用户名: 密码: 验证码:
纳米结构碳化硅和碳材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先综述了纳米材料的结构、性质、应用及制备方法,重点阐述了纳米结构碳化硅及碳材料的研究进展及发展趋势。在对碳化硅及碳材料的制备、应用等方面的发展现状进行了充分调研的基础上采用硫辅助方法低温制备出了高品质的晶态立方碳化硅纳米线,并发现纳米线的生长过程符合VLS生长机理;以废塑料为原料,与硅粉在升华硫粉辅助条件下制备出了立方碳化硅六角片及纳米线,这不但可以变废为宝,充分利用固体废弃物,还对废塑料污染环境给出了一种可能的解决方案;采用高温裂解方法在不锈钢高压釜中,于铜及镁基底上实现了从一维碳纳米线到二维树叶状碳片,再到三维实心碳球及丁香花状碳包覆四氧化三铁分级结构材料的控制合成。论文主要工作内容概括如下:
     1.采用高压釜技术,以硅粉作为硅源,四氯乙烯为碳源,金属钠为还原剂,升华硫粉为反应辅助剂,在130℃得到了结晶品质良好的3C-SiC内米线,其直径主要集中在30纳米,长度可达数十微米,高分辨电镜照片显示该纳米线生长方向为[111];不加入硫粉,于270℃也能获得直径为40-120纳米的立方相碳化硅纳米线,但是线的产率相对于加硫粉辅助的要低的多。延长反应时间一定程度上有益于纳米线的形成;过高的反应温度并不能明显增加纳米线的含量,反而使得纳米线尺寸分布变宽;增加或减少升华硫粉的用量都会降低碳化硅纳米线的产率。此外,根据试验结果并结合相关文献报道我们发现,该实验中碳化硅纳米线的具体形成机理为气-液-固(VLS)生长机制。
     2.利用硅粉和废塑料作为原料,金属钠和镁粉为还原剂,硫粉为辅助剂在不锈钢高压釜中于350-500℃得到了结晶品质良好的立方碳化硅纳米材料。当所用废塑料为高密度聚乙烯(HDPE:洗发水及化妆品包装瓶、矿泉水瓶等)时,所得产物中有部分为3C-SiC六方片(约占40%),其尺寸主要集中在300-500纳米,厚度约50纳米;当所用废塑料为低密度聚乙烯(LDPE:各种废塑料袋、农用地膜等)时,所得产物中有部分为3C-SiC纳米线(约占35%),其直径约为50纳米,长度可达数十微米;当所用废塑料为聚对苯二甲酸乙二醇酯(PET:透明汽水及饮品瓶)时,所得产物大部分为带有褶皱的厚度约100纳米的二维片状结构,并伴随有少量类六角片(约20%)共存。当废塑料主要成分为HDPE及LDPI时,所得碳化硅均为立方相;而当废塑料主要成分为PET时,所得碳化硅材料为立方和六方混合相且伴随有堆垛层错现象。通过系统地观察采用HDPE作碳源时其不同时间段条件下样品的形貌,我们认为立方相碳化硅六角片状结构的形成过程属于自组装的定向聚集机制。
     3.利用高温分解路线,在铜及镁基底上,以二茂铁为催化剂,高温氯化分解二氯甲烷,分别制备出了树叶状碳片及碳纳米线阵列,通过调节反应参数对二维碳片厚度于50-200纳米之间可控。当我们以其它卤代烷烃替代二氯甲烷时可以获得单分散的或相互粘连的微米级实心碳球;如果以甲醇、乙醇取代二氯甲烷并适当增加二茂铁的用量可以得到仙人掌状及丁香花状碳包覆四氧化三铁分级结构材料。通过选择不同的反应体系,我们可以很容易地实现:从一维碳纳米线到二维树叶状碳片,再到三维实心碳球及丁香花状碳包覆四氧化三铁分级结构材料的控制合成。借助于扫描电镜仔细观察二维碳材料的具体生长过程我们发现,其符合扩散限制聚集分型生长机制。
     此外,我们将附着碳材料的铜基底裁切成所需的电极片形状,以金属锂片为对电极,组装成模拟电池,在电压区间为0.01-3 V,电流密度为100 mA/g条件下进行充放电测试,其首次放电比容量为730 mAh/g,而充电比容量达到321mAh/g。经过简单的几次充放电循环,其比容量稳定在340 mAh/g以上;当电流密度为300 mA/g,充放电循环50圈后其比容量稳定在220 mAh/g左右。
In this dissertation, the structures, properties, applications and fabrication methods are summarized at first; the research developments of nano-structured SiC and carbon materials are mainly discussed. After investigating the synthesis routes and applications of SiC and carbon materials thoroughly, we prepared crystalline cubic SiC nanowires via a sulfur-assisted approach at low temperature; the growth mechanism of the nanowires accord with the vapor-liquid-solid (VLS) growth process. Cubic SiC hexagonal platelets and nanowires were also fabricated by waste plastics and Si powder via sulfur-assisted; this method could make the best of the waste plastics and provide a possible way to solve the plastic pollution. In addition, carbon materials with various morphologies were prepared on the copper and magnesium substrate by pyrolysis of dichloromethane and ferrocene in stainless steel autoclave. In this process, the morphology was controlled to transform from 1-D nanowires to 2-D leaf-like carbon sheets then to 3-D nanospheres and lilac shaped carbon-coated iron oxide hierarchical structures. The dissertation is summarized as follows:
     1. Highly crystalline 3C-SiC nanowires were fabricated in an autoclave at 130℃by silicon powder as Si source, tetrachlorethylene as carbon source, metallic Na as reductant and sulfur powder as assistant agent. The average diameter of the 3C-SiC nanowires was about 30 nm and the length was up to tens of micrometers. High-resolution TEM photos indicate that preferential growth of the nanowires was along [111] crystal direction. The cubic SiC nanowires with the length of 40-120 nm could also be prepared at 270℃ without sulfur powder additive; however, the ratio of the nanowires was much lower than the typical reaction with sulfur powder. Increasing the reaction time could improve the yield of the nanowires in a certain extent; excessively high temperature could not enhance the content of the nanowires, and the size distribution would broaden instead; either increasing or decreasing the dosage of sulfur powder would reduce the yield of SiC nanowires. In addition, based on the experiment results and related reports, we can draw a conclusion that the possible growth mechanism of SiC nanowires was vapor-liquid-solid(VLS) growth process.
     2. The cubic SiC nanomaterials were synthesized in the autoclave at 350-500℃by silicon powder and waste plastics as reagents, metallic Na and Mg powder as reductants, sulfur powder as assistant agent. When the waste plastic was high-density polyethylene(HDPE:detergent bottles or beverage bottles), hexagonal platelets of 3C-SiC (about 40%) could be observed; the length of SiC hexagonal platelet-like crystals was 300-500 nm, and the thickness of these platelets was about 50 nm. If the low-density polyethylene (all kinds of waste plastic bags, agricultural film, etc.) was applied as carbon source instead,3C-SiC nanowires (about 35%) were found in the final product; the average diameter of the nanowires was about 50nm and the length was up to tens of micrometers. When the waste plastic was polyethylene terephthalate(PET:beverage, food and other liquid containers), most of the product were two-dimensional crapy lamellas with the thickness of about 100 nm and about 20% hexagonal platelet-like crystals were observed. When the carbon source was HDPE and LDPE, the as-obtained SiC was cubic; however, when the waste plastic was PET, the as-obtained SiC was a mixture of cubic and hexagonal with the phenomenon of stacking fault. Based on the observation of the morphologies of SiC fabricated in different time by HDPE, we supposed that the growth process of cubic SiC hexagonal platelets was self-assembled oriented aggregation mechanism.
     3. Leaf-like carbon sheets and carbon nanowires array were synthesized through a pyrolysis route on copper and magnesium substrates by ferrocene as catalyzer and dichloromethane as carbon source; the thickness of the 2-D nanosheets could be controlled from 50 nm to 200 nm by adjusting the experimental parameters. When the carbon source was replaced by other halogenated alkanes, monodispersed or chained-like solid carbon spheres could be obtained; if methanol or ethanol was applied instead of dichloromethane and the dosage of ferrocene was increased appropriately, the cactus-like and lilac shaped carbon-coated iron oxide hierarchical structure material could be obtained. We could easily achieved the controlled synthesis from 1-D nanowires to 2-D leaf-like carbon sheets then to 3-D nanospheres and lilac shaped carbon-coated iron oxide hierarchical structures by choosing different reaction system. The growth process of the 2D carbon materials was carefully observed by SEM, and it is considered that Diffusion-Limited-Aggregation mechanism could be responsible for the growth.
     In addition, we cut the copper attached by carbon materials into desired electrode shape, applied lithium metal piece as the counter electrode, assembled into a simulation lithium-ion battery. The voltage range was the 0.01-3 V, and current density was 100 mA /g for the charge and discharge test. The first discharge capacity was 730 mAh/g, while the charge capacity can be to 321 mAh/g. After several charge and discharge cycles, its specific capacity stabilized at 340 mAh/g or more; when the current density was 300 mA/g, after 50 cycles, its capacity also stabilized at about 220 mAh/g.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].科学出版社,2002.
    [2]解思深.超微粒子物理[J].物理,1990,19(10):577-82.
    [3]FEYNMAN R P. There's plenty of room at the bottom [J]. J Microelectromechanical Systems,1992, (1):60-6.
    [4]R B, U H, H G. Trans Jpn Inst Met Suppl-Transactions of the Japan Institute of Metals Supplement [M]. All Acronyms,1986.
    [5]王世敏,许祖勋,傅晶.纳米材料制备技术[M].化学工业出版社,2001.
    [6]BRRINGER R, GLEITER H, KLEIN H P, et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder [J]. Physics Letters A,1984,102(8):365-9.
    [7]朱静.纳米材料和器件[M].清华大学出版社,2003.
    [8]HAGFELDT A, GRAETZEL M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chemical Reviews,1995,95(1):49-68.
    [9]KLABUNDE K J, STARK J, KOPER O, et al. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. The Journal of Physical Chemistry,1996,100(30):12142-53.
    [10]CAVICCHI R E, SILSBEE R H. Coulomb Suppression of Tunneling Rate from Small Metal Particles [J]. Physical Review Letters,1984,52(16):1453-6.
    [11]BALL P, GARWIN L. Science at the atomic scale [J]. Nature,1992,355(6363):761-6.
    [12]HULTEEN J C, MARTIN C R. Nanoparticles and Nanostructured Films:Preparation, Characterization and Applications [M]. WILEY-VCH,1998.
    [13]LINDEROTH S, MORUP. S. Ultrasmall iron particles prepared by use of sodium amalgam [J]. Journal of Applied Physics,1990,67(9):4996-8.
    [14]LEGGETT A J, CHAKRAVARTY S, DORSEY A T, et al. Dynamics of the dissipative two-state system [J]. Reviews of Modern Physics,1987,59(1):1-85.
    [15]TAKAGAHARA T. Effects of dielectric confinement and electron-hole exchange interaction on excitonic states in semiconductor quantum dots [J]. Physical Review B,1993,47(8):4569-84.
    [16]张立德.纳米材料与纳米体系物理—面向21世纪的新领域[J].中国科学基金,1994,7):198-200.
    [17]张立德,严东生,冯端.材料新星—纳米材料科学[M].湖南科学技术出版社,1997.
    [18]刘新云.纳米材料的应用前景及研究进展[J].安徽化工,2002,28(5):27-9.
    [19]JIANG L, ZHAO Y, ZHAI J. A Lotus-Leaf-like Superhydrophobic Surface:A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics [J]. Angewandte Chemie International Edition,2004,43(33):4338-41.
    [20]ZHENG Y, BAI H, HUANG Z, et al. Directional water collection on wetted spider silk [J]. Nature,2010,463(7281):640-3.
    [21]BAI H, TIAN X, ZHENG Y, et al. Direction Controlled Driving of Tiny Water Drops on Bioinspired Artificial Spider Silks [J]. Advanced Materials,2010,22(48):5521-5.
    [22]JIN M, FENG X, FENG L, et al. Superhydrophobic Aligned Polystyrene Nanotube Films with High Adhesive Force [J]. Advanced Materials,2005,17(16):1977-81.
    [23]FENG X, FENG L, JIN M, et al. Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films [J]. Journal of the American Chemical Society,2003, 126(1):62-3.
    [24]江永清,黄绍春,肖灿.纳米材料在光电探测器中的应用[J].半导体光电,2006,27(3):225-30.
    [25]ANPO M, SHIMA T, KODAMA S, et al. Photocatalytic hydrogenation of propyne with water on small-particle titania:size quantization effects and reaction intermediates [J]. The Journal of Physical Chemistry,1987,91(16):4305-10.
    [26]ROLISON D R. Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity [J]. Science,2003,299(5613):1698-701.
    [27]BELL A T. The Impact of Nanoscience on Heterogeneous Catalysis [J]. Science,2003, 299(5613):1688-91.
    [28]MACILWAIN C. Nanotech thinks big [J]. Nature,2000,405(6788):730-2.
    [29]吕振林,高积强,金志浩.碳化硅陶瓷材料及其制备[J].机械工程材料,1999,23(3):1-4.
    [30]李鹏.碳化硅等含硅纳米材料的溶剂热合成[D];山东大学,2008.
    [31]张荣,施洪涛,余是东,et al.蓝光半导体碳化硅-材料、器件和工艺[J].固体电子学研究与进展,1996, (2):94-102.
    [32]PENG X H, NAYAK S K, ALIZADEH A, et al. First-principles study of the effects of polytype and size on energy gaps in SiC nanoclusters [J]. Journal of Applied Physics,2007,102(2): 024304-5.
    [33]莱利·斯米尔滕斯.碳化硅高温半导体[M].上海:上海科学技术出版社,1962.
    [34]WIEBKE G. Berichte der Deutschen Keramischen Gesellschaft [M]. European Virtual Institute for Speciation Analysis 1960.
    [35]SCACE R I, SLACK G A. Solubility of Carbon in Silicon and Germanium [J]. The Journal of Chemical Physics,1959,30(6):1551-5.
    [36]LANDOLDT-BORASTEIN. Landoldt-Borastein, New Series, Group Ⅲ [M]. Springer Materials,1984.
    [37]ZINOVEV A V, ELAM J W, MOORE J F, et al. Coating of SiC surface by thin carbon films using the carbide-derived carbon process [J]. Thin Solid Films,2004,469-470:135-41.
    [38]SUI J, LU J. The formation of a dual-layer carbon film on silicon carbide using a combination of carbide-derived carbon process and chemical vapor deposition in a CCl4-containing atmosphere [J]. Carbon,2011,49(2):732-6.
    [39]JEONG Y K, NIIHARA K. Microstructure and mechanical properties of pressureless sintered A12O3/Sic nanocomposites [J]. Nanostructured Materials,1997,9(1-8):193-6.
    [40]刘玲,亢茂青,下心葵.SiC晶须表面化学与力学性能的研究[J].兵器材料科学与工程,2000,23(5):59-64.
    [41]LIAO L-S, BAO X-M, YANG Z-F, et al. Intense blue emission from porous beta-SiC formed on C[sup+]-implanted silicon [J]. Applied Physics Letters,1995,66(18):2382-4.
    [42]廖良生,鲍希茂.硅基多孔β-SiC蓝光发射的稳定性[J].1996,17(1):76-80.
    [43]LIU R, YANG B, FU Z, et al. Stable blue-green and ul traviolet photoluminescence from silicon carbide on porous silicon [J]. Solid State Communications,1998,106(4):211-4.
    [44]FENG D H, XU Z Z, JIA T Q, et al. Quantum size effects on exciton states in indirect-gap quantum dots [J]. Physical Review B,2003,68(3):035334.
    [45]RURALI R. Electronic and structural properties of silicon carbide nanowires [J]. Physical Review B,2005,71(20):205405.
    [46]REBOREDO F A, PIZZAGALLI L, GALLI G. Computational Engineering of the Stability and Optical Gaps of SiC Quantum Dots [J]. Nano Letters,2004,4(5):801-4.
    [47]KRISHNARAO R V, GODKHINDI M M, MUKUNDA P G I, et al. Direct Pyrolysis of Raw Rice Husks for Maximization of Silicon Carbide Whisker Formation [J]. Journal of the American Ceramic Society,1991,74(11):2869-75.
    [48]CUTLER, B I. PRODUCTION OF SILICON NITRIDE FROM RICE HULLS:USA.1974-3855395.
    [49]周祖福.复合材料学[M].武汉工业大学出版社,1995.
    [50]WANG Z L, DAI Z R, GAO R P, et al. Side-by-side silicon carbide--silica biaxial nanowires: Synthesis, structure, and mechanical properties [J]. Applied Physics Letters,2000,77(21):3349-51.
    [51]ZHANG Y, WANG N, GAO S, et al. A Simple Method To Synthesize Nanowires [J]. Chemistry of Materials,2002,14(8):3564-8.
    [52]ZHOU D, SERAPHIN S. Production of silicon carbide whiskers from carbon nanoclusters [J]. Chemical Physics Letters,1994,222(3):233-8.
    [53]DAI H, WONG E W, LU Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature,1995,375(6534):769-72.
    [54]TANG C C, FAN S S, DANG H Y, et al. Growth of SiC nanorods prepared by carbon nanorubes-confined reaction [J]. Journal of Crystal Growth,2000,210(4):595-9.
    [55]PAN Z W, XIE S S, CHANG B H, et al. Very long carbon nanotubes [J]. Nature,1998, 394(6694):631-2.
    [56]PAN Z, LAI H L, AU F C K, et al. Oriented Silicon Carbide Nanowires:Synthesis and Field Emission Properties [J]. Advanced Materials,2000,12(16):1186-90.
    [57]ZHANG Y, SHI E-W, CHEN Z-Z, et al. Large-scale fabrication of silicon carbide hollow spheres [J]. Journal of Materials Chemistry,2006,16(42):4141-5.
    [58]LI Z, ZHANG J, MENG A, et al. Large-Area Highly-Oriented SiC Nanowire Arrays: Synthesis, Raman, and Photoluminescence Properties [J]. The Journal of Physical Chemistry B,2006, 110(45):22382-6.
    [59]SEEGER T, KOHLER-REDLICH P, R HLE M. Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge [J]. Advanced Materials,2000,12(4):279-82.
    [60]LI Y, XIE S, ZHOU W, et al. Nanographite ribbons grown from a SiC arc-discharge in a hydrogen atmosphere [J]. Carbon,2001,39(4):626-8.
    [61]CHIU S-C, HUANG C-W, LI Y-Y. Synthesis of High-Purity Silicon Carbide Nanowires by a Catalyst-Free Arc-Discharge Method [J]. The Journal of Physical Chemistry C,2007,111(28):10294-7.
    [62]ZHOU X T, WANG N, LAI H L, et al. beta-SiC nanorods synthesized by hot filament chemical vapor deposition [J]. Applied Physics Letters,1999,74(26):3942-4.
    [63]ZHOU X T, WANG N, AU F C K, et al. Growth and emission properties of [beta]-SiC nanorods [J]. Materials Science and Engineering A,2000,286(1):119-24.
    [64]SEONG H-K, CHOI H-J, LEE S-K, et al. Optical and electrical transport properties in silicon carbide nanowires [J]. Applied Physics Letters,2004,85(7):1256-8.
    [65]BECHELANY M, BRIOUDE A, STADELMANN P, et al. Very Long SiC-Based Coaxial Nanocables with Tunable Chemical Composition [J]. Advanced Functional Materials,2007,17(16): 3251-7.
    [66]张洪涛,徐重阳Sol-gel法制备纳米碳化硅晶须的研究[J].电子元件与材料,2000,34(1):9-12.
    [67]MENG G W, ZHANG L D, MO C M, et al. Preparation of β-SiC Nanorods with and Without Amorphous SiO2 Wrapping Layers [J]. Journal of Materials Research,1998,13(09):2533-8.
    [68]HAO Y-J, JIN G-Q, HAN X-D, et al. Synthesis and characterization of bamboo-like SiC nanofibers [J]. Materials Letters,2006,60(11):1334-7.
    [69]J H Y, B W J, S S D, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel [J]. Nanotechnology,2006,17(12):2870-4.
    [70]WANG D-H, ET AL. Periodically twinned SiC nanowires [J]. Nanotechnology,2008,19(21): 215602.
    [71]LU Q, HU J, TANG K, et al. Growth of SiC nanorods at low temperature [J]. Applied Physics Letters,1999,75(4):507-9.
    [72]SHEN G, CHEN D, TANG K, et al. Silicon carbide hollow nanospheres, nanowires and coaxial nanowires [J]. Chemical Physics Letters,2003,375(1-2):177-84.
    [73]LI P, XU L, QIAN Y. Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires [J]. Crystal Growth & Design,2008,8(7):2431-6.
    [74]ZHANG Y, SUENAGA K, COLLIEX C, et al. Coaxial Nanocable:Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon [J]. Science,1998,281(5379):973-5.
    [75]WU R B, YANG G Y, PAN Y, et al. Synthesis of silicon carbide hexagonal nanoprisms [J]. Applied Physics A:Materials Science & amp; Processing,2007,86(2):271-4.
    [76]WU R, PAN Y, YANG G, et al. Twinned SiC Zigzag Nanoneedles [J]. The Journal of Physical Chemistry C,2007,111(17):6233-7.
    [77]ZHANG D, ALKHATEEB A, HAN H, et al. Silicon Carbide Nanosprings [J]. Nano Letters, 2003,3(7):983-7.
    [78]SHEN G, BANDO Y, GOLBERG D. Self-Assembled Hierarchical Single-Crystalline [3-SiC Nanoarchitectures [J]. Crystal Growth & Design,2006,7(1):35-8.
    [79]KROTO H W, HEATH J R, O'BRIEN S C, et al. C60:Buckminsterfullerene [J]. Nature, 1985,318(6042):162-3.
    [80]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-8.
    [81]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-9.
    [82]LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films [J]. Chemical Communications,2010,46(19):3256-8.
    [83]UGARTE D. Morphology and structure of graphitic soot particles generated in arc-discharge C60 production [J]. Chemical Physics Letters,1992,198(6):596-602.
    [84]WATANABE N, SHIROMARU H, NEGISHI Y, et al. Reactions of scandium--carbon binary cluster ions CnSc+(n=2-6) with O2 molecules in an rf ion trap [J]. Chemical Physics Letters,1993, 207(4-6):493-7.
    [85]LAPLAZE D, BERNIER P, MASER W K, et al. Carbon nanotubes:The solar approach [J]. Carbon,1998,36(5-6):685-8.
    [86]NASIBULIN A G, MOISALA A, BROWN D P, et al. Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors [J]. Carbon,2003,41(14): 2711-24.
    [87]GORELIK T, URBAN S, FALK F, et al. Carbon onions produced by laser irradiation of amorphous silicon carbide [J]. Chemical Physics Letters,2003,373(5-6):642-5.
    [88]BETHUNE D S, KLANG C H, DE VRIES M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature,1993,363(6430):605-7.
    [89]GUERRET-PIECOURT C, BOUAR Y L, LOLSEAU A, et al. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes [J]. Nature,1994, 372(6508):761-5.
    [90]KIANG C-H, GODDARD W A, BEYERS R, et al. Carbon nanotubes with single-layer walls [J]. Carbon,1995,33(7):903-14.
    [91]JOURNET C, MASER W K, BERNIER P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique [J]. Nature,1997,388(6644):756-8.
    [92]ISHIGAMI M, CUMINGS J, ZETTL A, et al. A simple method for the continuous production of carbon nanotubes [J]. Chemical Physics Letters,2000,319(5-6):457-9.
    [93]YUDASAKA M, ICHIHASHI T, KOMATSU T, et al. Single-wall carbon nanotubes formed by a single laser-beam pulse [J]. Chemical Physics Letters,1999,299(1):91-6.
    [94]SEN R, OHTSUKA Y, ISHIGAKI T, et al. Time period for the growth of single-wall carbon nanotubes in the laser ablation process:evidence from gas dynamic studies and time resolved imaging [J]. Chemical Physics Letters,2000,332(5-6):467-73.
    [95]YUDASAKA M, KOKAI F, TAKAHASHI K, et al. Formation of Single-Wall Carbon Nanotubes:Comparison of CO2 Laser Ablation and Nd:YAG Laser Ablation [J]. The Journal of Physical Chemistry B,1999,103(18):3576-81.
    [96]CHEN B, PARKER G, HAN J, et al. Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization [J]. Chemistry of Materials,2002,14(4):1891-6.
    [97]BONARD J-M, CHAUVIN P, KLINKE C. Monodisperse Multiwall Carbon Nanotubes Obtained with Ferritin as Catalyst [J]. Nano Letters,2002,2(6):665-7.
    [98]OKAI M, MUNEYOSHI T, YAGUCHI T, et al. Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition [J]. Applied Physics Letters,2000,77(21): 3468-70.
    [99]ANDREWS R, JACQUES D, QIAN D, et al. Multiwall Carbon Nanotubes:Synthesis and Application [J]. Accounts of Chemical Research,2002,35(12):1008-17.
    [100]JIANG Y, WU Y, ZHANG S, et al. A Catalytic-Assembly Solvothermal Route to Multiwall Carbon Nanotubes at a Moderate Temperature [J]. Journal of the American Chemical Society,2000, 122(49):12383-4.
    [101]LIU J, SHAO M, CHEN X, et al. Large-Scale Synthesis of Carbon Nanotubes by an Ethanol Thermal Reduction Process [J]. Journal of the American Chemical Society,2003,125(27):8088-9.
    [102]SHAO M, LI Q, WU J, et al. Benzene-thermal route to carbon nanotubes at a moderate temperature [J]. Carbon,2002,40(15):2961-3.
    [103]XIONG Y, XIE Y, LI X, et al. Production of novel amorphous carbon nanostructures from ferrocene in low-temperature solution [J]. Carbon,2004,42(8-9):1447-53.
    [104]WANG Y, SHI Z, HUANG Y, et al. Supercapacitor Devices Based on Graphene Materials [J]. The Journal of Physical Chemistry C,2009,113(30):13103-7.
    [105]WANG D, CHOI D, LI J, et al. Self-Assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion [J]. ACS Nano,2009,3(4):907-14.
    [106]SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene [J]. Nat Mater,2007,6(9):652-5.
    [107]SHI Y, FANG W, ZHANG K, et al. Photoelectrical Response in Single-Layer Graphene Transistors [J]. Small,2009,5(17):2005-11.
    [108]HE S, SONG B, LI D, et al. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNAAnalysis [J]. Advanced Functional Materials,2010,20(3):453-9.
    [109]BERGER C, SONG Z, LI X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene [J]. Science,2006,312(5777):1191-6.
    [110]HUANG H, CHEN W, CHEN S, et al. Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001) [J]. ACS Nano,2008,2(12):2513-8.
    [111]PAN Y, ZHANG H, SHI D, et al. Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001) [J]. Adv. Mater.,2009,21(27):2777-80.
    [112]JUNG I, PELTON M, PINER R, et al. Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets [J]. Nano Letters,2007,7(12):3569-75.
    [113]LI D, MULLER M B, GILJE S, et al. Processable aqueous dispersions of graphene nanosheets [J]. Nat Nano,2008,3(2):101-5.
    [114]TASIS D, TAGMATARCHIS N, BIANCO A, et al. Chemistry of Carbon Nanotubes [J]. Chemical Reviews,2006,106(3):1105-36.
    [115]NIYOGI S, BEKYAROVA E, ITKIS M E, et al. Solution Properties of Graphite and Graphene [J]. Journal of the American Chemical Society,2006,128(24):7720-1.
    [116]PARK S, RUOFF R S. Chemical methods for the production of graphenes [J]. Nat Nano, 2009,4(4):217-24.
    [117]STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials [J]. Nature,2006,442(7100):282-6.
    [118]LOMEDA J R, DOYLE C D, KOSYNKIN D V, et al. Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets [J]. Journal of the American Chemical Society,2008,130(48):16201-6.
    [119]RAMANATHANT, ABDALA A A, STANKOVICHS, et al. Functionalized graphene sheets for polymer nanocomposites [J]. Nat Nano,2008,3(6):327-31.
    [120]KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-6.
    [121]CANO-MARQUEZ A G, RODR GUEZ-MACIAS F J, CAMPOS-DELGADO J, et al. Ex-MWNTs:Graphene Sheets and Ribbons Produced by Lithium Intercalation and Exfoliation of Carbon Nanotubes [J]. Nano Letters,2009,9(4):1527-33.
    [122]VALLES C, DRUMMOND C, SAADAOUI H, et al. Solutions of Negatively Charged Graphene Sheets and Ribbons [J]. Journal of the American Chemical Society,2008,130(47):15802-4.
    [123]ZHOU X, LIU Z. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets [J]. Chemical Communications,2010,46(15):2611-3.
    [124]BUNDY F P, HALL H T, STRONG H M, et al. Man-Made Diamonds [J]. Nature,1955, 176(5)1-5.
    [125]ANGUS J C, WILL H A, STANKO W S. Growth of Diamond Seed Crystals by Vapor Deposition [J]. Journal of Applied Physics,1968,39(6):2915-22.
    [126]BADZIAG P, VERWOERD W S, ELLIS W P, et al. Nanometre-sized diamonds are more stable than graphite [J]. Nature,1990,343(6255):244-5.
    [127]GOGOTSI Y, WELZ S, ERSOY D A, et al. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure [J]. Nature,2001,411(6835):283-7.
    [128]LI Y, QIAN Y, LIAO H, et al. A Reduction-Pyrolysis-Catalysis Synthesis of Diamond [J]. Science,1998,281(5374):246-7.
    [129]LOU Z, CHEN Q, ZHANG Y, et al. Diamond Formation by Reduction of Carbon Dioxide at Low Temperatures [J]. Journal of the American Chemical Society,2003,125(31):9302-3.
    [130]SLOAN J, COOK J, L. H. GREEN M, et al. Crystallisation inside fullerene related structures [J]. Journal of Materials Chemistry,1997,7(7):1089-95.
    [131]HUO J, SONG H, CHEN X. Preparation of carbon-encapsulated iron nanoparticles by co-carbonization of aromatic heavy oil and ferrocene [J]. Carbon,2004,42(15):3177-82.
    [132]TSANG S C, CHEN Y K, HARRIS P J F, et al. A simple chemical method of opening and filling carbon nanotubes [J]. Nature,1994,372(6502):159-62.
    [133]PRADHAN B K, TOBA T, KYOTANI T, et al. Inclusion of Crystalline Iron Oxide Nanoparticles in Uniform Carbon Nanotubes Prepared by a Template Carbonization Method [J]. Chemistry of Materials,1998,10(9):2510-5.
    [134]SCHNITZLER M C, OLIVEIRA M M, UGARTE D, et al. One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors [J]. Chemical Physics Letters,2003,381(5-6):541-8.
    [135]XU L, ZHANG W, DING Y, et al. Formation, Characterization, and Magnetic Properties of Fe3O4 Nanowires Encapsulated in Carbon Microtubes [J]. The Journal of Physical Chemistry B,2004, 108(30):10859-62.
    [136]XU L, LIU J, DU J, et al. A self-assembly template approach to form hollow hexapod-like, flower-like and tube-like carbon materials [J]. Carbon,2005,43(7):1560-2.
    [137]XU L, DU J, LI P, et al. In Situ Synthesis, Magnetic Property, and Formation Mechanism of Fe3O4 Particles Encapsulated in 1D Bamboo-Shaped Carbon Microtubes [J]. The Journal of Physical Chemistry B,2006,110(9):3871-5.
    [138]FAN N, MA X, LIU X, et al. The formation of a layer of Fe3O4 nanoplates between two carbon films [J]. Carbon,2007,45(9):1839-46.
    [1]SHOR J S, ZHANG X G, OSGOOD R M. Laser-Assisted Photoelectrochemical Etching of n-type Beta-SiC [J]. J Electrochem Soc,1992,139(4):1213-6.
    [2]CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications:A review [J]. Solid-State Electronics,1996,39(10): 1409-22.
    [3]HILLENBRAND R, TAUBNER T, KEILMANN F. Phonon-enhanced light-matter interaction at the nanometre scale [J]. Nature,2002,418(6894):159-62.
    [4]BACKES W H, BOBBERT P A, VAN HAERINGEN W. Energy-band structure of SiC polytypes by interface matching of electronic wave functions [J]. Physical Review B,1994,49(11): 7564.
    [5]GREFFET J-J, CARMINATI R, JOULAIN K, et al. Coherent emission of light by thermal sources [J]. Nature,2002,416(6876):61-4.
    [6]WANG D-H, ET AL. Periodically twinned SiC nanowires [J]. Nanotechnology,2008,19(21): 215602.
    [7]GUO X-N, SHANG R-J, WANG D-H, et al. Avoiding Loss of Catalytic Activity of Pd Nanoparticles Partially Embedded in Nanoditches in SiC Nanowires [J]. Nanoscale Res Lett,2009, 5(2):332-7.
    [8]J H Y, B W J, S S D, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel [J]. Nanotechnology,2006,17(12):2870-4.
    [9]LI Y, DOROZHKIN P S, BANDO Y, et al. Controllable Modification of SiC Nanowires Encapsulated in BN Nanotubes [J]. Advanced Materials,2005,17(5):545-9.
    [10]HU J Q, LU Q Y, TANG K B, et al. Synthesis and Characterization of SiC Nanowires through a Reduction-Carburization Route [J]. The Journal of Physical Chemistry B,2000,104(22):5251-4.
    [11]TANG C, BANDO Y. Effect of BN coatings on oxidation resistance and field emission of SiC nanowires [J]. Applied Physics Letters,2003,83(4):659-61.
    [12]GUNDIAH G, MADHAV G V, GOVINDARAJ A, et al. Synthesis and characterization of silicon carbide, silicon oxynitride and silicon nitride nanowires [J]. Journal of Materials Chemistry, 2002,12(5):1606-11.
    [13]HU J Q, BANDO Y, ZHAN J H, et al. Fabrication of ZnS/SiC nanocables, SiC-shelled ZnS nanoribbons (and sheets), and SiC nanotubes (and tubes) [J]. Applied Physics Letters,2004,85(14): 2932-4.
    [14]BOROWIAK-PALEN E, RUEMMELI M H, GEMMING T, et al. Bulk synthesis of carbon-filled silicon carbide nanotubes with a narrow diameter distribution [J]. Journal of Applied Physics, 2005,97(5):056102-3.
    [15]QADRI S B, IMAM M A, FENG C R, et al. Characteristics of plasma processed SiC nanocrystallites and nanorods [J]. Applied Physics Letters,2003,83(3):548-50.
    [16]LU Q, HU J, TANG K, et al. Growth of SiC nanorods at low temperature [J]. Applied Physics Letters,1999,75(4):507-9.
    [17]DAI H, WONG E W, LU Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature,1995,375(6534):769-72.
    [18]XI G, PENG Y, WAN S, et al. Lithium-Assisted Synthesis and Characterization of Crystalline 3C-SiC Nanobelts [J]. The Journal of Physical Chemistry B,2004,108(52):20102-4.
    [19]HATAKEYAMA F, KANZAKI S. Synthesis of Monodispersed Spherical (3-Silicon Carbide Powder by a Sol-Gel Process [J]. Journal of the American Ceramic Society,1990,73(7):2107-10.
    [20]SEOG I, KIM C. Preparation of monodispersed spherical silicon carbide by the sol-gel method [J]. Journal of Materials Science,1993,28(12):3277-82.
    [21]WANG C H, CHANG Y H, YEN M Y, et al. Synthesis of Silicon Carbide Nanostructures via a Simplified Yajima Process-Reaction at the Vapor-Liquid Interface [J]. Advanced Materials,2005, 17(4):419-22.
    [22]ALIVISATOS A P. Semiconductor Clusters, Nanocrystals, and Quantum Dots [J]. Science, 1996,271(5251):933-7.
    [23]MATSUMOTO T, TAKAHASHI J, TAMAKI T, et al. Blue-green luminescence from porous silicon carbide [J]. Applied Physics Letters,1994,64(2):226-8.
    [24]FAN J Y, WU X L, KONG F, et al. Luminescent silicon carbide nanocrystallites in 3C-SiC/polystyrene films [J]. Applied Physics Letters,2005,86(17):171903-3.
    [25]WU X L, SIU G G, STOKES M J, et al. Blue-emitting beta-SiC fabricated by annealing C[sub 60] coupled on porous silicon [J]. Applied Physics Letters,2000,77(9):1292-4.
    [26]WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam Mechanics:Elasticity, Strength, and Toughness of Nanorods and Nanotubes [J]. Science,1997,277(5334):1971-5.
    [27]YANG W, ARAKI H, TANG C, et al. Single-Crystal SiC Nanowires with a Thin Carbon Coating for Stronger and Tougher Ceramic Composites [J]. Advanced Materials,2005,17(12):1519-23.
    [28]ZHOU D, SERAPHIN S. Production of silicon carbide whiskers from carbon nanoclusters [J]. Chemical Physics Letters,1994,222(3):233-8.
    [29]TANG C C, FAN S S, DANG H Y, et al. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction [J]. Journal of Crystal Growth,2000,210(4):595-9.
    [30]SEEGER T, KOHLER-REDLICH P, R HLE M. Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge [J]. Advanced Materials,2000,12(4):279-82.
    [31]LI Y B, XIE S S, ZOU X P, et al. Large-scale synthesis of [beta]-SiC nanorods in the arc-discharge [J]. Journal of Crystal Growth,2001,223(1-2):125-8.
    [32]ZHANG Y, WANG N, HE R, et al. Synthesis of SiC nanorods using floating catalyst [J]. Solid State Communications,2001,118(11):595-8.
    [33]CAI K F, LEI Q, ZHANG A X. A Simple Route to Ultra Long SiC Nanowires [J]. Journal of Nanoscience and Nanotechnology,2007,7(2):580-3.
    [34]HAO X, WU Y, ZHAN J, et al. A Facile Sulfur Vapor Assisted Reaction Method To Grow Boron Nitride Nanorings at Relative Low Temperature [J]. The Journal of Physical Chemistry B,2005, 109(41):19188-90.
    [35]马海尼,靳国强,王英勇,et al铁-硫协同作用对甲苯热解产物的影响[J].新型炭材料,2007,22(2):126-30.
    [36]KOUMOTO K, TAKEDA S, PAI C H, et al. High-Resolution Electron Microscopy Observations of Stacking Faults in β-SiC [J]. Journal of the American Ceramic Society,1989,72(10): 1985-7.
    [37]NIU J J, WANG J N. A Simple Route to Synthesize Scales of Aligned Single-crystalline SiC Nanowires Arrays with Very Small Diameter and Optical Properties [J]. The Journal of Physical Chemistry B,2007,111(17):4368-73.
    [38]LI Z, ZHANG J, MENG A, et al. Large-Area Highly-Oriented SiC Nanowire Arrays: Synthesis, Raman, and Photoluminescence Properties [J]. The Journal of Physical Chemistry B,2006, 110(45):22382-6.
    [39]BECHELANY M, BRIOUDE A, CORNU D, et al. A Raman Spectroscopy Study of Individual SiC Nanowires [J]. Advanced Functional Materials,2007,17(6):939-43.
    [40]SUNDARESAN S G, DAVYDOV A V, VAUDIN M D, et al. Growth of Silicon Carbide Nanowires by a Microwave Heating-Assisted Physical Vapor Transport Process Using Group VIII Metal Catalysts [J]. Chemistry of Materials,2007,19(23):5531-7.
    [41]GENG L, ZHANG J. A study of the crystal structure of a commercial [beta]-SiC whisker by high-resolution TEM [J]. Materials Chemistry and Physics,2004,84(2-3):243-6.
    [42]OLEGO D, CARDONA M. Temperature dependence of the optical phonons and transverse effective charge in 3C-SiC [J]. Physical Review B,1982,25(6):3889.
    [43]FENG Z C, MASCARENHAS A J, CHOYKE W J, et al. Raman scattering studies of chemical-vapor-deposited cubic SiC films of (100) Si [J]. Journal of Applied Physics,1988,64(6): 3176-86.
    [44]WAGNER R S, ELLIS W C. VAPOR-LIQUID-SOLID MECHANISM OF SINGLE CRYSTAL GROWTH [J]. Applied Physics Letters,1964,4(5):89-90.
    [45]DUAN X, LIEBER C M. General Synthesis of Compound Semiconductor Nanowires [J]. Advanced Materials,2000,12(4):298-302.
    [46]LU X, FANFAIR D D, JOHNSTON K P, et al. High Yield Solution-Liquid-Solid Synthesis of Germanium Nanowires [J]. Journal of the American Chemical Society,2005,127(45):15718-9.
    [47]张中太,张俊英.无机光致发光材料及应用[M].化学工业出版社,2005.
    [48]MOENE R, MAKKEE M, MOULIJN J A. High surface area silicon carbide as catalyst support characterization and stability [J]. Applied Catalysis A:General,1998,167(2):321-30.
    [49]LINDEROTH S, MORUP S. Ultrasmall iron particles prepared by use of sodium amalgam [J]. Journal of Applied Physics,1990,67(9):4496-8.
    [50]WU X L, FAN J Y, QIU T, et al. Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites [J]. Physical Review Letters,2005,94(2):026102.
    [51]WU R B, YANG G Y, PAN Y, et al. Synthesis of silicon carbide hexagonal nanoprisms [J]. Applied Physics A:Materials Science &Processing,2007,86(2):271-4.
    [52]NIE S, EMORY S R. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering [J]. Science,1997,275(5303):1102-6.
    [53]LINK S, EL-SAYED M A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods [J]. The Journal of Physical Chemistry B,1999,103(40):8410-26.
    [54]YANG Z, XIA Y, MOKAYA R. High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica [J]. Chemistry of Materials,2004,16(20):3877-84.
    [55]POL V G, POL S V, GEDANKEN A. Novel Synthesis of High Surface Area Silicon Carbide by RAPET (Reactions under Autogenic Pressure at Elevated Temperature) of Organosilanes [J]. Chemistry of Materials,2005,17(7):1797-802.
    [1]RYAN P G, MOLONEY C L. Marine litter keeps increasing [J]. Nature,1993,361(6407):23-.
    [2]DERRAIK J G B. The pollution of the marine environment by plastic debris:a review [J]. Marine Pollution Bulletin,2002,44(9):842-52.
    [3]COLTON J B, BURNS B R, KNAPP, FREDERICK D. Plastic Particles in Surface Waters of the Northwestern Atlantic [J]. Science,1974,185(4150):491-7.
    [4]KLEMCHUK P P. Degradable plastics:A critical review [J]. Polymer Degradation and Stability,1990,27(2):183-202.
    [5]IMAI T, HAMM S, ROTHENBACHER K P. Comparison of the Recyclability of Flame-Retarded Plastics [J]. Environmental Science & Technology,2002,37(3):652-6.
    [6]陈古勋.废弃高分子材料资源及综合利用[M].北京:化学工业出版社,1997.
    [7]周达飞,唐颂超.高分子材料成型加工[M].北京:中国轻工业出版社,2000.
    [8]MISKOLCZI N, BARTHA L, ANTAL F, et al. Determination of sulphur in liquids obtained by thermal cracking of waste polymers and commercial fuels with different analytical methods [J]. Talanta,2005,66(5):1264-71.
    [9]U AR S, KARAG Z S, KARAYILDIRIM T, et al. Conversion of polymers to fuels in a refinery stream [J]. Polymer Degradation and Stability,2002,75(1):161-71.
    [10]YANIK J, UDDIN M A, SAKATA Y. The Effect of Red Mud on the Liquefaction of Waste Plastics in Heavy Vacuum Gas Oil [J]. Energy & Fuels,2000,15(1):163-9.
    [11]KARAYANNIDIS G P, ACHILIAS D S. Chemical Recycling of Polyethylene terephthalate) [J]. Macromolecular Materials and Engineering,2007,292(2):128-46.
    [12]KLINGER N, STRAUSS E L, KOMAREK K L. Reactions Between Silica and Graphite [J]. Journal of the American Ceramic Society,1966,49(7):369-75.
    [13]WANG Z L, DAI Z R, GAO R P, et al. Side-by-side silicon carbide--silica biaxial nanowires: Synthesis, stnicture, and mechanical properties [J]. Applied Physics Letters,2000,77(21):3349-51.
    [14]DAI H, WONG E W, LU Y Z, et al. Synthesis and characterization of carbide nanorods [J]. Nature,1995,375(6534):769-72.
    [15]HAO Y-J, JIN G-Q, HAN X-D, et al. Synthesis and characterization of bamboo-like SiC nanofibers [J]. Materials Letters,2006,60(11):1334-7.
    [16]J H Y, B W J, S S D, et al. Beaded silicon carbide nanochains via carbothermal reduction of carbonaceous silica xerogel [J]. Nanotechnology,2006,17(12):2870-4.
    [17]ZHOU X T, WANG N, LAI H L, et al. beta-SiC nanorods synthesized by hot filament chemical vapor deposition [J]. Applied Physics Letters,1999,74(26):3942-4.
    [18]BECHELANY M, BRIOUDE A, STADELMANN P, et al. Very Long SiC-Based Coaxial Nanocables with Tunable Chemical Composition [J]. Advanced Functional Materials,2007,17(16): 3251-7.
    [19]SEEGER T, KOHLER-REDLICH P, R HLE M. Synthesis of Nanometer-Sized SiC Whiskers in the Arc-Discharge [J]. Advanced Materials,2000,12(4):279-82.
    [20]CHIU S-C, HUANG C-W, LI Y-Y. Synthesis of High-Purity Silicon Carbide Nanowires by a Catalyst-Free Arc-Discharge Method [J]. The Journal of Physical Chemistry C,2007,111(28):10294-7.
    [21]LU Q, HU J, TANG K, et al. Growth of SiC nanorods at low temperature [J]. Applied Physics Letters,1999,75(4):507-9.
    [22]LI P, XU L, QIAN Y. Selective Synthesis of 3C-SiC Hollow Nanospheres and Nanowires [J]. Crystal Growth & Design,2008,8(7):2431-6.
    [23]SHIN Y, WANG C, EXARHOS G J. Synthesis of SiC Ceramics by the Carbothermal Reduction of Mineralized Wood with Silica [J]. Advanced Materials,2005,17(1):73-7.
    [24]WANG Q, SUN W-Z, JIN G-Q, et al. Biomorphic SiC pellets as catalyst support for partial oxidation of methane to syngas [J]. Applied Catalysis B:Environmental,2008,79(4):307-12.
    [25]WANG Y-Y, JIN G-Q, GUO X-Y. Growth of ZSM-5 coating on biomorphic porous silicon carbide derived from durra [J]. Microporous and Mesoporous Materials,2009,118(1-3):302-6.
    [26]SHARIF M A, SUEYOSHI H. Effect of temperature on the formation of [beta]-silicon carbide by hot isostatic pressing the pyrolyzed phenol resin-silicon composite [J]. Journal of the European Ceramic Society,2008,28(1):311-9.
    [27]XUE C, TU B, ZHAO D. Evaporation-Induced Coating and Self-Assembly of Ordered Mesoporous Carbon-Silica Composite Monoliths with Macroporous Architecture on Polyurethane Foams [J]. Advanced Functional Materials,2008,18(24):3914-21.
    [28]SATISHKUMAR B C, THOMAS P J, GOVINDARAJ A, et al. Y-junction carbon nanotubes [J]. Applied Physics Letters,2000,77(16):2530-2.
    [29]ROMO-HERRERA J M, SUMPTER B G, CULLEN D A, et al. An Atomistic Branching Mechanism for Carbon Nanotubes:Sulfur as the Triggering Agent [J]. Angewandte Chemie International Edition,2008,47(16):2948-53.
    [30]HAO X, WU Y, ZHAN J, et al. A Facile Sulfur Vapor Assisted Reaction Method To Grow Boron Nitride Nanorings at Relative Low Temperature [J]. The Journal of Physical Chemistry B,2005, 109(41):19188-90.
    [31]马海龙,靳国强,下英勇,et al铁-硫协同作用对甲苯热解产物的影响[J].新型炭材料,2007,22(2):126-30.
    [32]JU Z, XING Z, GUO C, et al. Sulfur-Assisted Approach for the Low-Temperature Synthesis of [3-SiC Nanowires [J]. European Journal of Inorganic Chemistry,2008,2008(24):3883-8.
    [33]JU Z, MA X, FAN N, et al. High-yield synthesis of single-crystalline 3C-SiC nanowires by a facile autoclave route [J]. Materials Letters,2007,61(18):3913-5.
    [34]KOUMOTO K, TAKEDA S, PAI C H, et al. High-Resolution Electron Microscopy Observations of Stacking Faults in (3-SiC [J]. Journal of the American Ceramic Society,1989,72(10): 1985-7.
    [35]LIAO L-S, BAO X-M, YANG Z-F, et al. Intense blue emission from porous beta-SiC formed on C[sup+]-implanted silicon [J]. Applied Physics Letters,1995,66(18):2382-4.
    [36]XI G, LIU Y, LIU X, et al. Mg-Catalyzed Autoclave Synthesis of Aligned Silicon Carbide Nanostructures [J]. The Journal of Physical Chemistry B,2006,110(29):14172-8.
    [37]KAMNEV A A, RISTIC M, ANGELOV V. Transmission Mossbauer and FTIR spectroscopic studies of binary nickel(Ⅱ)-iron(Ⅲ) hydroxide systems [J]. Journal of Molecular Structure,1995,349: 77-80.
    [38]HAYASHI S, TANIMOTO S, YAMAMOTO K. Analysis of surface oxides of gas-evaporated Si small particles with infrared spectroscopy, high-resolution electron microscopy, and x-ray photoemission spectroscopy [J]. Journal of Applied Physics,1990,68(10):5300-8.
    [39]PACHOLSKI C, KORNOWSKI A, WELLER H. Self-Assembly of ZnO:From Nanodots to Nanorods [J]. Angewandte Chemie International Edition,2002,41(7):1188-91.
    [40]CHO K-S, TALAPIN D V, GASCHLER W, et al. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles [J]. Journal of the American Chemical Society,2005, 127(19):7140-7.
    [41]WANG Z L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies [J]. The Journal of Physical Chemistry B,2000,104(6):1153-75.
    [42]SUN Y, MAYERS B, XIA Y. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process [J]. Nano Letters,2003,3(5):675-9.
    [43]ALI UMAR A, OYAMA M. Formation of Gold Nanoplates on Indium Tin Oxide Surface: Two-Dimensional Crystal Growth from Gold Nanoseed Particles in the Presence of Poly(vinylpyrrolidone) [J]. Crystal Growth & Design,2006,6(4):818-21.
    [44]FAN N, MA X, LIU X, et al. The formation of a layer of Fe3O4 nanoplates between two carbon films [J]. Carbon,2007,45(9):1839-46.
    [45]MOENE R, MAKKEE M, MOULIJN J A. High surface area silicon carbide as catalyst support characterization and stability [J]. Applied Catalysis A:General,1998,167(2):321-30.
    [46]YANG Z, XIA Y, MOKAYA R. High Surface Area Silicon Carbide Whiskers and Nanotubes Nanocast Using Mesoporous Silica [J]. Chemistry of Materials,2004,16(20):3877-84.
    [1]AJAYAN P M, STEPHAN O, COLLIEX C, et al. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite [J]. Science,1994,265(5176):1212-4.
    [2]PAN Z W, XIE S S, CHANG B H, et al. Very long carbon nanotubes [J]. Nature,1998, 394(6694):631-2.
    [3]CHEN Y, YU J. Growth direction control of aligned carbon nanotubes [J]. Carbon,2005, 43(15):3183-6.
    [4]LIU K, SUN Y, CHEN L, et al. Controlled Growth of Super-Aligned Carbon Nanotube Arrays for Spinning Continuous Unidirectional Sheets with Tunable Physical Properties [J]. Nano Letters, 2008,8(2):700-5.
    [5]BONARD J-M, CHAUVIN P, KLINKE C. Monodisperse Multiwall Carbon Nanotubes Obtained with Ferritin as Catalyst [J]. Nano Letters,2002,2(6):665-7.
    [6]BRONIKOWSKI M J. CVD growth of carbon nanotube bundle arrays [J]. Carbon,2006, 44(13):2822-32.
    [7]BETHUNE D S, KLANG C H, DE VRIES M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature,1993,363(6430):605-7.
    [8]ANDO Y, ZHAO X, OHKOHCHI M. Production of petal-like graphite sheets by hydrogen arc discharge [J]. Carbon,1997,35(1):153-8.
    [9]ISHIGAMI M, CUMINGS J, ZETTL A, et al. A simple method for the continuous production of carbon nanotubes [J]. Chemical Physics Letters,2000,319(5-6):457-9.
    [10]XU L, LIU J, DU J, et al. A self-assembly template approach to form hollow hexapod-like, flower-like and tube-like carbon materials [J]. Carbon,2005,43(7):1560-2.
    [11]LIU J, SHAO M, CHEN X, et al. Large-Scale Synthesis of Carbon Nanotubes by an Ethanol Thermal Reduction Process [J]. Journal of the American Chemical Society,2003,125(27):8088-9.
    [12]CHEN X, MOTOJIMA S, IWANAGA H. Carbon coatings on carbon micro-coils by pyrolysis of methane and their properties [J]. Carbon,1999,37(11):1825-31.
    [13]SUN X, LI Y. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles [J]. Angewandte Chemie International Edition,2004,43(5):597-601.
    [14]JIANG Y, WU Y, ZHANG S, et al. A Catalytic-Assembly Solvothermal Route to Multiwall Carbon Nanotubes at a Moderate Temperature [J]. Journal of the American Chemical Society,2000, 122(49):12383-4.
    [15]IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature,1991,354(6348):56-8.
    [16]KROTO H W, HEATH J R, O'BRIEN S C, et al. C60:Buckminsterfullerene [J]. Nature,1985, 318(6042):162-3.
    [17]NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306(5696):666-9.
    [18]BERGER C, SONG Z, LI X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene [J]. Science,2006,312(5777):1191-6.
    [19]JUNG I, PELTON M, PINER R, et al. Simple Approach for High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets [J]. Nano Letters,2007,7(12):3569-75.
    [20]KOSYNKIN D V, HIGGINBOTHAM A L, SINITSKII A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons [J]. Nature,2009,458(7240):872-6.
    [21]LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films [J]. Chemical Communications,2010,46(19):3256-8.
    [22]HUO J, SONG H, CHEN X, et al. Formation and transformation of carbon-encapsulated iron carbide/iron nanorods [J]. Carbon,2006,44(13):2849-52.
    [23]SHANG N G, AU F C K, MENG X M, et al. Uniform carbon nanoflake films and their field emissions [J]. Chemical Physics Letters,2002,358(3-4):187-91.
    [24]NOVOSEI OV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature,2005,438(7065):197-200.
    [25]ZHANG Y, TAN Y-W, STORMER H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature,2005,438(7065):201-4.
    [26]SEO J-W, JUN Y-W, PARK S-W, et al. Two-Dimensional Nanosheet Crystals [J]. Angewandte Chemie International Edition,2007,46(46):8828-31.
    [27]GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nat Mater,2007,6(3):183-91.
    [28]KATCHO N A, URONES-GARROTE E, AVILA-BRANDE D, et al. Carbon Hollow Nanospheres from Chlorination of Ferrocene [J]. Chemistry of Materials,2007,19(9):2304-9.
    [29]URONES-GARROTE E, AVILA-BRANDE D, AYAPE-KATCHO N, et al. Amorphous carbon nanostructures from chlorination of ferrocene [J]. Carbon,2005,43(5):978-85.
    [30]QIN Y, JIANG X, CUI Z. Low-Temperature Synthesis of Amorphous Carbon Nanocoils via Acetylene Coupling on Copper Nanocrystal Surfaces at 468 K:A Reaction Mechanism Analysis [J]. The Journal of Physical Chemistry B,2005,109(46):21749-54.
    [31]GARC A-C SPEDES J, THOMASSON S, TEO K B K, et al. Efficient diffusion barrier layers for the catalytic growth of carbon nanotubes on copper substrates [J]. Carbon,2009,47(3):613-21.
    [32]MCCULLOCH D G, PRAWER S, HOFFMAN A. Structural investigation of xenon-ion-beam-irradiated glassy carbon [J]. Physical Review B,1994,50(9):5905.
    [33]OBRAZTSOV A N, TYURNINA A V, OBRAZTSOVA E A, et al. Raman scattering characterization of CVD graphite films [J]. Carbon,2008,46(6):963-8.
    [34]FAN N, MA X, LIU X, et al. The formation of a layer of Fe3O4 nanoplates between two carbon films [J]. Carbon,2007,45(9):1839-46.
    [35]VINU A, SAWANT D P, ARIGA K, et al. Benzylation of benzene and other aromatics by benzyl chloride over mesoporous AlSBA-15 catalysts [J]. Microporous and Mesoporous Materials, 2005,80(1-3):195-203.
    [36]LI H, ZHU Y, MAO Z, et al. Synthesis and characterization of carbon fibrils formed by stacking graphite sheets of nanometer thickness [J]. Carbon,2009,47(1):328-30.
    [37]BARRETT E P, JOYNER L G, HALENDA P P. The Determination of Pore Volume and Area Distributions in Porous Substances. Ⅰ. Computations from Nitrogen Isotherms [J]. Journal of the American Chemical Society,1951,73(1):373-80.
    [38]SHI L, GU Y, CHEN L, et al. Synthesis of Carbon Hollow Spheres by a Reaction of Hexachlorobutadiene with Sodium Azide [J]. Chemistry Letters,2004,33(5):532-3.
    [39]JIANG W, NADEAU G, ZAGHIB K, et al. Thermal analysis of the oxidation of natural graphite--effect of particle size [J]. Thermochimica Acta,2000,351(1-2):85-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700