003, 559: 77-81.
    [169] Aitchison P , Ammundsen B, Bell T, et al. Proton insertion in spinel lithium manganates and the effect of manganese substitution. Physica B: Condensed Matter, 2000, 276-278: 847-848.
    [170] Ammundsen B, Islam M S, Jones D J, et al. Local structure and defect chemistry of substituted lithiummanganate spinels: X-ray absorption and computer simulation studies. Journal of Power Sources, 1999, 81-82: 500-504.
    [171] Ammundsen B, Jones D J, Roziere J. X-Ray Absorption Fine Structure Spectroscopy as a Probe of Local Structure in Lithium Manganese Oxides. Journal of Solid State Chemistry, 1998, 141 (1): 294-297.
    [172] Aitchison P, Ammundsen B, Jones D J, et al. Cobalt substitution in lithium manganate spinels: examination of local structure and lithium extraction by XAFS. Journal of Materials Chemistry, 1999, 9 (12): 3125-3130.
    [173] Ammundsen B, Jones D J, Roziere J, et al. Effect of Chromium Substitution on the Local Structure and Insertion Chemistry of Spinel Lithium Manganates: Investigation by X-ray Absorption Fine Structure Spectroscopy. The Journal of Physical Chemistry B, 1998, 102 (41): 7939-7948.
    [174] Liu R S, Jang L Y, Chen J M, et al. X-ray Absorption Studies in Spinel-Type LiMn_2O_4. Journal of Solid State Chemistry, 1997, 128 (2): 326-329.
    [175] Ammundsen B, Burns G R, Islam M S, et al. Lattice Dynamics and Vibrational Spectra of Lithium Manganese Oxides: A Computer Simulation and Spectroscopic Study. The Journal of Physical Chemistry B, 1999, 103 (25): 5175-5180.
    [176] Ammundsen B, Islam M S, Jones D J, et al. Computer Modelling of Lithium and Proton Intercalation in Spinel Lithium Manganates: Effect of Octahedral Vacancies. Molecular Crystals and Liquid Crystals, 1998, 311 (1): 109 - 114.
    [177] Fang CM, deWijs GA. Local Structure and Chemical Bonding of Protonated Li_xMn_2O_4 Spinels from First Principles. Chemistry of Materials, 2006, 18 (5): 1169-1173.
    
    [178] David MP, Simon; D, Fooken; M, et al. ~6Li MAS NMR study of stoichiometric and chemically delithiated Li_xMn_2O_4 spinels. Journal of Materials Chemistry, 2003, 13 (4): 963-968.
    [179] Kanzaki Y, Suzuki N, Chitrakar R, et al. ~7Li/~6Li Isotope Separation on Inorganic Ion-Exchangers and NMR Study of the H*/Li+ Ion-Exchange Reaction. The Journal of Physical Chemistry B, 2002, 106 (5): 988-995.
    [180] Ebinger H D, Detje M, Jansch H J, et al. NMR study of the lithium adsorption. Surface Science, 1995, 331-333 (Part 1): 759-763.
    [181] Suzuki A, Nomura M, Fujii Y. Measurement of Li-NMR chemical shifts on adsorbed Li ions in strongly acidic cation exchange resins. Solvent Extraction and Ion Exchange, 1999, 17 (2): 419-427.
    [182] Grey C P, Dupre N. NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries. Chemical Reviews, 2004, 104 (10): 4493-4512.
    [183] Paik Y, Grey C P, Johnson C S, et al. Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides. Chemistry of Materials, 2002, 14 (12): 5109-5115.
    
    [184] Paik Y, Osegovic J P, Wang F, et al. ~2H MAS NMR Studies of the Manganese Dioxide Tunnel Structures and Hydroxides Used as Cathode Materials in Primary Batteries. Journal of the American Chemical Society, 2001, 123 (38): 9367-9377.
    [185] Kim Y S, Kanoh H, Hirotsu T, et al. Chemical bonding of ion-exchange type sites in spinel-type manganese oxides Li_(1.33)Mn_(1.67)O_4. Materials Research Bulletin, 2002, 37 (2): 391-396.
    [186] Kim Y S, Kanoh H, Hirotsu T, et al. Determination of the Chemical Bonding of Ionic Lithium and Proton Exchange in Spinel-Type Manganese Oxides(HMn_2O_4). Bulletin of the Chemical Society of Japan, 2002, 75 (1): 55-58.
    [187] Kim Y S, Kanoh H, Chitrakar R, et al. Electronic Structure and Chemical Bonding of Li and Protons in Spinel Type Manganese Oxides by Cluster Calculation(HMn_2O_4). Chemistry Letters, 2000, 29 (10): 1224-1225.
    [188] Berg H, Kelder E M, Thomas J O. Neutron diffraction study of stoichiometric spinel Li_(1+x)Mn_(2-x)O_4 showing octahedral 16c-site Li-occupation. Journal of Materials Chemistry, 1999, 9 (2): 427-429.
    [189] Wagemaker M, Simon DR, Kelder EM, et al. Proton positions in spinel H_(0.9)Li_(0.1)[Li_(0.33)Ti_(1.67)]O_4, an ion-exchanged spinel Li_1[Li_(0.33)Ti_(1.67)]O_4. Physica B: Condensed Matter, 2004, 350 (1-3):E995-E998.
    [190] Simon DR, Kelder EM, Wagemaker M, et al. Characterization of proton exchanged Li_4Ti_5O_(12) spinel material. Solid State Ionics, 2006, 177 (26-32): 2759-2768.
    [191] Leont' eva G V, Vol' khin V V. Inorganic cation exchangers having a sieve effect and their use for separation of alkali metals. Russian Journal of Applied Chemistry. 1971, 44 (12): 2700-2704.
    [192] Gao Y, Richard M N, Dahn J R. Photoelectron spectroscopy studies of Li_(1+x)Mn_(2-x)O_4 for Li ion battery applications. Journal of Applied Physics, 1996, 80 (7): 4141-4152.
    [193] Miyai Y, Ooi K, Katoh S. Preparation and ion-exchange properties of ion-sieve manganese oxide based on Mg_2MnO_4. Journal of Colloid and Interface Science, 1989, 130(2): 535-541.
    [194] Ooi K, Miyai Y, Sakakihara J. Mechanism of Li~+ insertion in spinel-type manganese oxide. Redox and ion-exchange reactions. Langmuir, 1991, 7 (6): 1167-1171.
    [195] Sato K, Poojary DM, Clearfield A, et al. The Surface Structure of the Proton-Exchanged Lithium Manganese Oxide Spinels and Their Lithium-Ion Sieve Properties. Journal of Solid State Chemistry, 1997, 131 (1): 84-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700