用户名: 密码: 验证码:
臭氧催化氧化与活性炭联用给水处理工艺特性中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前饮用水水源的有机污染较为严重,有机污染物本身不仅具有极高的毒害作用,而且在加氯消毒后可能生成卤代消毒副产物(DBPs),同时有机物的存在还会降低饮用水的生物稳定性,导致微生物在管网中的二次繁殖,因此减少饮用水中的有机污染物含量具有重要意义。常规水处理工艺对于有机污染物的去除效率较低,寻求经济、高效的处理技术势在必行。臭氧催化氧化技术在充分发挥臭氧氧化去除有机物优势的基础上,引发生成氧化性极高的羟基自由基(·OH),从而可以有效去除水中难降解微量有机污染物、减少臭氧氧化副产物含量,是一种极具应用前景的饮用水处理方法。
     实验室研究表明,蜂窝陶瓷及活性炭催化臭氧氧化技术对水中微量有机物的去除具有较为明显的优势,但是催化氧化与活性炭联用工艺特性有待深入研究,因此通过中试考察了蜂窝陶瓷催化臭氧氧化及活性炭催化臭氧氧化与活性炭过滤联用工艺运行特征。
     试验条件下蜂窝陶瓷催化反应器的气液传质能力稍低于臭氧反应器,但当气水比大于0.15时气液传质能力将超过臭氧反应器。气量为0.1 m~3/h时臭氧反应器与蜂窝陶瓷催化氧化反应器的气含率(εg)分别为0.19%和0.15%,说明催化氧化反应器内的气泡尺寸较大,不利于气液传质;液相脉冲加入试验中臭氧反应器与蜂窝陶瓷催化反应器的Pe准数分别为3.14和5.25,说明催化氧化反应器内液相平推流成分较高,有利于气液传质。气水比增加对催化氧化反应器的气液传质效率影响更大。
     蜂窝陶瓷催化氧化对有机物的去除能力高于臭氧氧化,序批试验中催化氧化对TOC及CHCl_3FP最高去除率均比臭氧氧化高约2倍。连续流试验中催化氧化对UV_(254)的去除效果在低臭氧投量时较为明显,臭氧投量为1 mg/L时催化氧化对UV_(254)去除率比臭氧氧化高16.7%,这是蜂窝陶瓷催化反应器平推流比例较高,使得液相臭氧浓度迅速上升结果。此外,蜂窝陶瓷催化氧化对BrO_3~-有较好的控制作用,臭氧投量为1 mg/L时催化氧化出水BrO_3~-含量比臭氧氧化低38.8%。
     活性炭催化剂能够促进臭氧的分解。连续运行时活性炭催化二级氧化工艺比臭氧二级氧化工艺对液相臭氧的消耗率平均高71.2%。对活性炭催化二级氧化工艺的臭氧消耗量与有机物含量间关系分析证明,活性炭在臭氧分解过程中可与臭氧直接反应或起自由基引发剂作用,在水中有机物含量较低时其臭氧分解促进作用尤为明显。当臭氧投量为1 mg/L时,催化二级氧化对MIB去除率比臭氧二级氧化高约1倍。当水中臭氧浓度为1.5 mg/L左右时,催化二级氧化使BrO_3~-浓度降低了0.04 mg/L。
     催化氧化与活性炭过滤组合工艺的净水效率较高。进水臭氧浓度0~0.1 mg/L、进水UV_(254)为0.020~0.030 1/cm时催化与臭氧后续活性炭对UV_(254)平均去除率分别为30%和21%,活性炭过滤对UV_(254)及DOC的去除率在进水水质及液相臭氧浓度适中时最大,液相臭氧相对浓度(O_3/DOC)约为0.3时DOC去除率达到最高值。催化氧化后续活性炭进水中有机物含量及臭氧浓度均较低,有利于活性炭保持吸附容量和表面性质。此外,催化剂流失的金属氧化物可被活性炭吸附,这也有助于促进臭氧在活性炭表面分解。
Drinking water sources are now suffering ever severe organic pollution, and the presence of organics in water is not only harmful to human being by itself, but also responsible for the formation of disinfection by products (DBPs) after chlorination, and the organics may also decrease water biostability, leading to the propagation of microorganism in drinking water distribution system, so the organics in water is supposed to be removed as much as possible. The traditional water treatment processes is less capable on the removal of organics, which calling for more economic and efficient water treatment processes. Based on the advantage of ozone oxidation, catalytic ozonation may initiate the formation of hydroxyl radicals (·OH), whose oxidation potential is much higher than ozone. Therefore, refractory micropollutants may be effectively degraded and the ozonation byproducts may be restrained by catalytic ozonation, which shows a promising application on drinking water treatment.
     Ceramic honeycomb catalytic ozonation (CH catazone) and activated carbon catalytic ozonation (carbozone) were proved to be efficient on the removal of certain micropollutants in bench experiments, while the operation character of carbozone-GAC processes remains to be explored, so in this study, the operating characteristics of CH catazone, carbozone and their following granular activated carbon (GAC) filtration were investigated by pilot experiments.
     Under the study condition, the gas-liquid mass transfer efficiency of CH contactor was slightly lower than that of ozone contactor unless gas-liquid ratio was larger than 0.15. At a flow rate of 0.1 m~3/h, the gas holdup (εg) of ozone and CH contactor was 0.19% and 0.15% respectively, thus the bubble size was relatively larger in CH contactor, which was adverse on gas-liquid mass transfer. Calculated by liquid pulse tracer input test, the Pe number of ozone and CH contactor was 3.14 and 5.25 respectively, thus the portion of plug flow was relatively larger in CH contactor, which was positive on gas-liquid mass transfer. The increase of gas flow rate may promote gas-liquid mass transfer more obviously in CH contactor.
     The oxidation degradation efficiency of CH catazone was higher than ozonation, and the highest TOC and CHCl_3FP removal rate of CH catazone was 2 times higher than that of ozonation in batch experiment. The advantage of CH catazone on UV_(254) removal was more pronounced at lower ozone dose in continuous flow experiment, and at an ozone dose of 1 mg/L, the UV_(254) removal rate of CH catazone was 16.7% higher than that of ozonation, which was the result of the larger portion of plug flow and faster increase of dissolved ozone concentration in CH contactor. The BrO_3~- was better controlled by CH catazone, and the BrO_3~- concentration was 38.8% lower in CH catazone effluent comparing with that of ozonation at an ozone dose of 1 mg/L.
     Activated carbon catalyst may promote ozone decomposition. The dissolved ozone consumption ratio of 2nd carbozone process was 71.2% higher than that of ozonation process in long-term continuous flow experiment. Analysis on the relationship between ozone consumption and organic content in 2nd carbozone process proved the ozone decomposition and radical initiation effects of activated carbon, and those effects were more obvious at lower organic concentration. The MIB removal rate of 2nd carbozone was 1 times higher than that of ozonation at an ozone dose of 1 mg/L. BrO_3~- concentration decreased 0.04 mg/L in 2nd carbozone and process, when dissolved ozone concentration was about 1.5 mg/L.
     The water purification performance of catazone-GAC filtration process was better than its counterpart. The UV_(254) removal rate of catazone subsequent GAC and ozonation subsequent GAC was 30% and 21% respectively, at an dissolved ozone concentration of 0~1.0 mg/L and influent UV_(254) of 0.020~0.030 1/cm. The UV_(254) and DOC decreasing effect of GAC filtration was most obvious when both influent organic content and dissolved ozone concentration were in their moderate levels, and the highest DOC removal efficiency of GAC filtration appeared at a specific dissolved ozone dose (O_3/DOC) of 0.3. Organic and ozone concentration were both lower in the influent of GAC following catazone, which was helpful to the maintenance of adsorption capacity and the delay of surface oxidation. Moreover, metal oxides eluted from catalyst may be adsorbed by GAC, contributing to the decomposition of ozone on GAC surface.
引文
1王瑗,盛连喜,李科等.中国水资源现状分析与可持续发展对策研究.水资源与水工程学报, 2008, 19(3): 10-14.
    2畅明琦,刘俊萍.论中国水资源安全的形势.生产力研究, 2006, (8): 5-7.
    3中华人民共和国环境保护部. 2007中国环境状况公报2008.
    4中华人民共和国环境保护部.关于进一步加强饮用水水源安全保障工作的通知. 2009.
    5国家环境保护总局. 2004中国环境状况公报.环境保护, 2005, (6): 11-28.
    6国家环境保护总局. 2005中国环境状况公报.环境保护, 2006, (6): 10-19.
    7国家环境保护总局. 2006中国环境状况公报.环境保护, 2007, (14): 79-82.
    8刘起峰.密云水库水的预氧化及强化混凝研究.中国地质大学(北京)博士论文. 2007.
    9 R. M. Hozalski, E. J. Bouwer, S. Goel. Removal of natural organic matter (NOM) from drinking water supplies by ozone-biofiltration. Water Science & Technology, 1999, 40(9): 157-163.
    10 A. Matilainen, N. Vieno, T. Tuhkanen. Efficiency of the activated carbon filtration in the natural organic matter removal. Environment International, 2006, 32(3): 324-331.
    11王占生.水源水质污染危及城市供水.瞭望, 2005, (48): 65.
    12王玲玲,焦飞,多克辛.河南省城市水源水微量有机污染现状调查研究.环境科学研究, 2004, 17(2): 30-33.
    13李小娟,吉文亮,马永健等.江苏地区饮用水水源地水中挥发性有机污染物的调查.环境与健康杂志, 2007, 24(11): 877-880.
    14汪珊,孙继朝,张宏达等.我国水环境有机污染现状与防治对策.海洋地质动态, 2005, 21(10): 5-10.
    15陆洋,袁东星,邓永智.九龙江水源水及其出厂水邻苯二甲酸酯污染调查.环境与健康杂志, 2007, 24(9): 703-705.
    16杨丽莉,胡恩宇,母应锋等.南京市饮用水中挥发性有机污染物(VOC)的种类与水平.化学试剂, 2006, 28(11): 688-690.
    17沈幸,刘云,鲜啟鸣等.太湖水源地水体中半挥发性有机物的监测.环境污染与防治, 2006, 28(5): 396-398.
    18刘征涛.持久性有机污染物的主要特征和研究进展.环境科学研究, 2005, 18(3): 93-102.
    19詹旭,吕锡武.持久性有机污染物(POPs)的生物降解研究进展.中国给水排水, 2006, 22(22): 10-12.
    20程晨,陈振楼,毕春娟等.中国地表饮用水水源地有机类内分泌干扰物污染现况分析.环境污染与防治, 2007, 29(6): 446-450.
    21李杰,司纪亮.内分泌干扰物质简介.中国公共卫生, 2002, 18(2): 241-242.
    22周鸿,张晓健,胡建英等.饮用水中壬基酚及其前体物的分布特性.环境与健康杂志, 2004, 21(5): 288-290.
    23牛静萍,刘亚平,阮烨等.黄河兰州段环境激素的污染水平.环境与健康杂志, 2006, 23(6): 527-529.
    24邵晓玲,马军.松花江水中13种内分泌干扰物的初步调查.环境科学学报, 2008, 28(9): 1910-1915.
    25邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查.环境科学学报, 2002, 22(1): 12-16.
    26田怀军,舒为群,邱志群等.长江流域某市饮用水雌激素污染物初步研究.第三军医大学学报, 2004, 26(19): 1751-1754.
    27胡洪营,王超,郭美婷.药品和个人护理用品(PPCPs)对环境的污染现状与研究进展.生态环境, 2005, 14(6): 947-952.
    28王兰.抗生素污染现状及对环境微生态的影响.药物生物技术, 2006, 13(2): 144-148.
    29吕妍,袁涛,王文华等.个人护理用品生态风险评价研究进展.环境与健康杂志, 2007, 24(8): 650-653.
    30常红,胡建英,王乐征等.城市污水处理厂中磺胺类抗生素的调查研究.科学通报, 2008, 53(2): 159-164.
    31 P. J. Purcell. Milestones in the development of municipal water treatment science and technology in the 19th and early 20th centuries: Part 1. Water and Environment Journal, 2005, 19(3): 230-237.
    32 H. S. Vuorinen, P. S. Juuti, T. S. Katko. History of water and health from ancient civilizations to modern times. Water Science & Technology: Water Supply, 2007, 7(1): 49-57.
    33 USEPA. The history of drinking water treatment. 2000.
    34王琳,王宝贞.饮用水深度处理技术.化学工业出版社. 2002.
    35邓瑛,魏建荣,鄂学礼等.中国六城市饮用水中氯化消毒副产物分布的研究.卫生研究, 2008, 37(2): 207-210.
    36王丽花,张晓健.成都市饮用水中消毒副产物的变化研究.中国给水排水, 2003, 19(11): 8-11.
    37 M. Petrovic, S. Gonzalez, D. Barcel. Analysis and removal of emerging contaminants in wastewater and drinking water. TrAC Trends in Analytical Chemistry, 2003, 22(10): 685-696.
    38张惠娟,刘爱林,张杰等.常规处理工艺对饮水中MX及致突变性影响.中国公共卫生, 2008, 24(7): 782-784.
    39刘海龙,夏忠欢,王东升等.典型南方水强化混凝有机物分级处理研究.环境科学, 2006, 27(5): 909-912.
    40周玲玲,张永吉,孙丽华等.铁盐和铝盐混凝对水中天然有机物的去除特性研究.环境科学, 2008, 29(5): 1187-1191.
    41张学志.臭氧知识综述. 2005; http://www.instrument.com.cn/bbs/shtml/ 20080714/1355097/.
    42雷乐成,汪大翚.水处理高级氧化技术.化学工业出版社. 2002.
    43孙德智.环境工程中的高级氧化技术.化学工业出版社. 2002.
    44储金宇,吴春笃,陈万金等.臭氧技术及应用.化学工业出版社. 2002.
    45纪峰.高锰酸钾与臭氧预氧化相对除污染效能研究.哈尔滨建筑大学硕士论文. 1999.
    46 E. L. Hall, A. M. Dietrich. A brief history of drinking water. Opflow, 2000, 26(6): 46-49.
    47 J. Rositano, G. Newcombe, B. Nicholson, et al. Ozonation of NOM and algal toxins in four treated waters. Water Research, 2001, 35(1): 23-32.
    48 J. R. Jackson. Ozone disinfection and public health: A historical prospective. 2008; http://www.wateronline.com/download.mvc/Ozone-Disinfection-And- Public-Health-0001.
    49 K. Biswasa, S. Craik, D. W. Smith, et al. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters Water Research, 2005, 39(14): 3167-3176.
    50 W. Nishijima, W. H. Kim, E. Shoto, et al. The performance of an ozonation-biological activated carbon process under long term operation. Water Science & Technology, 1998, 38(6): 163-169.
    51 K. S. Kim, B. S. Oh, J. W. Kang, et al. Effect of ozone and GAC process for the treatment of micropollutants and DBPs control in drinking water: Pilotscale evaluation. Ozone: Science & Engineering, 2005, 27(1): 69 - 79.
    52 R. Vahala, V. A. L?ngvik, R. Laukkanen. Controlling adsorbable organic halogens (AOX) and trihalomethanes (THM) formation by ozonation and two-step granule activated carbon (GAC) filtration. Water Science & Technology, 1999, 40(9): 249-256.
    53 P. M. Huck. Development of a framework for quantifying the removal of humic substances by biological filtration. Water Science & Technology, 1999, 40(9): 149-156.
    54 Fahmi, W. Nishijima, M. Okada. Improvement of DOC removal by multi-stage AOP-biological treatment. Chemosphere, 2003, 50(8): 1043-1048.
    55 S. Hesse, G. Kleiser, F. H. Frimmel. Characterization of refractory organic substances (ROS) in water treatment. Water Science & Technology, 1999, 40(9): 1-7.
    56 M. S. Siddiqui, G. L. Amy, B. D. Murphy. Ozone enhanced removal of natrual organic matter from drinking water sources. Water Research, 1997, 31(12): 3098-3106.
    57 K. Ikehata, N. J. Naghashkar, M. G. El-Din. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: A review. Ozone: Science & Engineering, 2006, 28(6): 353-414.
    58鲁金凤.铁、铈氧化物催化臭氧氧化滤后水中天然有机物特性研究哈尔滨工业大学博士论文. 2008.
    59 E. S. Melin, H. ?degaard. The effect of biofilter loading rate on the removal of organic ozonation by-products. Water Research, 2000, 34(18): 4464-4476.
    60 J. Staehelin, J. Hoigné. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science & Technology, 1985, 19(12): 1206-1213.
    61 B. Kasprzyk-Hordern, M. Zió?ek, J. Nawrocki. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental, 2003, 46(4): 639–669.
    62 B. Legube, N. Karpel Vel Leitner. Catalytic ozonation: A promising advanced oxidation technology for water treatment. Catalysis Today, 1999, 53(1): 61-72.
    63 F. J. Beltrán.水和废水的臭氧反应动力学.中国建筑工业出版社. 2007.
    64 R. Andreozzi, A. Insola, V. Caprio, et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution.Applied Catalysis A: General, 1996, 138(1): 75-81.
    65 R. Andreozzi, V. Caprio, A. Insola. The ozonation of pyruvic acid in aqueous solutions catalyzed by suspended and dissolved manganese. Water Research, 1998, 32(5): 1492-1496.
    66 S.-p. Tong, W.-p. Liu, W.-h. Leng, et al. Characteristics of MnO2 catalytic ozonation of sulfosalicylic acid and propionic acid in water. Chemosphere, 2003, 50(10): 1359-1364.
    67 J. Villase?or, P. Reyes, G. Pecchi. Catalytic and photocatalytic ozonation of phenol on MnO2 supported catalysts. Catalysis Today, 2002, 76(2-4): 121-131.
    68 D. S. Pines, D. A. Reckhow. Solid phase catalytic ozonation process for the destruction of a model pollutant. Ozone: Science & Engineering, 2003, 25(1): 25-39.
    69 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Mineralization improvement of phenol aqueous solutions through heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology, 2003, 78(12): 1225-1233.
    70 N. Al-Hayek, B. Legube, M. Doré. Catalytic ozonation (FeIII/Al2O3) of phenol and its ozonation by-products. Environmental Technology, 1989, 10(4): 415-426.
    71 C. Cooper, R. Burch. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation. Water Research, 1999, 33(18): 3695-3700.
    72 M. Trapido, Y. Veressinina, R. Munter, et al. Catalytic ozonation of m-dinitrobenzene. Ozone: Science & Engineering, 2005, 27(5): 359-363.
    73孙志忠,马军,赵雷等.水中内分泌干扰物二苯甲酮的臭氧蜂窝陶瓷氧化降解效能的研究.黑龙江大学自然科学学报, 2005, 22(4): 428-437.
    74赵雷,孙志忠,马军.蜂窝陶瓷催化臭氧化降解水中草酸的研究.环境科学, 2007, 28(11): 2533-2538.
    75 L. Zhao, J. Ma, Z.-z. Sun. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Applied Catalysis B: Environmental, 2008, 79(3): 244-253.
    76 L. Zhao, J. Ma, Z. Sun, et al. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb. Applied Catalysis B: Environmental, 2009, doi:10.1016/j.apcatb.2008.12.009.
    77 L. Zhao, J. Ma, Z. Sun, et al. Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. Journal of Hazardous Materials, 2009: doi:10.1016/j.jhazmat.2009.01.116.
    78孙志忠,赵雷,马军.水中本底成分对催化臭氧化分解微量硝基苯的影响.环境科学, 2006, 27(2): 285-289.
    79 L. Zhao, J. Ma, Z.-z. Sun, et al. Preliminary kinetic study on the degradation of nitrobenzene by modified ceramic honeycomb-catalytic ozonation in aqueous solution. Journal of Hazardous Materials, 2009, 161(2-3): 988-994.
    80赵雷,马军,孙志忠等.催化臭氧化水中硝基苯速率常数的影响因素.哈尔滨工业大学学报, 2008, 40(8): 1227-1232.
    81孙志忠,赵雷,马军.改性蜂窝陶瓷催化臭氧化降解水中微量硝基苯.环境科学, 2005, 26(6): 84-88.
    82 Z.-z. Sun, J. Ma, L.-b. Wang, et al. Degradation of nitrobenzene in aqueous solution by ozone-ceramic honeycomb. Journal of Environmental Science, 2005, 17(5): 716-721.
    83 L. Zhao, J. Ma, Z.-z. Sun, et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese. Applied Catalysis B: Environmental, 2008, 83(3-4): 256-264.
    84赵雷,马军,刘正乾等.常见有机物对催化臭氧化降解水中硝基苯的影响.环境科学, 2008, 29(5): 1233-1238.
    85赵雷,马军,孙志忠.无机离子对催化臭氧化降解水中痕量硝基苯效果的影响.环境科学, 2006, 27(5): 924-929.
    86赵雷,马军,孙志忠等.蜂窝陶瓷催化臭氧化降解水中痕量硝基苯的机理研究.环境科学, 2007, 28(2): 335-341.
    87赵雷,马军,孙志忠等.蜂窝陶瓷催化臭氧化降解水中微量硝基苯的动力学研究.环境科学, 2007, 28(1): 102-107.
    88 L. Zhao, J. Ma, Z.-z. Sun. Ozone enhanced activity of ceramic honeycomb for advanced oxidation of nitrobenzene in aqueous solution. Journal of Harbin Institute of Technology (New Series), 2005, 12(suppl 1): 118-122.
    89 L. Zhao, J. Ma, Z. Z. Sun, et al. Mechanism of influence of initial pH on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation. Environmental Science & Technology, 2008, 42(11): 4002-4007.
    90 L. Zhao, J. Ma, Z. Z. Sun, et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution. Environmental Science & Technology, 2009, 43(6): 2047–2053.
    91关春雨.活性炭催化臭氧氧化处理松花江微污染水源水效能研究.哈尔滨工业大学. 2005.
    92 U. Jans, J. Hoigné. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals. Ozone: Science and Engineering, 1998, 20(1): 67-77.
    93 J. L. Figueiredo, M. F. R. Pereira, M. M. A. Freitas, et al. Modification of the surface chemistry of activated carbons. Carbon, 1999, 37(9): 1379-1389.
    94 A. Fortuny, J. Font, A. Fabregat. Wet air oxidation of phenol using active carbon as catalyst. Applied Catalysis A: General, 1998, 19(3-4): 165-173.
    95 A. Fortuny, C. Miró, J. Font, et al. Three-phase reactors for environmental remediation: catalytic wet oxidation of phenol using active carbon. Catalysis Today, 1999, 48(1): 323-328.
    96 T. Nunoura, G. Lee, Y. Matsumura, et al. Reaction engineering model for supercritical water oxidation of phenol catalyzed by activated carbon. Industrial and Engineering Chemistry Research, 2003, 43(15): 3522-3531.
    97 D. R. Grymonpré, W. C. Finney, B. R. Locke. Aqueous-phase pulsed streamer corona reactor using suspended activated carbon particles for phenol oxidation: model-data comparison. Chemical Engineering Science, 1999, 54(15-16): 3095-3105.
    98 D. R. Grymonpré, W. C. Finney, R. J. Clark, et al. Suspended activated carbon particles and ozone formation in aqueous-phase pulsed corona discharge reactors. Industrial and Engineering Chemistry Research, 2003, 42(21): 5177-5134.
    99 F. J. Beltrán, F. J. Rivas, R. Montero-de-Espinosa. Mineralization improvement of phenol aqueous solutions through heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology, 2003, 78(12): 1225-1233.
    100 S. H. Lin, C. H. Wang. Ozonation of phenolic wastewater in a gas-induced reactor with a fixed granular activated carbon bed. Industrial and Engineering Chemistry Research, 2003, 42(8): 1648-1653.
    101苏金钰,田学达.活性炭负载TiO2催化臭氧氧化去除水中酚的研究.湖南环境生物职业技术学院学报, 2004, 10(4): 311-315.
    102吴桂萍,安文浩,陆晓华等. TiO2/AC催化臭氧氧化处理水中的苯酚.环境科学与技术, 2007, 30(2): 23-25.
    103 J. Matos, J. Laine, J. M. Herrmann. Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiated titania. Journal of Catalysis, 2001, 200(1): 10-20.
    104 F. Lücking, H. K?ser, M. Jank, et al. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water Research, 1998, 32(9): 2607-2614.
    105 C. A. Zaror. Enhanced oxidation of toxic effluents using simultaneous ozonation and activated carbon treatment. Journal of Chemical Technology and Biotechnology, 1997, 70(1): 21-28.
    106 C. Aguilar, R. García, G. Soto-Garrido, et al. Catalytic wet air oxidation of aqueous ammonia with activated carbon. Applied Catalysis A: General, 2003, 46(2): 229-237.
    107 J. Zawadzki, M. Wisniewski. In situ characterization of interaction of ammonia with carbon surface in oxygen atmosphere. Carbon, 2003, 41(12): 2257-2267.
    108张彭义,余刚,孙海涛等.臭氧/活性炭协同降解有机物的初步研究.中国环境科学, 2000, 20(2): 159-162.
    109崔龙哲,申哲昊,吴桂萍等.活性炭臭氧氧化处理水中聚乙二醇的研究.环境科学与技术, 2006, 29(8): 73-74.
    110 F. J. Beltrán, F. J. Rivas, L. A. Fernández, et al. Kinetics of catalytic ozonation of oxalic acid in water with activated carbon. Industrial and Engineering Chemistry Research, 2002, 41(25): 6510-6517.
    111 J. Ma, M.-H. Sui, Z.-L. Chen, et al. Degradation of refractory organic pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as catalysts. Ozone: Science and Engineering, 2004, 26(1): 3-10.
    112隋铭皓,马军.臭氧/活性炭对硝基苯的去除效果研究.中国给水排水, 2001, 17(10): 70-73.
    113隋铭皓,马军,盛力.吸附在多相催化臭氧氧化降解有机物中的作用.中国给水排水, 2006, 22(23): 99-102.
    114 J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of 1,3,6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueousphase. Applied Catalysis B: Environmental, 2002, 39(4): 319-329.
    115 J. Rivera-Utrilla, M. Sánchez-Polo, M. A. Mondaca, et al. Effect of ozone and ozone/activated carbon treatments on genotoxic activity of naphthalenesulfonic acids. Journal of Chemical Technology and Biotechnology, 2002, 77(8): 883-890.
    116 M. Sánchez-Polo, J. Rivera-Utrilla. Effect of the ozone-carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon, 2003, 41(2): 303-307.
    117 J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of naphthalenesulphonic acid in the aqueous phase in the presence of basic activated carbons. Langmuir, 2004, 20(21): 9217-9222.
    118 M. Sánchez-Polo, R. Leyva-Ramos, J. Rivera-Utrilla. Kinetics of 1,3,6-naphthalenetrisulphonic acid ozonation in presence of activated carbon. Carbon, 2005, 43(5): 962-969.
    119 M. A. Mondaca, V. Carrasco, C. A. Zaror. Effect of simultaneous ozone and activated carbon treatment on 1,2-dihydroxybenzene genotoxic effects. Bulletin of Environmental Contaminant Toxicology, 2000, 64(1): 59-65.
    120 L. Li, W. Zhu, P. Zhang, et al. Comparison of AC/O3-BAC and O3-BAC processes for removing organic pollutants in secondary effluent. Chemosphere, 2006, 62(9): 1514-1522.
    121陈瑛,郭二民,黄国忠等.紫外光和活性炭对有机物臭氧化的协同催化作用.环境科学研究, 2007, 20(1): 90-94.
    122陈瑛,宋存义,张建祺.协同催化臭氧化工艺对水中微量有机污染物的降解.化工进展, 2006, 25(9): 1069-1073.
    123 M. F. R. Pereira, S. F. Soares, J. J. M.órf?o, et al. Adsorption of dyes on activated carbons influence of surface chemical groups. Carbon, 2003, 41(4): 811-821.
    124 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Mineralisation of coloured aqueous solutions by ozonation in the presence of activated carbon. Water Research, 2005, 39(8): 1461-1470.
    125 M. M. Hassan, C. J. Hawkyard. Decolourisation of dyes and dyehouse effluent in a bubble-column reactor by heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology, 2006, 81(2): 201-207.
    126 S. H. Lin, C. L. Lai. Kinetic characteristics of textile wastewater ozonation influidized and fixed activated carbon beds. Water Research, 2000, 34(3): 763-772.
    127 S. H. Lin, C. H. Wang. Industrial wastewater treatment in a new gas-induced ozone reactor. Journal of Hazardous Materials, 2003, 98: 295-309.
    128危想平,肖鹏.活性炭-臭氧处理印染废水试验.印染, 2004, 20: 5-7.
    129 G. McKay, G. McAleavey. Ozonation and carbon adsorption in a three-phase fluidised bed for colour removal from peat water. Chemical Engineering Research and Design, 1988, 66(6): 531-536.
    130刘发强,王鹏,赵瑛等.采用臭氧/活性炭催化氧化法净化含腈废水.石化技术与应用, 2005, 23(6): 474-476.
    131曲险峰,郑经堂.活性炭催化臭氧氧化法处理奥里油加工废水.化工环保, 2006, 26(3): 222-225.
    132 F. J. Beltrán, J. F. García-Araya, I. Giráldez, et al. Kinetics of activated carbon promoted ozonation of succinic acid in water. Industrial and Engineering Chemistry Research, 2006, 45(9): 3015-3021.
    133 M. Sánchez-Polo, U. v. Gunten, J. Rivera-Utrilla. Efficiency of activated carbon to transform ozone into·OH radicals: Influence of operational parameters. Water Research, 2005, 39(14): 3189-3198.
    134 H. Valdés, C. A. Zaror. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach. Chemosphere, 2006, 65(7): 1131-1136.
    135 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozonation of aniline promoted by activated carbon. Chemosphere, 2006, doi:10.1016/j.Chemosphere.2006.10. 020.
    136 M. Guiza, A. Ouederni, A. Ratel. Decomposition of dissolved ozone in the presence of activated carbon: an experimental study. Ozone: Science and Engineering, 2004, 26(3): 299-307.
    137 U. Jans, J. Hoigné. Atmospheric water: transformation of ozone into OH-radicals by sensitized photoreactions or black carbon. Atmospheric Environment, 2000, 34(7): 1069-1085.
    138 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozone decomposition in water catalyzed by activated carbon: influence of chemical and textural properties. Industrial and Engineering Chemistry Research, 2006, 45(8): 2715-2721.
    139 P. M. Alvárez, J. F. García-Araya, F. J. Beltrán, et al. The influence of variousfactors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102-3112.
    140 J. A. Menéndez, J. Phillips, B. Xia, et al. On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir, 1996, 12(18): 4404-4410.
    141 K. László. Characterization and adsorption properties of polymer-based microporous carbons with different surface chemistry. Microporous and Mesoporous Materials, 2005, 80(1-3): 205-211.
    142 E. Fuente, J. A. Menéndez, D. Suárez, et al. Basic surface oxides on carbon materials: A global view. Langmuir, 2003, 19(8): 3505-3511.
    143 M. V. López-Ramón, F. Stoeckli, C. Moreno-Castilla, et al. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon, 1999, 37(8): 1215-1221.
    144 H. P. Boehm. Surface oxides on carbon and their analysis: A critical assessment. Carbon, 2002, 40(2): 145-149.
    145 H. Valdés, M. Sánchez-Polo, J. Rivera-Utrilla, et al. Effect of ozone treatment on surface properties of activated carbon. Langmuir, 2002, 18(6): 2111-2116.
    146 M. A. Montes-Morán, J. A. Menéndez, E. Fuente, et al. Contribution of the basal planes to carbon basicity: An Ab initio study of the H3O+-πinteraction in cluster models. journal of physics and Chemistry: B, 1998, 102(29): 5595-5601.
    147 G. S. Szymanski, S. Biniak, G. Rychlicki. Carbon surface polarity from immersion calorimetry. Fuel Processing Technology, 2002, 79(3): 217-223.
    148 A. Contescu, M. Vass, C. Contescu, et al. Acid buffering capacity of basic carbons revealed by their continuous pK distribution. Carbon, 1998, 36(3): 247-258.
    149 P. M.álvarez, J. F. García-Araya, F. J. Beltrán, et al. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. Journal of colloid and interface science, 2005, 283(2): 503-512.
    150 S. S. Barton, M. J. B. Evans, E. Halliop, et al. Acidic and basic sites on the surface of porous carbon. Carbon, 1997, 35(9): 1361-1366.
    151 K.-R. Ko, S.-K. Ryu, S.-J. Park. Effect of ozone treatment on Cr(VI) and Cu(II)adsorption behaviors of activated carbon fibers. Carbon, 2004, 42(8-9): 1864-1867.
    152 C. Moreno-Castilla, M. V. López-Ramón, F. Carrasco-Marín. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000, 38(14): 1995-2001.
    153 J. Rivera-Utrilla, M. Sánchez-Polo. The role of dispersive and electrostatic interactions in the aqueous phase adsorption of naphthalenesulphonic acids on ozone-treated activated carbons. Carbon, 2002, 40(14): 2685-2691.
    154 J. Rivera-Utrilla, M. Sánchez-Polo. Adsorption of Cr(III) on ozonised activated carbon importance of C?cation interactions. Water Research, 2003, 37(14): 3335- 3340.
    155 S. Biniak, G. Szymanski, J. Siedlewski, et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997, 35(12): 1799-1810.
    156 A. Valente, C. Palma, I. M. Fonseca, et al. Oxidation of pinane over phthalocyanine complexes supported on activated carbon Effect of the support surface treatment. Carbon, 2003, 41(14): 2793-2803.
    157 S. A. Dastgheib, T. Karanfil, W. Cheng. Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004, 42(3): 547-557.
    158 F. Rodríguez-Reinoso. The role of carbon materials in heterogeneous catalysis. Carbon, 1998, 36(3): 159-175.
    159 M. Gurrath, T. Kuretzky, H. P. Boehm, et al. Palladium catalysts on activated carbon supports: Influence of reduction temperature, origin of the support and pretreatments of the carbon surface. Carbon, 2000, 38(8): 1241-1255.
    160 M. A. Montes-Morán, D. Suárez, J. A. Menéndez, et al. On the nature of basic sites on carbon surfaces: An overview. Carbon, 2004, 42(7): 1219-1225.
    161 D. Suárez, J. A. Menéndez, E. Fuente, et al. Contribution of pyrone-type structures to carbon basicity: An ab initio study. Langmuir, 1999, 15(11): 3897-3904.
    162 J. A. Menéndez, B. Xia, J. Phillips, et al. On the modification and characterization of chemical surface properties of activated carbon: microcalorimetric, electrochemical, and thermal desorption probes. Langmuir, 1997, 13(13): 3414-3421.
    163 F. J. Beltrán, J. F. García-Araya, I. Giráldez. Gallic acid water ozonation using activated carbon. Applied Catalysis B: Environmental, 2006, 63(3-4): 249-259.
    164 I. Giraldez, J. F. Garcia-Araya, F. J. Beltran. Activated carbon promoted ozonation of Polyphenol mixtures in water: comparison with single ozonation. Industrial & Engineering Chemistry Research, 2007, 46(24): 8241-8247.
    165 P. M.álvarez, J. F. García-Araya, F. J. Beltrán, et al. The influence of various factors on aqueous ozone decomposition by granular activated carbons and the development of a mechanistic approach. Carbon, 2006, 44(14): 3102-3112.
    166白辛民.化工中试装置工艺设计方案的确定.兰化科技, 1997, 15(3): 198-201.
    167黄生斌,叶芝菡,刘宝元.密云水库流域非点源污染研究概述.中国生态农业学报, 2008, 16(5): 1311-1316.
    168黄年龙,廖凤京,冯霞.给水厂深度处理工艺中的臭氧系统设计.中国给水排水, 2003, 19(9): 76-78.
    169 N. Kantarci, F. Borak, K. O. Ulgen. Bubble column reactors. Process Biochemistry, 2005, 40(7): 2263-2283.
    170王业耀,王占生.靛红钾法测定水中的臭氧浓度.中国给水排水, 2003, 19(4): 95-97.
    171臭氧发生器臭氧浓度、产量、电耗的测量,中华人民共和国建设部, Editor. 1994.
    172燃烧氧化-非分散红外吸收法总有机碳的测定,国家环境保护总局, Editor. 2001.
    173于鑫,张晓键,王占生.饮用水生物处理中生物量的脂磷法测定.给水排水, 2002, 28(5): 1-5.
    174国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法.中国环境科学出版社. 1989.
    175生活饮用水检验规范,中华人民共和国卫生部, Editor. 2001.
    176 R. Krishna, J. M. v. Baten. Mass transfer in bubble columns. Catalysis Today, 2003, 79-80(1-4): 67-75.
    177 D. Mewes, D. Wiemann. Two-phase flow with mass transfer in bubble columns. Chemical Engineering & Technology, 2003, 26(8): 862-868.
    178李天成,辛峰,李鑫钢等.电导法测定气-液鼓泡床反应器内的气泡直径.天津大学学报, 2002, 35(2): 231-234.
    179 V. Farines, S. Baig, J. Albet, et al. Ozone transfer from gas to water in aco-current upflow packed bed reactor containing silica gel. Chemical Engineering Journal, 2003, 91(1): 67-73.
    180 G. Tiwari, P. Bose. Determination of ozone mass transfer coefficient in a tall continuous flow counter-current bubble contactor. Chemical Engineering Journal, 2007, 132(1-3): 215-225.
    181顾汉阳,郭烈锦.方截面鼓泡床气液两相瞬态数值研究.工程热物理学报, 2005, 26(1): 72-75.
    182丛义春,徐春明,高金森.气固流化床中双组分颗粒分离的研究进展.石化技术, 2004, 11(4): 53-56.
    183 F. R. Birrer, U. B?hm. Gas-liquid dispersions in structured packing with high-viscosity liquids. Chemical Engineering Science, 2004, 59(20): 4385-4392.
    184 I. Iliuta, C. F. Petre, F. Larachi. Hydrodynamic continuum model for two-phase flow structured-packing-containing columns. Chemical Engineering Science, 2004, 59(4): 879-888.
    185 R. Macias-Salinas, J. R. Fair. Axial mixing effects in packed gas-liquid contactors. Industrial & Engineering Chemistry Research, 2002, 41(14): 3429-3435.
    186 A. E. R. Bruce, P. S. T. Sai, K. Krishnaiah. Characterization of liquid phase mixing in turbulent bed contactor through RTD studies. Chemical Engineering Journal, 2004, 104(1-3): 19-26.
    187 Y. H. Chen, C. Y. Chang, C. Y. Chiu, et al. Dynamic behavior of ozonation with pollutant in a countercurrent bubble column with oxygen mass transfer. Water Research, 2003, 37(11): 2583-2594.
    188刘起峰,刘菲,李涛等.密云水源水的预臭氧化及强化常规处理研究.环境工程学报, 2007, 1(1): 14-18.
    189 G. Kleiser, F. H. Frimmel. Removal of precursors for disinfection by-products (DBPs)-differences between ozone- and OH-radical-induced oxidation. The Science of the Total Environment, 2000, 256(1): 1-9.
    190 L. Guzzella, D. Feretti, S. Monarca. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking water supply. Water Research, 2002, 36(17): 4307-4318.
    191孙治荣,秦媛,张素霞等.微污染水源水中消毒副产物前体物的去除.环境污染与防治, 2004, 26(5): 321-325.
    192韩帮军.臭氧催化氧化除污染特性及其生产应用研究.哈尔滨工业大学博士论文. 2007.
    193 P. C. Chiang, E. E. Chang, C. H. Liang. NOM characteristics and treatabilities of ozonation processes. Chemosphere, 2002, 46(6): 929-936.
    194 USEPA. Stage 2 disinfectants and disinfection byproducts rule operational evaluation guidance manual. 2008.
    195 H.-C. Kim, M.-J. Yu. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water. Journal of Hazardous Materials, 2007, 143(1-2): 486-493.
    196 R. P. Galapate, A. U. Baes, K. Ito, et al. Trihalomethane formation potential prediction using some chemical functional groups and bulk parameters. Water Research, 1999, 33(11): 2555-2560.
    197 G. Kleiser, F. H. Frimmel. Removal of precursors for disinfection by-products (DBPs)-differences between ozone- and OH-radical-induced oxidation. The Science of the Total Environment, 2000, 256(1): 1-9.
    198隋铭皓,马军.多相催化臭氧氧化对CHCl3生成势降解效能研究.哈尔滨商业大学学报(自然科学版), 2004, 20(5): 552-555.
    199 H.-S. Park, T.-M. Hwang, J.-w. Kang, et al. Characterization of raw water for the ozone application measuring ozone consumption rate. Water Research, 2001, 35(11): 2607-2614.
    200 P. Westerhoff, G. Aiken, G. Amy, et al. Relationships between the structure of natural organic matter and its reactivity towards molecular ozone and hydroxyl radicals. Water Research, 1999, 33(10): 2265-2276.
    201董文艺.臭氧化组合工艺净水效能及副产物控制对策研究.哈尔滨工业大学博士论文. 2004.
    202 A. Driedger, E. Staub, U. Pinkernell, et al. Inactivation of bacillus subtilis spores and formation of bromate during ozonation. Water Research, 2001, 35(12): 2950-2960.
    203 R. Song, C. Donohoe, R. Minear, et al. Empirical modeling of bromate formation during ozonation of bromide-containing waters. Water Research, 1996, 30(5): 1161-1168.
    204刘欣,何进,喻子牛.微生物产生的土腥味化合物及其清除方法.中国生物工程杂志, 2005, 25(8): 35-38.
    205陈蓓蓓,高乃云,马晓雁等.饮用水中嗅昧物质-土臭素和二甲基异冰片去除技术.四川环境, 2007, 26(3): 87-93.
    206齐飞,陈忠林,李学艳等. O3氧化去除饮用水中嗅味物质MIB的研究.哈尔滨工业大学学报, 2007, 39(10): 1583-1586.
    207马军,李学艳,陈忠林等.臭氧氧化分解饮用水中嗅味物质2-甲基异莰醇.环境科学, 2006, 27(12): 2483-2487.
    208 A. Peter, U. V. Gunten. Oxidation kinetics of selected taste and odor compounds during ozonation of drinking water. Environmental Science & Technology, 2007, 41(2): 626-631.
    209 L. Ho, G. Newcombe, J.-P. Croué. Influence of the character of NOM on the ozonation of MIB and geosmin Water Research, 2002, 36(3): 511-518.
    210 A. Bruchet, J. P. Duguet. Role of oxidants and disinfectants on the removal, masking and generation of tastes and odours. Water Science & Technology, 2004, 49(9): 297-306.
    211 L. Ho, J.-P. Croué, G. Newcombe. The effect of water quality and NOM character on the ozonation of MIB and geosmin. Water Science & Technology, 2004, 49(9): 249-255.
    212 M. Sagehashi, K. Shiraishi, H. Fujita, et al. Adsorptive ozonation of 2-methylisoborneol in natural water with preventing bromate formation. Water Research, 2005, 39(16): 3900-3908.
    213 P. C. C. Faria, J. J. M.órf?o, M. F. R. Pereira. Ozone decomposition in water catalyzed by activated carbon: Influence of chemical and textural properties. Industrial & Engineering Chemistry Research, 2006, 45(8): 2715-2721.
    214 H. Valdés, C. A. Zaror. Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: Kinetic approach. Chemosphere, 2006, 65(7): 1131-1136.
    215 G. Newcombe, M. Drikas. Adsorption of NOM onto activated carbon- electrostatic and nonelectrostatic effects. Carbon, 1997, 35(9): 1239-1250.
    216 B. Legube, J. P. Croué, J. D. Laat, et al. Ozonation of an extracted aquatic fulvic acid: theoretical and practical aspects. Ozone: Science & Engineering, 1989, 11(1): 69-92.
    217 J. Choma, W. Burakiewicz-Mortka, M. Jaroniec, et al. Monitoring changes in surface and structural properties of porous carbons modified by different oxidizing agents. Journal of Colloid and Interface Science, 1999, 214(2): 438-446.
    218 A. B. García, A. Martínez-Alonso, C. A. L. y. Leon, et al. Modification of the surface properties of an activated carbon by oxygen plasma treatment. Fuel, 1998, 77(6): 613-624.
    219 A. E. Aksoylu, M. Madalena, A. Freitas, et al. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts. Carbon, 2001, 39(2): 175-185.
    220 M. A. Fraga, M. J. Mendes, E. Jord?o. Examination of the surface chemistry of activated carbon on enantioselective hydrogenation of methyl pyruvate over Pt/C catalysts. Journal of Molecular Catalysis A: Chemical, 2002, 179(1-2): 243-251.
    221 C. Moreno-Castilla, M. A. Ferro-García, J. P. Joly, et al. Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir, 1995, 11(11): 4386-4392.
    222 C. Moreno-Castilla, F. Carrasco-Marín, F. J. Maldonado-Hódar, et al. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content. Carbon, 1998, 36(1-2): 145-151.
    223 M. L. Toebes, F. F. Prinsloo, J. H. Bitter, et al. Influence of oxygen-containing surface groups on the activity and selectivity of carbon nanofiber-supported ruthenium catalysts in the hydrogenation of cinnamaldehyde. Journal of Catalysis, 2003, 214(1): 78-87.
    224 L. Ding, V. L. Snoeyink, B. J. Marinas, et al. Effects of powdered activated carbon pore size distribution on the competitive adsorption of aqueous atrazine and natural organic matter. Environmental Science & Technology, 2008, 42(4): 1227-1231.
    225 K. Ebie, F. LI, Y. Azuma, et al. Pore distribution effect of activated carbon in adsorbing organic micropollutants from natural water Water Research, 2001, 35(1): 167-179.
    226马峥,张振良,于惠芳.活性炭对水中有机物去除的研究.环境保护, 1999, (5): 41-44.
    227 R. Treguer, A. Couvert, D. Wolbert, et al. Influence of porosity and surface chemistry of commercially available powdered activated carbons for the removal of dissolved organic carbon. Water Science & Technology: Water Supply, 2006, 6(3): 27-34.
    228 U. Iriarte-Velasco, J. I.álvarez-Uriarte, N. Chimeno-Alanís, et al. Naturalorganic matter adsorption onto granular activated carbons: Implications in the molecular weight and disinfection byproducts formation. Industrial & Engineering Chemical Research, 2008, 47(20): 7868-7876.
    229 T. Karanfil, J. E. Kilduff, M. A. Schlutman, et al. Adsorption of organic macromolecules by granular activated carbon. 1. Influence of molecular properties under anoxic solution conditions. Environmental Science & Technology, 1996, 30(7): 2187-2194.
    230 T. Karanfil, M. Kitis, J. E. kilduff, et al. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental Science & Technology, 1999, 33(18): 3225-3233.
    231 U. v. Gunten. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Research, 2003, 37(7): 1443-1467.
    232 S. h. Wu, B. z. Dong, T. J. Qiao, et al. Effect of a biological activated carbon filter on particle counts. Journal of Zhejiang University Science A, 2008, 9(11): 1576-1581.
    233 B. Seredynska-Sobecka, M. Tomaszewska, A. W. Morawski. Removal of humic acids by the ozonation-biofiltration process. Desalination, 2006, 198(1-3): 265-273.
    234孙国芬,乔铁军,刘晓飞等.生物活性炭技术中生物量的变化和影响.水处理技术, 2007, 33(7): 44-47.
    235刘建广,张晓健,王占生.温度对生物炭滤池处理高氨氮原水硝化的影响.中国环境科学, 2004, 24(2): 233-236.
    236金鹏康,姜德旺,张小峰等.臭氧-生物活性炭工艺中生物群落分布特征.西安建筑科技大学学报(自然科学版), 2007, 39(6): 829-833.
    237乔铁军,罗红星,刘晓飞等.活性炭结构特征对微生物的影响.中国给水排水, 2005, 21(1): 18-21.
    238 M. Tachikawa, K. Yamanaka, K. Nakamuro. Studies on the disinfection and removal of biofilms by ozone water using an artificial microbial biofilm system. Ozone: Science & Engineering, 2009, 31(1): 3 - 9.
    239 W. H. Kim, W. Nishijima, E. Shoto, et al. Pilot plant study on ozonation and biological activated carbon process for drinking water treatment. Water Science & Technology, 1997, 35(8): 21-28.
    240张绍梅,周北海,刘苗等.臭氧/生物活性炭深度处理密云水库水中试研究.中国给水排水, 2007, 23(21): 81-84.
    241张永吉,武道吉,周玲玲等.腐殖酸特性及其对三卤甲烷形成的影响.中国给水排水, 2005, 21(1): 14-17.
    242张永吉,周玲玲,刘志生等.水中天然有机物的分类特性及其卤代活性.环境科学, 2005, 26(1): 105-107.
    243乔春光,魏群山,王东升等.南方天然水体DOM的化学分级、变化特征及三卤甲烷生成势(THMFP)特性研究.环境科学学报, 2006, 26(6): 944-948.
    244张金松,张红亮,董文艺等. O3/ BAC对氯化消毒副产物的控制作用.中国给水排水, 2004, 20(2): 16-20.
    245 M. J. Kirisits, V. L. Snoeyink, J. C. Chee-Sanford, et al. Effect of operating conditions on bromate removal efficiency in BAC filters. Journal of American Water Works Association, 2002, 94(4): 182-194.
    246 M. Siddiqui, W. Zhai, G. Amy, et al. Bromate ion removal by activated carbon. Water Research, 1996, 30(7): 1651-1660.
    247 M. L. Bao, O. Griffini, D. Santianni, et al. Removal of bromate ion from water using granular activated carbon. Water Research, 1999, 33(13): 2959-2970.
    248 W. J. Huang, H. S. Peng, M. Y. Peng, et al. Removal of bromate and assimilable organic carbon from drinking water using granular activated carbon. Water Science & Technology, 2004, 50(8): 73-80.
    249 W.-J. Huang, Y.-L. Cheng. Effect of characteristics of activated carbon on removal of bromate. Separation and Purification Technology, 2008, 59(1): 101-107.
    250王锐,韩敏.水质特性和NOM在臭氧氧化和PAC吸附去除MIB、Geosmin上的作用.环境科学导刊, 2007, 26(5): 50-53.
    251 G. Newcombe, J. Morrison, C. Hepplewhite, et al. Simultaneous adsorption of MIB and NOM onto activated carbon. II. Competitive effects. Carbon, 2002, 40(12): 2147-2156.
    252 G. Newcombe, J. Morrison, C. Hepplewhite. Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption. Carbon, 2002, 40(12): 2135-2146.
    253 G. Newcombe, M. Drikas, R. Hayes. Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol Water Research, 1997, 31(5): 1065-1073.
    254 C. Subrahmanyam, D. A. Bulushev, L. Kiwi-Minsker. Dynamic behaviour ofactivated carbon catalysts during ozone decomposition at room temperature. Applied Catalysis B: Environmental, 2005, 61(1-2): 103-111.
    255 F. J. López-Garzón, M. Domingo-García, M. Pérez-Mendoza, et al. Textural and chemical surface modifications produced by some oxidation treatments of a glassy carbon. Langmuir, 2003, 19(7): 2838-2844.
    256 B. K. Pradhan, N. K. Sandle. Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon, 1999, 37(8): 1323-1332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700