用户名: 密码: 验证码:
Fe_3Si基过渡金属硅化物渗层及纳米复合粉体的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属间化合物由于具有金属键与共价键之混合键型,而呈现出金属性与陶瓷性两者兼有的独有特性。但是,其室温脆性大和高温强度低的弊端依然是困扰这类材料实用化的关键问题。Fe_3Si具有优异的软磁性能、良好的抗氧化和耐腐蚀性,其性能随Si含量不同而迥异。其中,含Si约6.5 wt%的Fe-Si合金与普通硅钢片(Si 3wt%)相比,具有铁损低、磁致伸缩接近于零,磁导率高,矫顽力低等特点;Si含量为25.2 at%的杜里龙(Duriron)合金甚至能够抵抗沸腾硫酸的侵蚀。向金属间化合物中引入塑性相虽然能在一定程度上增加塑韧性,但必然会牺牲其高温强度和抗氧化性能。本文将其制成表面覆层,避开了增韧金属间化合物面临的困难。另外,金属间化合物由于其特有的强度随温度升高先上升后下降的R效应,使得金属间化合物/陶瓷复合材料有望成为一种极具潜力的高温结构材料。本文利用反应合金化的方法,制备了Fe_3Si/Al_2O_3纳米复合粉体,反应产物具有洁净界面,并且避免了球磨过程中常见的引入氧化物杂质的问题。研究成果对解决Fe_3Si室温塑性低和高温强度差的问题具有一定的指导意义。
     本文首先选择了低熔点的融盐渗硅体系,在800℃融盐中,制备了AISI 304表面Fe_3Si型过渡金属硅化物渗层。采用X射线衍射仪(XRD)分析了渗硅层的物相组成,用附带能量色散谱仪(EDS)附件的扫描电子显微镜(SEM)研究了渗层截面的形貌和成分,分析了熔盐法渗硅层以及渗层缺陷的形成机理。结果表明,Si元素在渗层中均匀分布,渗层中富含Cr、Ni元素,渗层/基体界面附近的渗层缺陷分为柯肯达尔孔隙带和包盐大空洞,孔洞状缺陷呈带状分布。缺陷带宽度约占渗层厚度的1/3,缺陷带之外的渗层十分致密。
     从相图来看,Fe_3Si具有宽泛的Si含量。本文通过调整渗硅剂的比例以及加入SiO_2助渗剂,获得了Si元素的含量分别为13.21%、19.12%和22.03%(at%)的Fe_3Si型过渡金属硅化物渗层,并对SiO_2助渗机理进行了探讨。
     为了考察渗层对AISI 304不锈钢力学性能的影响,对渗硅试样进行了轴向拉伸力学性能实验。结果表明,硅化物渗层除了沿横截面产生脆性断裂外,同时还沿着柯肯达尔孔隙带断开,而渗层与基体在界面处结合良好,800℃渗硅试样的轴向拉伸应力-应变曲线与AISI 304不锈钢相比,在弹性阶段和强化阶段没有明显的变化;900℃渗硅5h试样的应力-应变曲线在弹性阶段初期近乎垂直于横坐标,表示该阶段拉伸试样增加的荷载为硅化物渗层所承担。由于渗层的柯肯达尔孔隙带外侧大空洞中的物质在轴向拉伸实验后得以保存,通过EDS分析,表明大空洞中的物质成分为融盐,这一结果印证了本文中提出的渗层缺陷形成机理。
     对渗硅试样和AISI 304不锈钢在800℃和900℃进行了100h循环氧化对比实验。结果表明,渗硅试样在两种温度下的氧化动力学曲线均为二次抛物线。渗层在800℃下的抗氧化性能与略优于AISI 304不锈钢;渗层在900℃下形成的氧化膜比800℃下形成的氧化膜更为致密,表现出比其在800℃下更为优越的抗氧化性能,而AISI 304不锈钢在900℃发生灾难性氧化失效。渗硅试样在800℃循环氧化过程中,由于热冲击应力的影响,渗层和不锈钢基体之间形了较宽裂缝;在900℃循环氧化过程中,渗层与基体之间未产生裂缝,Si、Cr元素通过渗层/基体界面相互扩散使界面结合强度得到了增强。由SiO_2、Cr2O3、Cr3O4和Fe_2O_3组成的复合氧化膜是渗层具有优异抗氧化性能的主要原因。
     以Fe_2O_3、Si、Al混合粉体为原料,在机械力诱发下发生了固相化学反应,球磨20h可获得Fe_3Si /Al_2O_3复合粉体。球磨1h粉末的主要物相仍然为原料粉末,但Si粉与Fe_2O_3粉发生了反应,形成了部分SiO_2。对其在900℃退火1h,由加热而诱发反应,原始粉体的衍射峰消失,反应生成Al_2O_3、Fe_3Si和FeSi,反应中间产物SiO_2的衍射峰未消失。而Fe_3O_4、Si、Al混合粉体球磨1h即发生反应。TEM结果表明球磨20h的Fe_3Si/Al_2O_3复合粉体具有纳米晶结构。
The bond type of Intermetallic compounds (IMC) is a mixture of metallic bond and covalent bond. The brittleness at room temperature and poor strength at high temperature are the key problems for the application of this material. Fe_3Si have excellent soft magnetic property, high temperature oxidation resistance and corrosion resistance, the property of which changes with its Si content. When the silicon content is 6.5 wt%, Fe-Si alloy has low iron loss and coercivity, high magnetic permeability, with it's magnetostriction close to zero. When the silicon content is 25.2 at%, Fe_3Si alloy can even resist the corrosion from boiling sulfuric acid. The ductility can be increased if Plastic phase is introduced into IMC, but the high-temperature strength and high temperature oxidation resistance will be damaged. In this paper Fe_3Si were made as the coating of metal to avoid these problems of toughened IMC. In addition, IMC have the R effect that the intensity changes from low to high and then high to low with the temperature rising. This effect can make the Intermetallic Compounds/Ceramic matrix composites (I/CMC) have the potential to become high-temperature structural materials. Fe_3Si/Al_2O_3 nanocomposite powders were synthesized by reactive mechanical alloying. The reaction product has clean interface, which avoids the problem of the introduction of oxides impurities during conventional ball milling. The results obtained in this dissertation will play a guidance role for solving the problem of brittleness at room temperature and poor high temperature strength.
     Fe_3Si type transition-metal silicide layer deposited on AISI 304 stainless steel were formed in low melting point molten salts at 800℃. The phase of the silicide layer was analyzed by X-ray diffraction. The micrographs and the composition of the cross section of the silicide layer were studied by scanning electron microscope attached with energy dispersive X-ray spectrometer(EDS)attachment. The siliconizing mechanism in molten salts was analyzed as well. It has been shown that the phase of the silicide layer is rich in Cr and Ni alloying elements and Si is evenly distributed. The defects nearby the interface of the silicide layer/matrix include Kirkendall voids and big layer defects. The defects present zonal distribution and the width is about 1/3 of the silicide layer. The layer without defects is very dense.
     As seen in the phase diagram, Fe_3Si has a wide Si content. Si content in the transition-metal silicide layer are 13.21%、19.12% and 22.03% (at%), which are obtained by changing the proportion of siliconizing agent and then adding SiO_2 as another source. The mechanism of aided siliconizing is studied as well.
     The tension behavior of the samples were tested on an universal tension apparatus, the influence of the silicide layer on the tension behavior of the AISI 304 stainless steel samples were studied as well. The results show that brittle fracture occurs in the cross section and the silicide layer fractures along the kirkendall voids band at the same time. The interface of the silicide layer/matrix is tight as before. The stress-strain curves in the elastic stage and strain-hardening stage of AISI 304 siliconized at 800℃are similar as that of AISI 304 stainless steel. The stress-strain curves in the initial elastic stage of AISI 304 siliconized at 900℃for 5h almost perpendicular to the abscissa. The load in the initial elastic stage is taken by the silicide layer. The material in the big holes outside kirkendall voids band was remained after the axial extension test. The EDS data show that the material in the holes is salt. This result confirmed the formation mechanism of the defect in the silicide layer.
     The cyclic oxidation behavior of the silicide layer and the AISI 304 stainless steel was studied at 800℃and 900℃. The oxidation kinetic curve of the Fe_3Si type silicide layer obeys a parabolic rule. The oxidation resistance of the silicide layer at 800℃is a little better than that of AISI 304 stainless steel. The oxidation resistance of the silicide layer at 900℃is much better than that at 800℃, and the oxidation film created at 900℃is more compact than 800℃. The AISI 304 stainless steel failed at 900℃. The thermal stress made a crack between the silicide layer and the matrix in the cyclic oxidation at 800℃. Diffusion of Si and Cr through the interface of the silicide layer/matrix enhanced the bonding strength of the interface at 900℃in the cyclic oxidation. The diffusion avoided the stress cracking along the interface. The composite oxide film consisting of SiO_2, Cr2O3, Cr3O4 and Fe_2O_3 accounts for the excellent high temperature oxidation properties.
     The solid phase reaction can be induced by mechanical force in the Fe_2O_3-Si-Al powders. Fe_3Si/Al_2O_3 composite powders were obtained by milling Fe_2O_3-Si-Al powders for 20 h. The main phase after milled for 1h is still raw material powder. The reaction between Si and Fe_2O_3 occurs, and as a result some SiO_2 was formed. After annealed at 900℃for 1h, the solid phase reaction occurred. Al_2O_3、Fe_3Si and FeSi were obtained, and the intermediate product SiO_2 remained. The solid phase reaction occurred in Fe_3O_4-Si-Al powders after milled for 1h.
引文
[1]孙康宁,尹衍升,李爱民,等.金属间化合物/陶瓷基复合材料[M].北京:机械工业出版社, 2003,1.
    [2]张永刚,韩雅芳,陈国良,等.金属间化合物结构材料[M].北京:国防工业出版社, 2001,2-4.
    [3]仲增墉,叶恒强.金属间化合物[M].北京:国防工业出版社,1992.
    [4]陈国良.金属间化合物结构材料研究现状与发展[J].材料导报,2000, 14:1-5.
    [5]林栋梁.高温有序金属间化合物研究的新进展[J].上海交通大学学报.1998,32:96-108.
    [6]彭超群,黄伯云,贺跃辉. Ni-Al系、Fe-Al系和Ti-Al系金属间化合物研究进展[J].特种铸造及有色金属, 2001, 6: 27-29.
    [7]汤文明,唐红军,郑治祥,等. Fe-Al金属间化合物基复合材料的研究进展[J].中国有色金属学报. 2003,13(4): 811-826.
    [8]刑占平,韩雅芳.金属间化合物熔铸工艺的发展及应用[J].材料导报.2000, 14:26-27.
    [9] N.S. Stoloff. Iron aluminides: present status and future properties[J]. Mater. Sci. Eng. A,1998, 258:1-14.
    [10] C.T.Liu, E.P. George, P.J. Maziasz, et al. Recent advances in B2 iron aluminide alloys: deformation, fracture and alloy design[J]. Mater. Sci. Eng.A, 1998, 258:84-98.
    [11] C.T. Liu, J. Stringer, J.N. Mundy, et al. Order intermetallic alloys: an assessment [J]. Intermetallics. 1997, 5:579-596.
    [12] S.C. Deevi, V.K. Sikka, C.T. Liu. Processing, properties and applications of nickel and iron aluminides[J]. Prog. Mater. Sci, 1997,42: 177-192.
    [13] U.Kettner, H.REhfeld, C.Engelke, et al. A comparison of the plastic behaviour of Fe3Al and Fe_3Si in the temperature range of 300-973K[J]. Intermetallics, 1997, 7:405-406.
    [14]马勤,杨延清,康沫狂.二硅化钼用途广泛的金属间化合物[J].材料开发与应用. 1997, 12(6):27-32.
    [15]张平,于波,陈靖,等.热化学循环分解水制氢研究进展[J].化学进展, 2005, (17):643-650.
    [16] J.H.Westbrook, R.L.Fleischer. Structural Applications of Intermetallic Com- pounds[J]. 1-1.New York: John Wiley & Sons, 2000, 221.
    [17] Lee Wonhee, Lee Jinghyung, Bae Joonydae, et al. Synthesis of Ni2Si, Ni5Si2 and NiSi by mechanical alloying[J]. Scripta Mater, 2001, 144: 97.
    [18] Lagebron J, Tiainen T, Lehtonen M, et al. Effect of partial mechanical alloying in the self-propagating high-temperature synthesis of Ni3Si[J]. J Mater Sci, 1999, 34: 1477.
    [19] Jang J SC, Tsau C H, Chen W D, et al. Mechanical evolution of mechanical alloyed in Ni-24at%Si [J]. J Mater Sci, 1998, 33: 265.
    [20]朱雪斌,马勤,季根顺,等.有序金属间化合物Ni3Si研究新进展[J].材料导报, 2001(12):24.
    [21] C T Liu, J Stringer, J N Mundy, et al. Order Intermetallic alloys: an assessment [J]. Intermetallics, 1997, (5): 579-596.
    [22] T Takasugi, M Nagashima, O. Izumi. Strengthening and ductilization of Ni3Si by the addition of Ti elements[J]. Acta Metall., 1990, (38): 7472755.
    [23] Shah D M , A nton D L. Evaluation of refractory intermetallics with A 15 structure for high temperature structural applications[J]. Mater Sci Eng A , 1992, 153: 4022409.
    [24] Shah D M , Berczik D, A nton D L. Appraisal of other silicides as structural materials[J]. Mater Sci Eng A , 1992, 155: 45-58.
    [25] Aitken E in Westbrook J H . Intermetallic Compounds[M]. N Y: Robert E Krieger, 1977.
    [26] McKee D W , Fleischer R L in Johnson L A , Pope D P and Stiegler J O. High Temperature Ordered Intermetallic Alloys[M]. IV Vol. 213. Pittsburgh: Materials Research Society, 1991.
    [27] Anton D L , Shah D M in IzumiO. Proc. Inst. Symp.On Intermetallic Compounds-Structure and Mechanical Properties (JM IS-6)[C]. The Japan Institute of Metals, Sendai, 1991, 379.
    [28] Raj S V , Whitetenberger J D, Zeumer B, et al. Elevated temperature deformation of Cr3Si alloyed with Mo[J]. Intermetallics, 1999, 7: 743-755.
    [29] Raj S V. A preliminary assessment of the properties of a chromium silicide alloy for aerospace applications[J]. Mater Sci Eng A, 1995, 192/193: 583-589.
    [30] Raj S V. A prevaluation of the properties of Cr3Si alloyed with Mo[J]. Mater Sci Eng A, 1995, 201: 229-241.
    [31] Tomasi A, Ceccato R, Nazmy M, et al. Micro structure and oxidation behaviour of chromium-molybdenum silicides[J]. Mater Sci Eng A, 1997, 239-240: 877-881.
    [32] Cruse T A, Newkirk J W. Evaluation of methods to producetough Cr3Si basedcomposites[J]. Mater Sci Eng A, 1997, 239-240: 410-418.
    [33] Nazmy M , Noseda C, Sauthoff G, et al. Mechanical behaviour and oxidation properties of molybdenum-modified Cr3Si/Cr5Si3 intermetallics[C]. Mater Res Soc Symp Proc, 1994-1995, 364, 1333-1338.
    [34] Nazmy M , Noseda C, Augustin S, et al. Mechanical behaviour of molybdenum- modified Cr3Si/Cr5Si3 intermetallics[C]. Mater Res Soc Symp Proc, 1996-1997, 460, 727-736.
    [35]马勤,康沫狂.高温结构硅化物研究的新进展[J].材料工程, 1997, 7:3-6.
    [36] C.L. Yeh, W.H. Chen. Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 composites[J]. Journal of Alloys and Compounds. 2007, 438:165.
    [37]颜建辉,张厚安,唐思文,等. La2O3-Mo5Si3/MoSi2复合材料的高温氧化行为[J].中国稀土学报. 2006,24(5):551.
    [38] Misra A, Petrovic J J, Mitchell T E. Microstructures and mechanical properties of a Mo3Si-Mo5Si3 composite[J]. Scripta Materialia, 1998,40(2):191-196.
    [39] Yeh C L, Chen W H. Combustion synthesis of MoSi2 and MoSi2–Mo5Si3 comp- osites [J]. Journal of Alloys and Compounds, 2007,438:165-170.
    [40]曹昱,易丹青,殷磊,等. Er对Mo5Si3基合金组织与性能的影响[J].稀有金属材料与工程[J]. 2004, 33 (11):1170-1173.
    [41]张厚安,刘心宇,陈平等.稀土和Mo5Si3强韧化MoSi2材料的磨粒磨损特性[J].中国有色金属学报. 2002, 12(1):136-139.
    [42]王德志,刘心宇,左铁镛. MoSi2-Mo5Si3复合材料的低温氧化行为[J].稀有金属材料与工程. 2002,31(1):48-51.
    [43] Meyer M K, Kramer M J, Akinc M. Compressive creep behavior of Mo5Si3 with the addition of boron[J]. Intermetallics. 1996, 4(4):273-281.
    [44]叶长青,姜传海等. Mo3Si-Mo5Si3共晶硅化物的氧化[J].上海交通大学学报. 2004,38(7):1148~1151.
    [45] P.Jiang, J.J.Zhang, L.G.Yu, et al. Wear-resistant Ti5Si3/Ti composite coatings by laser surface alloying[J]. Rare Metal Materiales and Engineering. 2000, 29(4): 269-274 .
    [46] A. Misra, J.J. Petrovic, T.E. Mitchell. Microstructures and Mechanical Properties of a Mo3Si-Mo5Si3 Composite[J]. Scripta Materialia. 1999, 40(2):191-196.
    [47] Darolia R, Walston W.S, Nathal M. V. In:Kissinger RD, DeyeDJ, CetelAD, NathalMV, PollockTM, WoodfordDAeds. Superalloys, 1996, TMS, 1996:561.
    [48] Keisuke Yamamoto, Yoshisato Kimura. Phase constitution and microstructure of the Fe–Si–Cr ternary ferritic alloys[J]. Scripta Materialia,2004, 50: 977-981.
    [49] Hiroshi Usuba, Keisuke Yamamoto, et.al. Phase equilibria and microstructures in the Fe–Si–Cr–Ti system[J]. Intermetallics,2006 ,14: 505-507.
    [50] H. Meco, R.E. Napolitano. Liquidus and solidus boundaries in the vicinity of order-disorder transitions in the Fe–Si system[J]. Scripta Materialia, 2005,52: 221-226.
    [51] S. Matsumura,Y. Tanaka, Y. Koga, et al. Concurrent ordering and phase separation in the vicinity of the metastable critical point of order-disorder transition in Fe-Si alloys[J]. Materials Science and Engineering A, 2001, 312:284-292.
    [52] Maex, Karen,Van Rossum. Properties of Metal Silicides[M].1-1. London: INSPEC, the Institution of Electrical Engineers, 1995, 24.
    [53] S.K. Ehlers, M.G. Mendiratta. Tensile behaviour of two DO3-ordered alloy: Fe_3Si and Fe-20at%Al-5at%Si[J]. Journal of Materials Science,1984, 19:2203-2210.
    [54] Won-Yong Kim, et al. Flow behavior and microstructures of large-grained Fe_3Si during high temperature deformation[J]. Journal of Alloys and Compounds, 2002,347:219-227.
    [55] Won-Yong Kim,Shuji Hanada. Tensile elongation of off-stoichiometric Fe_3Si single crystals at high temperatures[J]. Journal of Alloys and Compounds, 2000, 299:208-212.
    [56] J.H.Peng, L.C.Chen. Effect of test environment on fracture behavior of Fe_3Si base alloy[J]. Acta Metallurgica sinica,2003,16 (2):104-109.
    [57] U.Kettner, H.Rehfeld.A comparison of the plastic behaviour of Fe3Al and Fe_3Si in the temperature range of 300-973 K[J]. Intermetallics, 1999, 7:405-414.
    [58] Pavel Lejcek, Siegfried Hofmann. et.al. Chemical aspects of brittle fracture: grain boundary segregation[J]. Materials Science and Engineering A, 1997, 234-236; 283-286.
    [59] G. L. Chen, J. H. Peng, et al. Surface reaction of polycrystalline Fe_3Si alloys with oxygen and water vapor[J]. Intermetallics, 1998, 6: 315-322.
    [60]潘丽梅,金吉男,林均品等.硼元素对Fe-6.5%(质量分数)Si合金力学性能能影响的试验研究[J].功能材料,2004,35 (6): 683-685.
    [61]林均品,钟太彬,林志等.Fe_3Si基合金板材的制备技术[J].北京科技大学学报,2001.23(5):442-444.
    [62] Raghavan V. Phase diagrams of ternary iron alloys[M], Part 1. ASM, International; 1987, 34.
    [63] Keisuke Yamamoto, Yoshisato Kimura. Phase constitution and microstructure of the Fe–Si–Cr ternary ferritic alloys[J]. Scripta Materialia, 2004, 50:977-981.
    [64] Hiroshi Usuba, Keisuke Yamamoto, et al. Phase equilibria and microstructures in the Fe–Si–Cr–Ti system [J], Intermetallics, 2006 ,14: 505-507.
    [65] J. Waliszewski, et al. Magnetic moment distribution in Fe3?xCrxSi alloys [J]. Journal of Magnetism and Magnetic Materials, 1994, 132 (1-3):349-358.
    [66]杨王玥,盛丽珍,等.代位原子在Fe3Al亚点阵中的占位与合金的塑性[J].材料研究学报, 1996, 10(4):351-356.
    [67] M. Pugaczowa-Michalska, et.al. Electronic structure and magnetism of Fe3?xCrxSi alloys [J].Journal of Magnetism and Magnetic Materials,2003, 256 (1-3): 46-53.
    [68] Anna Go, Maria Pugaczowa-Michalska,et.al. An influence of the local environ- ment on local magnetic moments and hyperfine fields in Fe3-xCrxSi [J]. Journal of Magnetism and Magnetic Materials 2004, e217-e219:272-276.
    [69] J. Porcayo-Calderón, E. Brito-Figueroa, J.G. González-Rodríguez. Oxidation be- haviour of Fe–Si thermal spray coatings[J]. Materials Letters, 1999, 38:45-53.
    [70] F. Fitzer, J. Schlichting, Coatings containing chromium, aluminum, and silicon for high temperature alloys, in: R.A.Rapp_Ed.., High Temperature Corrosion, NACE, San Diego, CA, Houston, TX, March 2-6, 1981, 604-614.
    [71] T. Adachi, G. H. Meier. Oxidation of Iron-Silicon Alloys[J]. Oxidation of Metals, 1987, 27(5-6):347-366.
    [72]李铁潘.金属高温氧化和热腐蚀[M]. 2003,化学工业出版社,北京, P213.
    [73] P. S. N. Stokes, F. H. Stott,G. C. Wood. The influence of laser surface treatment on the high-temperature oxidation of Cr2O3-forming alloys[J]. Materials Science and Engineering A, 1989, 120-121(2): 611-617.
    [74] A. Atkinson. A theoretical analysis of the oxidation of Fe-Si alloys[J]. Corrosion Science.1982,22(2):87-102.
    [75] Y. Wu, F. Gesmundo, Y. Niu. The Effect of Silicon on the Oxidation of a Ni-6at% Al Alloy in 1 atm of pure O2 at 900℃[J]. Oxidation of metals, 2006, 65(1/2): 53-74.
    [76] F.H. Stott, F.I. Wei, Comparison of the effects of small additions of silicon or aluminum on the oxidation of iron-chromium alloys[J]. Oxidation of metals, 1989, 31(5-6):369-391.
    [77] H. W. Hsu, W. T. Tsai. High temperature corrosion behavior of siliconized 310 stainless steel[J]. Materials Chemistry and Physics, 2000, 64:147-155.
    [78] C. S. McDowell, S. N. Basu. Alloy-grain-size dependence of the effectiveness of silica coatings as oxidation barriers on stainless steel[J]. Oxidation of metals, 1995,43(3-4):263-277.
    [79] D.T. Hoelzer, B.A. Pint, I.G. Wright. A microstructural study of the oxide scale formation on ODS Fe-13Cr steel[J]. Journal of Nuclear Materials, 2000, 283-287, 1306-1310.
    [80]李美栓,周延春. Al_2O_3形成合金过渡态氧化行为[J].腐蚀科学与防护技术, 2005,17(6):409-412.
    [81] B. A. Pint, M. Treska, L. W. Hobbs. The effect of various oxide dispersions on the phase composition and morphology of A12O3 scales grown onβ-NiAl [J]. Oxidation of Metals, 1997, 47(1-2):1.
    [82] G. C. Rybicki, J. L. Smialek. Effect of the ?-a-A12O3 Transformation on the Oxi- dation Behavior ofβ-NiAI+Zr[J]. Oxidation of Metals, 1989, 31(3/4): 275-304.
    [83] T. F. An, H. R. Guan, X. F. Sun, et.al. Effect of the ?-a-A12O3 Transformation in Scales on the Oxidation Behavior of a Nickel-Base Superalloy with an Aluminide Diffusion Coating[J]. Oxidation of Metals, 2000, 54(3/4):301-316.
    [84] M. J.Li, X. F. Sun, H. G. Guan, et.al. Oxidation behavior of Pd-Modified Alumi- nide Coating at High Temperature[J]. Journal of materials science and techno- logy, 2003, 19(3):213-217.
    [85]李运刚,梁精龙,李慧,等.渗硅制备6.5%Si硅钢表面Fe-Si过渡梯度层的特性[J].中国有色金属学报, 2009, 19(4):714-719.
    [86]杨劲松,谢建新,周成. 6.5%Si高硅钢的制备工艺及发展前景[J].功能材料, 2003, 34(3):244-246.
    [87]钟太彬,林均品,陈国良. Fe_3Si基合金的制备及应用研究进展[J].功能材料, 1999, 30(4):337-339.
    [88]孙玉魁等.金属软磁材料及其应用[M].冶金工业出版社,1986.
    [89]谢燮揆译.中小型电机[M]. 1994, 21(3):60.
    [90]周成,谢建新.金属带材快速凝固成形方法[P].中国专利: CN1321556A(公开号),2001-11-14.
    [91]卢燕平,于福洲.渗镀[M].机械工业出版社, 1985,11.
    [92]夏先平,吴润,陈大凯,等. PCVD法制取高硅钢的研究[J].武汉冶金科技大学学报, 1996, 9(4): 429-431.
    [93] Tatemoto K, Ono Y, Suzuki Ryosuke O. Silicide coating on refractory metals in molten salt[J]. Journal of Physics and Chemistry of Solids, 2005, (66):526–529.
    [94]王金兰,罗新民,陈康敏等. Cr18Ni9奥氏体不锈钢表面粉末渗硅层精细结构研究[J].材料热处理技术, 2008,37(2):57-63.
    [95]张亚明,王卫林. Ti-6Al-4V合金渗硅[J].金属热处理, 1993, (1):21-24.
    [96]麻莉萍,麻云新,麻启承.碳钢渗硅层组织中孔隙的形成原因研究[J].上海金属, 1999, 21(2):54-59.
    [97]雷阿利,杨士川,冯拉俊等.等离子喷涂NiAl/Al_2O_3梯度陶瓷涂层的结构与组织特征[J].机械工程材料, 2007, 31(4):62-65.
    [98]王志伟,张秀红,陈洪.机械活化-放电等离子烧结FeAl/Al_2O_3复合材料[J].粉末冶金技术, 2009, 27(3):203-206.
    [99]周瑞发,韩雅芳,李树索.高温结构材料[M].北京:国防工业出版社, 2006, 160-192.
    [100]沈建兴,李肖玲,邹文国. Ni3Al增韧Al_2O_3陶瓷机理的研究[J].山东陶瓷, 2000, 3(3):3-6.
    [101]申玉芳,芦令超,邹正光. NiAl弥散增韧Al_2O_3复相陶瓷[J].桂林工学院学报, 2005, 25(20):183-186.
    [102]冯拉俊,惠博,梁天权.等离子喷涂Ni3Al-Al_2O_3梯度陶瓷涂层的性能研究[J].表面技术, 2005, 34(2):15-17.
    [103]李志强,韩杰才,赫晓东等. Al_2Ti-TiO2体系自蔓延高温合成及机理[J].材料工程, 2001, 12:32-35.
    [104] Horvitz D, Gotman I, Gutmanas E Y et al. In-situ processing of dense Al_2O_3- Tialuminide interpenetrating phase composites[J]. Journal of the European Ceramic Society, 2002, 22(6):947-954.
    [105]李静,张景德,尹衍升等. Fe2Al/Al_2O_3功能梯度涂层材料研究现状及展望[J].山东工业大学学报, 2001, 31(4):374-377.
    [106]张玉军,尹衍升,王德云等. FeAl/Al_2O_3陶瓷基复合材料—一种新型刀具材料[J].机械工程材料, 2000, 24(2):30-31.
    [107] Victor E. Saoumaa, Sun-Young Changa, Orfeo Sbaizerob. Numerical simulation of thermal residual stress in Mo-and FeAl-toughened Al_2O_3[J]. Composites Part B: Engineering, 2006, 37(6):550-555.
    [108]孙康宁,安阁英,尹衍升. Fe3Al/Al_2O_3复合材料的纳米内晶型结构与成分分析[J].山东工业大学学报, 2000, 30(2):137-140.
    [109]李传校,张玉军,尹衍升,等. TiC与TiC-WC的添加对FeAl/Al_2O_3复合材料力学性能的影响[J].理化检测—物理分册. 2002, 38(9):378-380.
    [110]朱心昆等.机械合金化的研究及进展[J].粉末冶金技术,1999, 17(4):291-296
    [111] C. C. Koch, J. D. Whittenberger. Review Mechanical Milling/Alloying of Inter- metallics [J]. Intermetallics, 1996, 4:339-355.
    [112] C. Suryanarayana. Mechanical alloying and milling[J]. Progress in Materials Science 46(2001):1-184.
    [113]陈津文,等.描述机械合金化过程的理论模型[J].材料科学与工程.1998.Vol.16. No.1.
    [114]刘长松,殷声.自蔓延高温合成(SHS)反应机械合金化[J].稀有金属, 1999, 23(2):137-140.
    [115]张伟,文九巴,龙永强.渗铝钢扩散层空洞对循环氧化和剥落性能的影响[J].材料热处理学报, 2004, 25(6): 96-100.
    [116] JIA Jian-gang, MA Qin, LU Jin-jun. Reciprocating sliding friction and wear property of Fe_3Si based alloys containing Cu in water lubrication[J]. Tribol Lett, 2008,30(2):113-121.
    [117]李晓,赫晓东,孙跃.高硅硅钢片的特性、制备及研究进展[J].磁性材料及器件, 2008, 12:1-4.
    [118]何小凤,李运刚,李智慧. KCl-NaCl-NaF(SiO_2)熔盐体系初晶温度的研究[J].有色金属, 2008, (4):21-31.
    [119]何小凤,李运刚,田薇. SiO_2在KCl-NaCl-NaF体系中的溶解度及溶解机理[J].中国有色金属学报, 2008, 18(5): 929-933.
    [120] David R Lide. Handbook of Chemistry and Physics (87 th) [M]. Boca Raton, FL: CRC Press, 2006-2007: 9-75~76.
    [121] A. Gudea, H. Mehrera. Diffusion in the DO3-type intermetallic phase Fe_3Si. Phi- losophical Magazine A. 1997, 76(1):1-29.
    [122] Stokes P S N, Stot F H t, Wood G C. The influence of laser surface treatment on the high-temperature oxidation of Cr2O3-forming alloys[J]. Materials Science and Engineering A, 1989, 120-121(2): 611-617.
    [123] Wu Y, Gesmundo F, Niu Y. The effect of silicon on the oxidation of a Ni-6 at.%Al alloy in 1 atm of pure O2 at 900℃[J]. Oxidation of metlas, 2006, 65(1/2): 53-74.
    [124] David R Lide. Handbook of Chemistry and Physics (90 th) [M].2009-2010: 9-64~68.
    [125] T.F. Grigorieva, A.P. Barinova, N.Z. Lyakhov. Mechanosynthesis of nanocom- posites[J]. Journal of Nanoparticle Research,2003, 5:439-453.
    [126]李凡,吴炳尧,戴挺,等.机械合金化法制备Fe-Si纳米晶合金[J].特种铸造及有色合金,2001, (4):24-26.
    [127]张中武,周敬恩,席生岐,等.机械合金化W-Ni-Fe纳米复合粉的制备及结构研究[J].材料热处理学报, 2004, 25(1):1-4.
    [128]周香林,张济山,樊建中,等.球磨纳米NiCr/WC复合粉的微观组织[J].材料热处理学报, 2006, 27(6):21-24.
    [129] DARIUSZ OLESZAK. NiAl-Al_2O_3 intermetallic matrix composite prepared byreactive milling and consolidation of powders[J]. JO URNAL OF MATERIALS SCIENCE, 2004, 39:5169-5174.
    [130] M. Khodaei, M. H. Enayati, F. Karimzadeh. Mechanochemical behavior of Fe_2O_3–Al–Fe powder mixtures to produce Fe_3Al–Al_2O_3 nanocomposite powder[J]. JOURNAL OF MATERIALS SCIENCE, 2008, 43:132-138.
    [131] A. CHAKRABORTY, S. V. KAMAT, R. MITRA. Effect of MoSi2 and Nb reinfor- cements on mechanical properties of Al_2O_3 matrix composites[J]. JOURNAL OF MATERIALS SCIENCE, 2000, 35:3827-3835.
    [132]刘长松,殷声.自蔓延高温合成(SHS)反应机械合金化[J].稀有金属, 1999, (2):1-7.
    [133]贾建刚,马勤,吕晋军,等.高能反应球磨/退火制备Fe3(Si,Al)粉体及其有序度研究[J].材料热处理学报, 2008, 29(2):36-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700