用户名: 密码: 验证码:
大鼠再生肝中星形细胞的基因表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝脏是人体的重要器官,其强大的再生能力亦为学者重视。通常,人们用Higgins和Anderson建立的大鼠2/3肝切除模型(partial hepatectomy,PH)和肝组织材料研究肝再生(liver regeneration,LR)机理,但肝脏由多种细胞组成,若将再生肝的各种细胞分离出来分别进行研究,将会使研究更加明晰、简化和易行。肝星形细胞(hepatic stellate cells,HSCs)是肝脏特有的间充质细胞,位于肝索与肝窦壁之间的Disse间隙中,表面突起附于窦内皮细胞外表面及肝细胞表面,内含粗面内质网、Golgi复合体及许多大小不一的脂滴,具有维生素A储存和运输功能;脂肪吸收功能;参与肝细胞、肝脏损伤应答和修复;是一种专职抗原递呈细胞,能吞噬凋亡小体,参与肝免疫炎症调节;是肝内胞外基质和趋化因子等细胞因子主要的分泌细胞。大量证据表明星形细胞在肝再生中起关键作用。近来尽管有关星形细胞的研究报道越来越多,但在基因组范围内研究肝再生中星形细胞生理活动变化的并不多。另外,在基因组范围内研究星形细胞的新技术虽然不断涌现,但目前对星形细胞在肝再生中作用的认识主要来自传统的研究方法。因此若能检测它们在肝再生的动态表达谱,就有可能揭示星形细胞在肝再生中的作用机制。
     本文按Higgins等方法制作大鼠2/3肝切除模型,用两步灌流法分散肝脏细胞,用60%的Percoll密度梯度离心和免疫磁珠分离肝星形细胞,用结蛋白(desmin,DES)和波形蛋白(vimentin,VIM)的免疫组织化学方法定位、定性再生肝(regenerating liver,RL)和分散肝脏细胞中的肝星形细胞及分离的肝星形细胞,用RT-PCR定量肝星形细胞的DES和VIM mRNA,用蛋白免疫印迹方法定量肝星形细胞的DES和VIM蛋白。初步证实,分离的肝星形细胞中DES和VIM阳性细胞占95%以上,从PH后各时间点分离的肝星形细胞的DES和VIM mRNA量稳定,相应的蛋白量亦稳定。
     用Rat Genome 230 2.0芯片检测大鼠2/3肝切除后恢复0、2、6、12、24、30、36、72、120、168h等10个时间点的大鼠再生肝星形细胞的基因表达谱,用RT-PCR和免疫印迹方法检验了芯片检测结果的可靠性,用生物信息学和系统生物学等方法分析它们在大鼠肝再生中的表达变化。结果表明2609个基因与肝再生相关,包括1186个表达上调、1212个表达下调和211个表达上/下调基因。PCA分析它们在PH后不同时点星形细胞的基因转录谱特征表明,9个时间点的基因表达谱明显的聚集均为三组,即6、24和30h,2、12和36h,72、120和168h,且主要在2、12和36h组表达上调。
     为探讨1183个新基因在肝再生中作用,本研究首先通过电子克隆和ORF finder序列分析工具预测它们编码的氨基酸序列,发现其中的936个新基因有相应的蛋白。将它们与本实验室建立的大鼠蛋白质亚细胞定位数据集中的蛋白序列比对,以预测它们的亚细胞位置。结果发现,大部分基因编码产物定位在细胞基质、细胞核、细胞质膜和线粒体中。
     协同作用分析1426个已知基因涉及的60类生理活动在再生肝星形细胞中的变化表明,跨膜受体蛋白酪氨酸激酶信号通路、细胞建成、细胞生长、细胞分化、细胞凋亡、糖类分解等活动在肝再生启动阶段增强,SMO信号通路、核酸分解、糖类合成、蛋白质分解、胶原合成、神经递质运输、有机酸运输、离子运输等活动在肝再生进展阶段增强,蛋白激酶信号通路、细胞增殖、辅因子分解等活动在肝再生终止阶段增强,脂类运输、跨膜运输等活动在肝再生启动和进展阶段增强;而细胞粘附、细胞因子合成等活动在肝再生进展阶段减弱,免疫反应激活的信号通路、一氧化氮介导的信号通路、氨基酸及其衍生物合成、脂类运输、神经递质运输、氧运输在肝再生终止阶段减弱,一氧化氮介导的信号通路、小GTP酶介导的信号通路等活动在肝再生启动和进展阶段减弱。
     本研究证实Rat Genome 230 2.0表达谱芯片的检测结果是可靠的;再生肝星形细胞的增殖主要在PH后36h开始,主要通过跨膜受体蛋白酪氨酸激酶信号通路和细胞因子介导的信号通路的调控完成;胰岛素样生长因子及其结合蛋白含量的增加,对星形细胞的生长有明显的促进作用;星形细胞会在生长激素的刺激下马上展现分化的特征,但是随着肝再生的进程,Notch信号通路会抑制星形细胞的分化。
The liver is the vital body's organs, and its powerful regenerative capacity is also a hotpot to scholars. The mechanism of liver regeneration (LR) was studied with 2/3 rat hepatectomy model which established by Higgins and Anderson and liver tissue generally, but the liver is composed of a variety of cells. If various cells of regenerating liver were isolated, it will make the researches more clear, simplified and easy. Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells, locates in the Disse space between hepatic cord and sinusoidal walls. The protrusions on their surface attached to the outer surface of liver sinusoidal endothelial cells and hepatocytes. HSCs contained rough endoplasmic reticulum, Golgi complex and many different sizes of lipid droplets, and had many functions such as vitamin A storage and transport, fat absorption; damage response and repair in liver and hepatocytes. It is a professional antigen presenting cells, which can devour apoptotic bodies and regulating immune and inflammatory in liver. It is also major secreting cells of liver extracellular matrix and chemokines and other cytokines. A mass of evidences showed that HSCs play the key role in liver regeneration. Although more and more researches on HSCs has reported recently, there are no much studies on the changes of physical activity in HSCs during liver regeneration in genome-wide. In addition, new technology of genome-wide studied on hepatic stellate cells are emerging, but the understanding to the role of HSCs in liver regeneration was mainly from traditional research methods. Therefore, if we could detect the dynamic expression profile of HSCs in liver regeneration, it is possible to reveal the role of stellate cells in rat liver regeneration.
     Rat 2/3 hepatectomy (PH) model was made following Higgins et a1., hepatic cells were scattered by two-step perfusion and hepatic stellate cells were isolated and purified by density gradient centrifugation with 60% percol1 and immunomagnetic beads. Immunocytochemistry method was used to qualitify and localize desmin (DES) and vimentin (VIM) in liver tissue, isolated hepatic cells, and purified hepatic stellate cells. The expressions of DES and VIM were quantified using RT-PCR. The results showed that DES and VIM positive hepatic stellate cells account up more than 95% of the total hepatic stellate cells; mRNA levels of DES and VIM were stable in the purified hepatic stellate cells in rat regenerating liver (RL), and also was the content of the corresponding proteins.
     The gene expression profiling of hepatic stellate cells in rat regenerating liver at 10 recovery time points including 0, 2, 6, 12, 24, 30, 36, 72, 120 and 168 h after PH were checked employing Rat Genome 230 2.0 microarray. The reliability of chip results was evaluated by RT-PCR and Western blot methods. There expression patterns and functions in rat liver regeneration were analyzed using bioinformatics and system biology, and it was found that 2609 genes were related to liver regeneration, including 1186 up-regulated genes, 1212 down-regulated genes, and 211 up-/down-regulated genes. The gene expression profiles at different time points was analyzed by PCA indicated that gene expression profiles of 9 point times are distincted to the three groups, which is 6, 24 and 30 h; 2, 12 and 36 h; 72, 120 and 168 h; and mainly up-regulated in the group of 2, 12 and 36h.
     To investigate the role of above 1183 novel genes in LR, we firstly obtained the putative full-length cDNA of novel genes using in silico cloning method, then searched the amino acid sequences encoded by cDNA sequences by open reading frame analysis based on ORF finder program. Following above procedure, we finally obtained 936 predicted protein products of novel genes. Then we predicted the subcellular localization of 936 predicted amino acid sequence by API-SVM method using the dataset of rat protein subcellular localization developed by our lab. The results showed that a majority of novel genes were predictedly localized in cytoplasm, nucleus, plasma membrane and mitochondria.
     The synergies changes of 1426 known genes which involved 60 classes physiological activities in hepatic stellate cells of regenerating liver showed that transmembrane receptor protein tyrosine kinase signaling pathway, cellular component organization, cell growth, cell differentiation, apoptosis, carbohydrate catabolismm and so on were enhanced in the priming phase of liver regeneration; SMO signaling pathway, nucleic acid catabolism, carbohydrate biosynthesis, protein degradation, collagen biosynthesis, neurotransmitter transport, organic acid transport, ion transport and so on were enhanced in the progress phase; protein kinase signaling pathways, cell proliferation, cofactor metabolism and so on were enchanced in the termination phase; lipid transport, vesicle-mediated transport were enhanced in the priming and progress phase. However, cell adhesion and cytokine biosynthesis were weakened in the progress phase of liver regeneration; immune response-activating signal transduction, nitric oxide mediated signal pathway, amino acids and their derivatives biosynthesis, lipid transport, neurotransmitter transport and oxygen transport were decreased in the termination phase; nitric oxide mediated signal transduction and small GTP mediated signaling pathway were weakened in the priming and progress phase of liver regeneration.
     This study demonstrates that the detection results of Rat Genome 230 2.0 microarray are reliablie; hepatic stellate cells in regenerating liver mainly begin to proliferate at 36 h after PH, and regulates by transmembrane receptor protein tyrosine kinase signaling pathways and cytokine-mediated the signaling pathway; the increase of insulin-like growth factor binding protein will promote the growth of HSCs significantly; HSCs was stimulated by growth hormone will immediately display differentiation characteristics, but Notch signaling pathway can inhibit the differentiation of HSCs along with the process of liver regeneration.
引文
[1]徐存拴,章静波.大鼠肝再生的功能基因组学研究[M].北京:高等教育出版社, 2009, 25.
    [2] Agius L. Glucokinase and molecular aspects of liver glycogen metabolism[J]. Biochem J. 2008, 414(1): 1-18.
    [3] Xu CS, Zhang SB, Yang ZL, Cui SN, Zhang M. The expression changes of genes associated with protein metabolism, folding, transport, localizati on and assembly during rat liver regeneration[J]. Fen Zi Xi Bao Sheng Wu Xue Bao. 2008, 41(2): 107-119.
    [4] Xu C, Lin F, Qin S. Relevance between lipid metabolism-associated genes and rat liver regeneration[J]. Hepatol Res. 2008, 38(8): 825-837.
    [5] Trejo-Solís C, Chagoya De Sánchez V, Aranda-Fraustro A, Sánchez-Sevilla L, Gómez-Ruíz C, Hernández-Mu?oz R. Inhibitory effect of vitamin E administration on the progression of liver regeneration induced by partial hepatectomy in rats[J]. Lab Invest. 2003, 83(11): 1669-1679.
    [6] Pelletier P, Gauthier K, Sideleva O, Samarut J, Silva JE. Mice lacking the thyroid hormone receptor-alpha gene spend more energy in thermogenesis, burn more fat, and are less sensitive to high-fat diet-induced obesity[J]. Endocrinology. 2008, 149(12): 6471-6486.
    [7] Clavien PA. Liver regeneration: a spotlight on the novel role of platelets and serotonin[J]. Swiss Med Wkly. 2008, 138(25-26): 361-370.
    [8] Guo GB, Xu CS. Expression profiles of the organic acid metabolism-associated genes during rat liver regeneration[J]. Amino Acids. 2008, 34(4): 597-604.
    [9] Ishida T, Kashima S, Kiwada H. The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats[J]. J Control Release. 2008, 126(2): 162-165.
    [10] Das SK, Dhanya L, Varadhan S, Mukherjee S and Vasudevan DM. Effects of chronic ethanol consumption in blood: A time dependent study on rat[J]. Indian J Clin Biochem. 2009, 24(3): 301-306.
    [11] Zhao LF, Zhang WM, Xu CS. Expression patterns and action analysis of genes associated with blood coagulation responses during rat liver regeneration[J]. World J Gastroenterol. 2006, 12(42): 6842-6849.
    [12] Nobuoka T, Mizuguchi T, Oshima H, Shibata T, Kimura Y, Mitaka T, Katsuramaki T, Hirata K. Portal blood flow regulates volume recovery of the rat liver after partial hepatectomy: molecular evaluation[J]. Eur Surg Res. 2006, 38(6): 522-532.
    [13]张剑平,魏红山,孙继云,肖凡,张毅,徐道振,成军.肝病患者血清血管紧张素转化酶活性变化的临床意义[J].世界华人消化杂志. 2007, 15(23): 2553-2556.
    [14] Herbarth O, Franck U, Krumbiegel P, Rehwagen M, Rolle-Kampczyk U, Weiss H. Noninvasive assessment of liver detoxification capacity of children, observed in children from heavily polluted industrial and clean control areas, together with assessments of air pollution and chloro-organic body burden. Environ Toxicol[J]. 2004, 19(2): 103-108.
    [15] Taub RA. Hepatic regeneration[M]. In: Zakim D, Boyer TD, eds. Hepatology, Ed 4. Philadelphia: Saunders, 2003, 31.
    [16] Wong LL. Current status of liver transplantation for hepatocellular cancer[J]. Am J Surg. 2002, 183(3): 309-316.
    [17] Faybik P, Hetz H, Krenn CG, Baker A, Germann P, Berlakovich G, Steininger R, Steltzer H. Liver support in fulminant liver failure after hemorrhagic shock[J]. Wien Klin Wochenschr. 2003, 115(15-16): 595-598.
    [18] Azoulay D, Castaing D, Adam R, Savier E, Delvart V, Karam V, Ming BY, Dannaoui M, Krissat J, Bismuth H. Split-liver transplantation for two adult recipients: Feasibility and long-term outcomes[J]. Ann Surg. 2001, 233(4): 565-574.
    [19] González-Chamorro A, Loinaz Segurola C, Moreno González E, Jiménez Romero C, González-Pinto Arrillaga I, Gomez Sanz R, Garcia Garcia I, Manzanera Diaz M, Alonso Casado O. Graft mass and volume calculation in living related donors for liver transplantation[J]. Hepatogastroenterology. 1998, 45(20): 510-513.
    [20] Fausto N, Campbell JS, Riehle KJ. Liver regeneration[J]. Hepatology. 2006, 43(2 Suppl 1): S45-53.
    [21] Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas[J]. Am J Pathol. 2010, 176(1): 2-13.
    [22] Taub R. Liver regeneration: from myth to mechanism[J]. Nat Rev Mol Cell Biol. 2004, 5(10): 836-847.
    [23] Alison MR. Liver regeneration with reference to stem cells[J]. Semin Cell Dev Biol. 2002, 13(6): 385-387.
    [24] Yildirim SI, Poulsen HE. Quantitative liver functions after 70% hepatectomy[J]. Eur J Clin Invest. 1981, 11(6): 469-472.
    [25] Michalopoulos GK, De Frances MC. Liver regeneration[J]. Science. 1997, 276(4): 60-66.
    [26] Francavilla A, Porter KA, Benichou J. Liver regeneration in dogs: morphologic and chemical changes[J]. J Surg Res. 1978, 25(5): 409-419.
    [27] Gaglio PJ, Baskin G, Bohm RJr. Partial hepatectomy and laparoscopic-guided liver biopsy in rhesus macaques: novel approach for study of liver regeneration[J]. Comp Med. 2000, 50(4): 363-368.
    [28] Kandilis AN, Koskinas J, Tiniakos DG, Nikiteas N, Perrea DN. Liver regeneration: focus on cell types and topographic differences[J]. Eur Surg Res. 2010, 44(1): 1-12.
    [29] Higgins GM, Anderson RM. Experimental pathology of the liver. Restoration of the liver of the white rat following surgical removal[J]. Arch Pathol. 1931, 12: 186-206.
    [30] Nakamura K, Nonaka H, Saito H, Tanaka M. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice[J]. Hepatology. 2004, 39(3): 635-644.
    [31] Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells[J]. Hepatology. 2004, 39(6): 1477-1487.
    [32] Palmes D, Spiegel HU. Animal models of liver regeneration[J]. Biomaterials. 2004, 25(9): 1601-1611.
    [33] Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, Ekiel I, Pietrzynski G, Stanimirovic D, Alakhov V. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation[J]. J Biol Chem. 2005, 280(21): 20833-20841.
    [34] Gousseva N, Kugathasan K, Chesterman CN, Khachigian LM. Early growth response factor-1 mediates insulin-inducible vascular endothelial cell proliferation and regrowth after injury[J]. J Cell Biochem. 2001, 81(3): 523-534.
    [35] Lee H, Goetzl EJ, An S. Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing[J]. Am J Physiol Cell Physiol. 2000, 278(3): C612-618.
    [36] Martins PN, Theruvath TP, Neuhaus P. Rodent models of partial hepatectomies[J]. Liver Int. 2008, 28(1): 3-11.
    [37] Pahlavan PS, Feldmann RE Jr, Zavos C, Kountouras J. Prometheus' challenge: molecular, cellular and systemic aspects of liver regeneration[J]. J Surg Res. 2006, 134(2): 238-251.
    [38] Ezaki T, Koyanagi N, Toyomasu T, Ikeda Y, Sugimachi K. Natural history of hepatectomy regarding liver function: A study of both normal livers and livers with chronic hepatitis and cirrhosis[J]. Hepatogastroenterology. 1998, 45(23): 1795-1801.
    [39] Chen MF, Hwang TL, Hung CF. Human liver regeneration after major hepatectomy. A study of liver volume by computed tomography[J]. Ann Surg. 1991, 213(3): 227-229.
    [40] Shimada M, Matsumata T, Maeda T, Itasaka H, Suehiro T, Sugimachi K. Hepatic regeneration following right lobectomy: Estimation of regenerative capacity[J]. Surg Today. 1994, 24(1): 44-48.
    [41] Kountouras J, Boura P, Lygidakis NJ. Liver regeneration after hepatectomy[J]. Hepatogastroenterology. 2001, 48(38): 556-562.
    [42] Nagasue N, Yukaya H, Ogawa Y, Kohno H, Nakamura T. Human liver regeneration after major hepatic resection. A study of normal liver and livers with chronic hepatitis and cirrhosis[J]. Ann Surg. 1987, 206(1): 30-39.
    [43] Yamanaka N, Okamoto E, Kawamura E, Kato T, Oriyama T, Fujimoto J, Furukawa K, Tanaka T, Tomoda F, Tanaka W. Dynamics of normal and injured human liver regeneration after hepatectomy as assessed on the basis of computed tomography and liver function[J]. Hepatology. 1993, 18(1): 79-85.
    [44] Potten CS, Loef?er M. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt[J]. Development. 1990, 110(4): 1001-1020.
    [45] Tosh D, Strain A. Liver stem cells--prospects for clinical use[J]. J Hepatol. 2005, 42 Suppl(1): S75-84.
    [46] Lansdorp PM, Dragowska W, Mayani H. Ontogeny related changes in the proliferative potential of human hematopoietic cells[J]. J Exp Med. 1993, 178(3): 787-791.
    [47] Taniguchi H, Toyoshima T, Fukao K, Nakauchi H. Presence of hematopoietic stem cells in the adult liver[J]. Nat Med. 1996, 2(2): 198-203.
    [48] Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo[J]. Nat Med. 2000, 6(11): 1229-1234.
    [49] Lonial S, Jaye DL, Waller EK. The role of the liver in hematopoietic progenitor celltransplantation[M]. In: Zakim D, Boyer TD, eds. Hepatology, Ed 4. Philadelphia: Saunders, 2003, 1699.
    [50] Theise ND, Saxena R, Portmann BC, Thung SN, Yee H, Chiriboga L, Kumar A, Crawford JM. The canals of Hering and hepatic stem cells in humans[J]. Hepatology. 1999, 30(6): 1425-1433.
    [51] Paku S, Schnur J, Nagy P, Thorgeirsson SS. Origin and structural evolution of the early proliferating oval cells in rat liver[J]. Am J Pathol. 2001, 158(4): 1313-1323.
    [52] Sell S. Heterogeneity and plasticity of hepatocyte lineage cells[J]. Hepatology. 2001, 33(3): 738-750.
    [53] Crosby HA, Nijjar SS, de Goyet Jde V, Kelly DA, Strain AJ. Progenitor cells of the biliary epithelial cell lineage[J]. Semin Cell Dev Biol. 2002, 13(6): 397-403.
    [54] Masson S, Harrison DJ, Plevris JN, Newsome PN. Potential of hematopoietic stem cell therapy in hepatology: A critical review[J]. Stem Cells. 2004, 22(6): 897-907.
    [55] Oh SH, Hatch HM, Petersen BE. Hepatic oval‘stem’cell in liver regeneration[J]. Semin Cell Dev Biol. 2002, 13(6): 405-409.
    [56] Vessey CJ, de la Hall PM. Hepatic stem cells: A review[J]. Pathology. 2001, 33(2): 130-141.
    [57] Zhang Y, Bai XF, Huang CX. Hepatic stem cells: Existence and origin[J]. World J Gastroenterol. 2003, 9(2): 201-204.
    [58] Michalopoulos GK. Liver regeneration[J]. J Cell Physiol. 2007, 213(2): 286-300.
    [59] Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation[J]. N Engl J Med. 2007, 356(15): 1545-1559.
    [60] Ito A, Nishikawa Y, Ohnuma K, Ohnuma I, Koma Y, Sato A, Enomoto K, Tsujimura T, Yokozaki H. SgIGSF is a novel biliary-epithelial cell adhesion molecule mediating duct/ductule development[J]. Hepatology. 2007, 45(3): 684-694.
    [61] Antoine M, Tag CG, Wirz W, Borkham-Kamphorst E, Sawitza I, Gressner AM, Kiefer P. Upregulation of pleiotrophin expression in rat hepatic stellate cells by PDGF and hypoxia: implications for its role in experimental biliary liver fibrogenesis[J]. Biochem Biophys Res Commun. 2005, 337(4): 1153-1164.
    [62] Ross MA, Sander CM, Kleeb TB, Watkins SC, Stolz DB. Spatiotemporal expression of angiogenesis growth factor receptors during the revascularization of regenerating rat liver[J]. Hepatology. 2001, 34(6): 1135-1148.
    [63] Sato T, El-Assal ON, Ono T, Yamanoi A, Dhar DK, Nagasue N. Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver[J]. J Hepatol. 2001, 34(5): 690-669.
    [64] Yu C, Wang F, Jin C, Huang X, Miller DL, Basilico C, McKeehan WL. Role of fibroblast growth factor type 1 and 2 in carbon tetrachloride-induced hepatic injury and fibrogenesis[J]. Am J Pathol. 2003, 163(4): 1653-1662.
    [65] Shimizu H, Mitsuhashi N, Ohtsuka M, Ito H, Kimura F, Ambiru S, Togawa A, Yoshidome H, Kato A, Miyazaki M. Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats[J]. World J Gastroenterol. 2005, 11(46): 7254-7260.
    [66] Papastefanou VP, Bozas E, Mykoniatis MG, Grypioti A, Garyfallidis S, Bartsocas CS, Nicolopoulou- Stamati P. VEGF isoforms and receptors expression throughout acute acetaminophen- induced liver injury and regeneration[J]. Arch Toxicol. 2007, 81(10): 729-741.
    [67] Cassiman D, Denef C, Desmet VJ, Roskams T. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors[J]. Hepatology. 2001, 33(1): 148-158.
    [68] Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate celldifferentiation by the neurotrophin receptor p75NTR[J]. Science. 2007, 315(5820): 1853-1856.
    [69] Oben JA, Yang S, Lin H, Ono M, Diehl AM. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells[J]. Biochem Biophys Res Commun. 2003, 302(4): 685-690.
    [70] Asai K, Tamakawa S, Yamamoto M, Yoshie M, Tokusashi Y, Yaginuma Y, Kasai S, Ogawa K. Activated hepatic stellate cells overexpress p75NTR after partial hepatectomy and undergo apoptosis on nerve growth factor stimulation[J]. Liver Int. 2006, 26(5): 595-603.
    [71] Dong Z, Wei H, Sun R, Tian Z. The roles of innate immune cells in liver injury and regeneration[J]. Cell Mol Immunol. 2007, 4(4): 241-252.
    [72] Zheng ZY, Weng SY, Yu Y. Signal molecule-mediated hepatic cell communication during liver regeneration[J]. World J Gastroenterol. 2009, 15(46): 5776-5783.
    [73] Goss JA, Mangino MJ, Callery MP, Flye MW. Prostaglandin E2 downregulates Kupffer cell production of IL-1 and IL-6 during hepatic regeneration[J]. Am J Physiol. 1993, 264(4 Pt 1): G601-608.
    [74] Pahal GS, Jauniaux E, Kinnon C, Thrasher AJ, Rodeck CH. Normal development of human fetal hematopoiesis between eight and seventeen weeks’gestation[J]. Am J Obstet Gynecol. 2000, 183(4): 1029-1034.
    [75] Ruhnke M, Nussler AK, Ungefroren H, Hengstler JG, Kremer B, Hoeckh W, Gottwald T, Heeckt P, Fandrich F. Human monocyte-derived neohepatocytes: A promising alternative to primary human hepatocytes for autologous cell therapy[J]. Transplantation. 2005, 79(9): 1097-1103.
    [76] Lee KD, Kuo TK, Whang-Peng J, Chung YF, Lin CT, Chou SH, Chen JR, Chen YP, Lee OK. In vitro hepatic differentiation of human mesenchymal stem cells[J]. Hepatology. 2004, 40(6): 1275-1284.
    [77] Gilgenkrantz H. Mesenchymal stem cells: An alternative source of hepatocytes[J]? Hepatology. 2004, 40(6): 1256-1259.
    [78] Kotton DN, Fabian AJ, Mulligan RC. A novel stem cell population in adult liver with potent hematopoietic reconstitution activity[J]. Blood. 2005, 106(5): 1574-1580.
    [79] Kakinuma S, Tanaka Y, Chinzei R, Watanabe M, Shimizu-Saito K, Hara Y, Teramoto K, Arii S, Sato C, Takase K, Yasumizu T, Teraoka H. Human umbilical cord blood as a source of transplantable hepatic progenitor cells[J]. Stem Cells. 2003, 21(2): 217-227.
    [80] Hong SH, Gang EJ, Jeong JA, Ahn C, Hwang SH, Yang IH, Park HK, Han H, Kim H. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells[J]. Biochem Biophys Res Commun. 2005, 330(4):1153-1161.
    [81] Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo[J]. Biochem Biophys Res Commun. 2005, 328(1): 258-264.
    [82] Hu AB, Cai JY, Zheng QC, He XQ, Shan Y, Pan YL, Zeng GC, Hong A, Dai Y, Li LS. High-ratio differentiation of embryonic stem cells into hepatocytes in vitro[J]. Liver Int. 2004, 24(3): 237-245.
    [83] Shirahashi H, Wu J, Yamamoto N, Catana A, Wege H, Wager B, Okita K, Zern MA. Differentiation of human and mouse embryonic stem cells along a hepatocyte lineage[J]. Cell Transplant. 2004, 13(3): 197-211.
    [84] Pahlavan PS, Feldmann RE Jr, Zavos C, Kountouras J. Prometheus' challenge: molecular, cellular and systemic aspects of liver regeneration[J]. J Surg Res. 2006, 134(2): 238-251.
    [85] Fausto N. Liver regeneration[J]. J Hepatol. 2000, 32(1 Suppl): 19-31.
    [86] Sérandour AL, Loyer P, Garnier D, Courselaud B, Théret N, Glaise D, Guguen-Guillouzo C, Corlu A. TNFalpha-mediated extracellular matrix remodeling is required for multiple division cycles in rathepatocytes[J]. Hepatology. 2005, 41(3): 478-486.
    [87] Oosthuizen MM, Ndaba N, Myburgh JA. Rat hepatoproliferin revealed the status of a complete hepatomitogen in human hepatoma cells[J]. Transplant Proc. 2005, 37(1): 89-92.
    [88] Vargas GA, Hoe?ich A, Jehle PM. Hepatocyte growth factor in renal failure: Promise and reality[J]. Kidney Int. 2000, 57(4): 1426-1436.
    [89] Kaido T, Seto S, Yamaoka S, Yoshikawa A, Imamura M. Perioperative continuous hepatocyte growth factor supply prevents postoperative liver failure in rats with liver cirrhosis[J]. J Surg Res. 1998, 74(2): 173-178.
    [90] Liu KX, Kato Y, Terasaki T, Nakamura T, Sugiyama Y. Change in hepatic handling of hepatocyte growth factor during liver regeneration in rats[J]. Am J Physiol. 1995, 269(5 Pt 1): G745-753.
    [91] Koch KS, Lu XP, Brenner DA, Fey GH, Martinez-Conde A, Leffert HL. Mitogens and hepatocyte growth control in vivo and in vitro[J]. In Vitro Cell Dev Biol. 1990, 26(11): 1011-1023.
    [92] Mars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA[J]. Am J Pathol. 1993, 143(3): 949-958.
    [93] Diehl AM, Rai RM. Liver regeneration 3: Regulation of signal transduction during liver regeneration[J]. FASEB J. 1996, 10(2): 215-227.
    [94] Webber EM, FitzGerald MJ, Brown PI, Bartlett MH, Fausto N. Transforming growth factor-alpha expression during liver regeneration after partial hepatectomy and toxic injury, and potential interactions between transforming growth factor-alpha and hepatocyte growth factor[J]. Hepatology. 1993, 18(6): 1422-1431.
    [95] Mead JE, Fausto N. Transforming growth factor alpha may be a physiological regulator of liver regeneration by means of an autocrine mechanism[J]. Proc Natl Acad Sci USA. 1989, 86(5): 1558-1562.
    [96] Milin C, Radosevic-Stasic B, Kirigin M, Hinic V, Rukavina D, Berggren PO, Efendic S. Somatostatin promotes accumulation of phospholipids in regenerating liver tissue of rats[J]. Biosci Rep. 1991, 11(1): 1-6.
    [97] Zimmers TA, McKillop IH, Pierce RH, Yoo JY, Koniaris LG. Massive liver growth in mice induced by systemic interleukin 6 administration[J]. Hepatology. 2003, 38(2): 326-334.
    [98] Moran DM, Mayes N, Koniaris LG, Cahill PA, McKillop IH. Interleukin-6 inhibits cell proliferation in a rat model of hepatocellular carcinoma[J]. Liver Int. 2005, 25(2): 445-457.
    [99] Bedirli A, KeremM, Pasaoglu H, Erdem O, O?uoglu E, Sakrak O. Effects of ischemic preconditioning on regenerative capacity of hepatocyte in the ischemically damaged rat livers[J]. J Surg Res. 2005, 125(1): 42-48.
    [100] Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, Okuyama T, Takeda K, Akira S, Ogino T, Irani K, Ozaki M. Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms[J]. J Clin Invest. 2003, 112(7): 989-998.
    [101] Vandenabeele P, Declercq W, Beyaert R, Fiers W. Two tumour necrosis factor receptors: Structure and function[J]. Trends Cell Biol. 1995, 5(10): 392-399.
    [102] Yamada Y, Webber EM, Kirillova I, Peschon JJ, Fausto N. Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: Requirement for type 1 but not type 2 receptor[J]. Hepatology. 1998, 28(4): 959-970.
    [103] Hayashi H, Nagaki M, Imose M, Osawa Y, Kimura K, Takai S, Imao M, Naiki T, Kato T, Moriwaki H. Normal liver regeneration and liver cell apoptosis after partial hepatectomy in tumor necrosis factor-alpha-deficient mice[J]. Liver Int. 2005, 25(1): 162-170.
    [104] Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases[J]. Cell. 2005, 120(5): 649-661.
    [105] Libermann TA, Baltimore D. Activation of interleukin-6 gene expression through the NF-kappa B transcription factor[J]. Mol Cell Biol. 1990, 10(5): 2327-2334.
    [106] Zeini M, Hortelano S, Través PG, Gómez-Valadés AG, Pujol A, Perales JC, Bartrons R, BoscáL. Assessment of a dual regulatory role for NO in liver regeneration after partial hepatectomy: Protection against apoptosis and retardation of hepatocyte proliferation[J]. FASEB J. 2005, 19(8): 995-997.
    [107] Akhurst B, Matthews V, Husk K, Smyth MJ, Abraham LJ, Yeoh GC. Differential lymphotoxin-beta and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury[J]. Hepatology. 2005, 41(2): 327-335.
    [108] Subrata LS, Lowes KN, Olynyk JK, Yeoh GC, Quail EA, Abraham LJ. Hepatic expression of the tumor necrosis factor family member lymphotoxin-beta is regulated by interleukin (IL)-6 and IL-1beta: Transcriptional control mechanisms in oval cells and hepatoma cell lines[J]. Liver Int. 2005, 25(3): 633-646.
    [109] Brooling JT, Campbell JS, Mitchell C, Yeoh GC, Fausto N. Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma[J]. Hepatology. 2005, 41(4): 906-915.
    [110] An W, Liu XJ, Lei TG, Dai J, Du GG. Growth induction of hepatic stimulator substance in hepatocytes through its regulation on EGF receptors[J]. Cell Res. 1999, 9(1): 37-49.
    [111] Margeli AP, Papadimitriou L, Ninos S, Manolis E, Mykoniatis MG, Theocharis SE. Hepatic stimulator substance administration ameliorates liver regeneration in an animal model of fulminant hepatic failure and encephalopathy[J]. Liver Int. 2003, 23(3): 171-178.
    [112] Dai J, An W, Gao DC, Chen L. In?uence of hepatic stimulator substance on p21(ras) expression in human hepatic carcinoma cells BEL-7402[J]. Sheng Li Xue Bao. 2000, 52(3): 225-229.
    [113] Liu XJ, An W, Lei TG, Rong Y, Du GG. Regulatory effect of hepatic stimulator substance on the proliferation of human hepatoma cells[J]. Sheng Li Xue Bao. 1998, 50(5): 543-550.
    [114] Liatsos GD, Mykoniatis MG, Margeli A, Liakos AA, Theocharis SE. Effect of acute ethanol exposure on hepatic stimulator substance (HSS) levels during liver regeneration: Protective function of HSS[J]. Dig Dis Sci. 2003, 48(10): 1929-1938.
    [115] Zou Y, Gong DZ, Cui XY, Mei MH. Control of growth and expression of protooncogenes in regenerating liver[J]. Sheng Li Ke Xue Jin Zhan. 1996, 27(1): 7-12.
    [116] LaBrecque D. Liver regeneration: A picture emerges from the puzzle[J]. Am J Gastroenterol. 1994, 89(8 Suppl): S86-96.
    [117] Ogura Y, Hamanoue M, Tanabe G, Mitsue S, Yoshidome S, Nuruki K, Aikou T. Hepatocyte growth factor promotes liver regeneration and protein synthesis after hepatectomy in cirrhotic rats[J]. Hepatogastroenterology. 2001, 48(38): 545-549.
    [118] Shiota G, Kawasaki H. Hepatocyte growth factor in transgenic mice[J]. Int J Exp Pathol. 1998, 79(5): 267-277.
    [119] Michalopoulos GK. Liver regeneration: Molecular mechanisms of growth control[J]. FASEB J. 1990, 4(2): 176-187.
    [120] Chauhan A, Legewie S, Westermark PO, Lorenzen S, Herzel H. A mesoscale model of G1/S phase transition in liver regeneration[J]. J Theor Biol. 2008, 252(3): 465-473.
    [121] Garnier D, Loyer P, Ribault C, Guguen-Guillouzo C, Corlu A. Cyclin-dependent kinase 1 plays acritical role in DNA replication control during rat liver regeneration[J]. Hepatology. 2009, 50(6): 1946-1956.
    [122] Kuhlmann WD, Peschke P. Hepatic progenitor cells, stem cells, and AFP expression in models of liver injury[J]. Int J Exp Pathol. 2006, 87(5): 343-359.
    [123] Kurinna S, Barton MC. Cascades of transcription regulation during liver regeneration[J]. Int J Biochem Cell Biol. 2010, 43(2): 189-197.
    [124] Galun E, Axelrod JH. The role of cytokines in liver failure and regeneration: potential new molecular therapies[J]. Biochim Biophys Acta. 2002, 1592(3): 345-358.
    [125] Kile BT. The role of the intrinsic apoptosis pathway in platelet life and death[J]. J Thromb Haemost. 2009, 7(Suppl 1): 214-217.
    [126] Randhawa SR, Chahine BG, Lowery-Nordberg M, Cotelingam JD, Casillas AM. Underexpression and overexpression of Fas and Fas ligand: a double-edged sword[J]. Ann Allergy Asthma Immunol. 2010, 104(4): 286-292.
    [127] Hayashi N. Fas regulates liver regeneration[J]. J Gastroenterol. 2000, 35(1): 73-74.
    [128] Bresgen N, Ohlenschl?ger I, Wacht N, Afazel S, Ladurner G, Eckl PM. Ferritin and FasL (CD95L) mediate density dependent apoptosis in primary rat hepatocytes[J]. J Cell Physiol. 2008, 217(3): 800-808.
    [129] Taira K, Hiroyasu S, Shiraishi M, Muto Y, Koji T. Role of the Fas system in liver regeneration after a partial hepatectomy in rats[J]. Eur Surg Res. 2001, 33(5-6): 334-341.
    [130] Desbarats J, Newell MK. Fas engagement accelerates liver regeneration after partial hepatectomy[J]. Nat Med. 2000, 6(8): 920-923.
    [131] Thenappan A, Li Y, Kitisin K, Rashid A, Shetty K, Johnson L, Mishra L. Role of transforming growth factor beta signaling and expansion of progenitor cells in regenerating liver[J]. Hepatology. 2010, 51(4): 1373-1382.
    [132] Takamura K, Tsuchida K, Miyake H, Tashiro S, Sugino H. Activin and activin receptor expression changes in liver regeneration in rat[J]. J Surg Res. 2005, 126(1): 3-11.
    [133] Mizuguchi T, Kamohara Y, Hui T, Neuman T, Mitaka T, Demetriou AA, Rozga J. Regulation of c-met expression in rats with acute hepatic failure[J]. J Surg Res. 2001, 99(2): 385-396.
    [134] Sanz S, Pucilowska JB, Liu S, Rodríguez-Ortigosa CM, Lund PK, Brenner DA, Fuller CR, Simmons JG, Pardo A, Martínez-Chantar ML, Fagin JA, Prieto J. Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury[J]. Gut. 2005, 54(1): 134-141.
    [135] Gkretsi V, Bowen WC, Yang Y, Wu C, Michalopoulos GK. Integrin-linked kinase is involved in matrix-induced hepatocyte differentiation[J]. Biochem Biophys Res Commun. 2007, 353(3): 638-643.
    [136] Chang H, Lau AL, Matzuk MM. Studying TGF-beta superfamily signaling by knockouts and knockins[J]. Mol Cell Endocrinol. 2001, 180(1-2): 39-46.
    [137] Zimmermann A. Regulation of liver regeneration[J]. Nephrol Dial Transplant. 2004, 19(Suppl 4): iv6-10.
    [138] Date M, Matsuzaki K, Matsushita M, Tahashi Y, Sakitani K, Inoue K. Differential regulation of activin A for hepatocyte growth and fibronectin synthesis in rat liver injury[J]. J Hepatol. 2000, 32(2): 251-260.
    [139] Rodgarkia-Dara C, Vejda S, Erlach N, Losert A, Bursch W, Berger W, Schulte-Hermann R, Grusch M. The activin axis in liver biology and disease[J]. Mutat Res. 2006, 613(2-3): 123-137.
    [140] Senoo H, Kojima N, Sato M. Vitamin A-storing cells (stellate cells) [J]. Vitam Horm. 2007, 75: 131-159.
    [141] Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver[J]. Int J Biochem Cell Biol. 2009, 41(8-9): 1639-1642.
    [142] Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype[J]. Cell Struct Funct. 2003, 28(2): 105-112.
    [143] Blaner WS, O'Byrne SM, Wongsiriroj N, Kluwe J, D'Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage[J]. Biochim Biophys Acta. 2009, 1791(6): 467-473.
    [144] Wells RG. Cellular sources of extracellular matrix in hepatic fibrosis[J]. Clin Liver Dis. 2008, 12(4): 759-568, viii.
    [145] Senoo H, Sato M, Imai K. Hepatic stellate cells--from the viewpoint of retinoid handling and function of the extracellular matrix[J]. Kaibogaku Zasshi. 1997, 72(2): 79-94.
    [146] Senoo H, Imai K, Matano Y, Sato M. Molecular mechanisms in the reversible regulation of morphology, proliferation and collagen metabolism in hepatic stellate cells by the three-dimensional structure of the extracellular matrix[J]. J Gastroenterol Hepatol. 1998, 13(Suppl): S19-32.
    [147] Bellayr I, Mu X, Li Y. Biochemical insights into the role of matrix metalloproteinases in regeneration: challenges and recent developments[J]. Future Med Chem. 2009, 1(6): 1095-1111.
    [148] Benyon RC, Arthur MJ. Extracellular matrix degradation and the role of hepatic stellate cells[J]. Semin Liver Dis. 2001, 21(3): 373-384.
    [149] Iredale JP. Tissue inhibitors of metalloproteinases in liver fibrosis[J]. Int J Biochem Cell Biol. 1997, 29(1): 43-54.
    [150] Tomiya T, Inoue Y, Yanase M, Arai M, Ikeda H, Tejima K, Nagashima K, Nishikawa T, Fujiwara K. Leucine stimulates the secretion of hepatocyte growth factor by hepatic stellate cells[J]. Biochem Biophys Res Commun. 2002, 297(5): 1108-1111.
    [151] Meyer C, Meindl-Beinker NM, Dooley S. TGF-beta signaling in alcohol induced hepatic injury[J]. Front Biosci. 2010, 15: 740-749.
    [152] Pinzani M. PDGF and signal transduction in hepatic stellate cells[J]. Front Biosci. 2002, 7: 1720-1726.
    [153] Skrtic S, Wallenius K, Gressner AM, Jansson JO. Insulin-like growth factor signaling pathways in rat hepatic stellate cells: importance for deoxyribonucleic acid synthesis and hepatocyte growth factor production[J]. Endocrinology. 1999, 140(12): 5729-5735.
    [154] Skrtic S, Wallenius K, Sj?gren K, Isaksson OG, Ohlsson C, Jansson JO. Possible roles of insulin-like growth factor in regulation of physiological and pathophysiological liver growth[J]. Horm Res. 2001, 55(Suppl 1): 1-6.
    [155] Sarem M, Znaidak R, Macías M, Rey R. Hepatic stellate cells: it's role in normal and pathological conditions[J]. Gastroenterol Hepatol. 2006, 29(2): 93-101.
    [156] Bedossa P, Paradis V. Liver extracellular matrix in health and disease[J]. J Pathol. 2003, 200(4): 504-515.
    [157] Sato M, Suzuki S, Senoo H. Hepatic stellate cells: unique characteristics in cell biology and phenotype[J]. Cell Struct Funct. 2003, 28(2): 105-112.
    [158] Mabuchi A, Mullaney I, Sheard P, Hessian P, Zimmermann A, Senoo H, Wheatley AM. Role of hepatic stellate cells in the early phase of liver regeneration in rats: formation of tight adhesion to parenchymal cells[J]. Comp Hepatol. 2004, 3 Suppl 1: S29.
    [159] Higashi N, Sato M, Kojima N, Irie T, Kawamura K, Mabuchi A, Senoo H. Vitamin A storage in hepatic stellate cells in the regenerating rat liver: with special reference to zonal heterogeneity[J]. Anat Rec A Discov Mol Cell Evol Biol. 2005, 286(2): 899-907.
    [160] Budny T, Palmes D, Stratmann U, Mini E, Herbst H, Spiegel HU. Morphologic features in the regenerating liver-a comparative intravital, light microscopical and ultrastructural analysis with focus on hepatic stellate cells[J]. Virchow Arch. 2007, 451(4): 781-791.
    [161] Ballardini G, Groff P, Badiali de Giorgi L, Schuppan D, Bianchi FB. Ito cell heterogeneity: Desmin negative lto cell in normal rat liver[J]. Hepatology. 1994, 19(2): 440-446.
    [162]翁山耕,冷希圣,魏玉华.改良法大鼠肝星状细胞的分离培养及鉴定[J].北京大学学报(医学版). 2001, 33(1): 83-86.
    [163] Morini S, Carotti S, Carpino G, Franchitto A, Corradini SG, Merli M, Gaudio E. GFAP expression in the liver as an early marker of stellate cells activation[J]. Ital J Anat Embryol. 2005, 110(4): 193-207.
    [164] Fujimoto T, Singer SJ. Immunocytochemical studies of desmin and vimentin in pericapillary cells of chicken[J]. J Histochem Cytochem. 1987, 35(10): 1105-1115.
    [165] Riccalton-Banks L, Bhandari R, Fry J, Shakesheff KM. A simple method for the simultaneous isolation of stellate cells and hepatocytes from rat liver tissue[J]. Mol Cell Biochem. 2003, 248(1-2): 97-102.
    [166] Flisiak R. Role of Ito cells in the liver function[J]. Pol J Pathol. 1997, 48(3): 139-145.
    [167] Balabaud C, Bioulac-Sage P, Desmoulière A. The role of hepatic stellate cells in liver regeneration[J]. J Hepatol. 2004, 40(6): 1023-1026.
    [168] Roskams T. Relationships among stellate cell activation, progenitor cells, and hepatic regeneration[J]. Clin Liver Dis. 2008, 12(4): 853-860.
    [169] Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells[J]. Adv Drug Deliv Rev. 2009, 61(7-8): 497-512.
    [170] Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A, Krebs B, Kraft S, Zahn S, Brocks B, Feirt N, Mei B, Cho MS, Ramamoorthi R, Roldan G, Ng P, Lum P, Hirth-Dietrich C, Tomkinson A, Brenner DA. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats[J]. Hepatology. 2004, 40(5): 1106-1115.
    [171] Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells[J]. Liver. 2001, 21(1): 1-12.
    [172]毕丽青,赵龙凤,郝彦琴,李红.类胰蛋白酶对肝星状细胞增殖及I型胶原mRNA表达的影响[J].中国现代医药杂志. 2008, l0(1): 7-9.
    [173] Housset C, Rockey CD, Bissell DM. Endothelin receptors in rat liver: lipocytes as a contractile target for endothelin 1[J]. Proc Natl Acad Sci U S A. 1993, 90(20): 9266-9270.
    [174]杨伟峰,陈厚昌,张绪福.细胞因子与肝星状细胞的活化[J].医学综述. 2003, 9(11): 651-653.
    [175] Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells[J]. Liver. 1998, 18(1): 2-13.
    [176] Arthur MJ. Fibrosis and altered matrix degradation[J]. Digestion. 1998, 59(4): 376-380.
    [177] Eugenin EA, D'Aversa TG, Lopez L, Calderon TM, Berman JW. MCP-1 (CCL2) protects human neurons and astrocytes from NMDA or HIV-tat-induced apoptosis[J]. J Neurochem. 2003, 85(5): 1299-1311.
    [178] Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets[J]. J Cell Mol Med. 2006, 10(1): 76-99.
    [179] Leyland H, Gentry J, Arthur MJ, Benyon RC. The plasminogen-activating system in hepatic stellate cells[J]. Hepatology. 1996, 24(5): 1172-1178.
    [180] Gorny KN, Brauer PR. Urokinase regulates embryonic cardiac cushion cell migration without converting plasminogen[J]. Anat Rec. 1999, 256(3): 269-278.
    [181]戴永关,蔡立勉,张爱.生长抑素与肝星状细胞的研究进展[J].临床肝胆病杂志. 2007, 23(4): 312-314.
    [182]潘勤,李定国,陆良勇,尤汉宁,徐芹芳.生长抑素受体与肝星状细胞活化的相关性研究[J].胃肠病学和肝病学杂志. 2004, 13(5): 507-510.
    [183] Morsiani E, Rozga J, Scott HC, Lebow LT, Moscioni AD, Kong LB, McGrath MF, Demetriou AA. Automated liver cell processing facilitates large scale isolation and purification of porcine hepatocytes[J]. ASAIO J. 1995, 41(2): 155-161.
    [184] Howard RB, Christensen AK, Gibbs FA, Pesch LA. The enzymatic preparation of isolated intact parenchymal cells from rat liver[J]. J Cell Biol. 1967, 35(3): 675-684.
    [185] Shimizu M. Collagenase, with special reference to collagenolytic enzymes of animal tissue[J]. Nippon Shika Ishikai Zasshi. 1969, 22(4): 371-378.
    [186] Seglen PO. Hepatocyte suspensions and cultures as tools in experimental carcinogenesis[J]. J Toxicol Environ Health. 1979, 5(2-3): 551-560.
    [187] Liddle C, Goodwin BJ, Tapner M. Culture and transfection of mammalian primary hepatocytes and hepatocyte-derived cell lines[J]. Journal of Gastroenterology & Hepatology. 1998, 13(8): 855-858.
    [188]周家兴,夏民,金珊,江瑞云,武桂新,杨清香.大鼠肝细胞快速分离和原代培养[J].河南师范大学学报. 1989, 2(62): 46-52.
    [189] Schmitz B, Radbruch A, Kümmel T, Wickenhauser C, Korb H, Hansmann ML, Thiele J, Fischer R. Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques[J]. Eur J Haematol. 1994, 52(5): 267-275.
    [190] Makker K, Agarwal A, Sharma RK. Magnetic activated cell sorting (MACS): utility in assisted reproduction[J]. Indian J Exp Biol. 2008, 46(7): 491-497.
    [191] Miltenyi S, Müller W, Weichel W, Radbruch A. High gradient magnetic cell separation with MACS[J]. Cytometry. 1990, 11(2): 231-238.
    [192] Israel J, London WT. Liver structure, function, and anatomy: effects of hepatitis B virus[J]. Curr Top Microbiol Immunol. 1991, 168: 1-20.
    [193] Ishibashi H, Nakamura M, Komori A, Migita K, Shimoda S. Liver architecture, cell function, and disease[J]. Semin Immunopathol. 2009, 31(3): 399-409.
    [194] Powell LW. Overview: Liver disease and transplantation[J]. J Gastroenterol Hepatol. 2009, 24(Suppl 3): S97-104.
    [195] Rockey DC. Hepatic fibrosis, stellate cells, and portal hypertension[J]. Clin Liver Dis. 2006, 10(3): 459-479, vii-viii.
    [1] Zheng ZY, Weng SY, Yu Y. Signal molecule-mediated hepatic cell communication during liver regeneration[J]. World J Gastroenterol. 2009, 15(46): 5776-5783.
    [2] Mohammed FF, Khokha R. Thinking outside the cell: proteases regulate hepatocyte division[J]. Trends Cell Biol. 2005, 15(10): 555-563.
    [3] Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver[J]. Int J Biochem Cell Biol. 2009, 41(8-9): 1639-1642.
    [4] Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev. 2008, 88(1): 125-172.
    [5] Borkham-Kamphorst E, van Roeyen CR, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis[J]. J Hepatol. 2007, 46(6): 1064-1074.
    [6] Kubota H, Yao H, Reid LM. Identification and characterization of vitamin-A storing cells in fetal liver: implication of functional importance of hepatic stellate cells in development and hematopoiesis[J]. Stem Cells. 2007, 25(9):2339-2349.
    [7] Passino MA, Adams RA, Sikorski SL, Akassoglou K. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR[J]. Science. 2007, 315(5820): 1853-1856.
    [8] Balabaud C, Bioulac-Sage P, Desmoulière A. The role of hepatic stellate cells in liver regeneration[J]. J Hepatol. 2004, 40(6): 1023-1026.
    [9] Asahina K, Sato H, Yamasaki C, Kataoka M, Shiokawa M, Katayama S, Tateno C, Yoshizato K. Pleiotrophin/heparin-binding growth-associated molecule as a mitogen of rat hepatocytes and its role in regeneration and development of liver[J]. Am J Pathol. 2002, 160(6): 2191-1205.
    [10] Asselah T, Bieche I, Paradis V, Bedossa P, Vidaud M, Marcellin P. Genetics, genomics, proteomics: implications for the diagnosis and the treatment of chronic hepatitis C[J]. Semin Liver Dis, 2007, 27(1): 13-27.
    [11] Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification[J]. Exp Cell Res. 1982, 139(2): 468-471.
    [12] Osborn GK, Jones DC, Kimeldorf DJ. Water consumption of the ageing Sprague-Dawley male rat[J]. Res Dev Tech Rep. 1961, 24: 1-16.
    [13] Gutman Y, Benzakein F, Chaimovitz M. Effect of illumination on water intake, thirst, and urine output in the rat[J]. Am J Physiol. 1969, 217(2): 471-474.
    [14] Cimica V, Batusic D, Haralanova-Ilieva B, Chen Y, Hollemann T, Pieler T, Ramadori G. Serial analysis of gene expression (SAGE) in rat liver regeneration[J]. Biochem Biophys Res Commun. 2007, 360(3): 545-552.
    [15] Higgins GM, Anderson RM. Experimental pathology of the liver. Restoration of the liver of the white rat following surgical removal[J]. Arch Pathol. 1931, 12: 186-206.
    [16] Dicker SE, Morris CA, Shirley DG. The control of liver regeneration after partial hepatectomy in the rat[J]. Physiol. 1982, 324: 403-409.
    [17]付小兵,王正国,吴祖泽.再生医学原理与实践[M].上海:科学技术出版社. 2008, 444-445.
    [18] Ingle DJ. Technic of repeated partial hepatectomy in the rat[J]. Proc Soc Exp Biol Med. 1954, 87(1): 251-253.
    [19] Xu CS, Zhang SB, Chen XG, Rahman S. Correlation analysis of liver tumor-associated genes with liver regeneration[J]. World J Gastroenterol. 2007, 13(24): 3323-3332.
    [20] Gewartowska M, Olszewski WL. Hepatocyte transplantation-biology and application[J]. Ann Transplant. 2007, 12(1): 27-36.
    [21] Cheung K, Hickman PE, Potter JM, Walker NI, Jericho M, Haslam R, Roberts MS. An optimized model for rat liver perfusion studies[J]. J Surg Res. 1996, 66(1): 81-89.
    [22] Fred GC, Joseph L. Improved in situ rat liver perfusion technique[J]. Surg Res. 1980, 28(1): 65-70.
    [23] Shimizu H, Mitsuhashi N, Ohtsuka M, Ito H, Kimura F, Ambiru S, Togawa A, Yoshidome H, Kato A, Miyazaki M. Vascular endothelial growth factor and angiopoietins regulate sinusoidal regeneration and remodeling after partial hepatectomy in rats[J]. World J Gastroenterol. 2005, 11(46): 7254-7260.
    [24] Neufeld DS. Isolation of rat liver hepatocytes[J]. Methods Mol Biol. 1997, 75: 145-151.
    [25] Leite M, Quinta-Costa M, Leite PS, Guimar?es JE. Critical evaluation of techniques to detect and measure cell death--study in a model of UV radiation of the leukaemic cell line HL60[J]. Anal Cell Pathol. 1999, 19(3-4): 139-151.
    [26] Berry MN, Friend DS. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study[J]. J Cell Biol. 1969, 43(3): 506-520.
    [27] Ramm GA. Isolation and culture of rat hepatic stellate cells[J]. J Gastroenterol Hepatol. 1998, 13(8): 846-851.
    [28]王伯沄等.病理学实验学技术[M].北京:人民卫生出版社, 2001, 148.
    [29] Rzepecka-Wo?niak E. Immunohistochemical diagnostic management of early stages of myocardial infarction for the purposes of postmortem medicolegal examinations[J]. Arch Med Sadowej Kryminol. 2008, 58(1): 5-16.
    [30] Soylu A, Ozkara S, Alis H, Dolay K, Kalayci M, Yasar N, Kumbasar AB. Immunohistochemicaltesting for Helicobacter Pylori existence in neoplasms of the colon[J]. BMC Gastroenterol. 2008, 8: 35.
    [31]萨姆布鲁克等著金冬雁等译.分子克隆实验指南(第二版)[M].北京:科学出版社, 1999, 268.
    [32]邓灵福,祁超,李文新,冯玉文,王莹莹. Western-blot法测定重组人纽表位肽12的抗原特异性[J].华中师范大学学报:自然科学版. 2006, 40(1): 79-81.
    [33] Neuhoff V, Philipp K, Zimmer HG, Mesecke S. A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences[J]. Hoppe Seylers Z Physiol Chem. 1979, 360(11): 1657-1670.
    [34] Ormerod MG, Philp E, Imrie SF. Enzyme-antienzyme method for immunohistochemistry[J]. Methods Mol Biol. 1998, 80: 243-249.
    [35] Wang XL, Xu CS, Wang XJ, Wang DJ, Wang QS, Zhang BC. Heat shock response and mammal adaptation to high elevation (hypoxia) [J]. Sci China C. 2006, 49(5): 500-512.
    [36] Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications[J]. Proc Natl Acad Sci USA. 1979, 76(9): 4350-4354.
    [37] Sharma P, Ganguly NK, Sehgal R, Srivastava RK. Western blotting[J]. Trop Gastroenterol. 1989, 10(1): 62-68.
    [38] Towbin H, Ozbey O, Zingel O. An immunoblotting method for high-resolution isoelectric focusing of protein isoforms on immobilized pH gradients[J]. Electrophoresis. 2001, 22(10): 1887-1893.
    [39] Towbin H, Staehelin T, Gordon J. Immunoblotting in the clinical laboratory[J]. Clin Chem Clin Biochem. 1989, 27(8): 495-501.
    [40] Norton JN. Total RNA isolation by a rapid centrifugation method[J]. Am Biotechnol Lab. 1992, 10(1): 41.
    [41] Scott RJ. Isolation of whole cell (total) RNA[J]. Methods Mol Biol. 1995, 49: 197-202.
    [42] Masters DB, Griggs CT, Berde CB. High sensitivity quantification of RNA from gels and autoradiograms with affordable optical scanning[J]. Biotechniques. 1992, 12(6): 902-906, 908-911.
    [43] Johansson BG. Agarose gel electrophoresis[J]. Scand J Clin Lab Invest Suppl. 1972, 124: 7-19.
    [44] Emmett M, Petrack B. Rapid isolation of total RNA from mammalian tissues[J]. Anal Biochem. 1988, 174(2): 658-661.
    [45] Salvatori R, Primorac D, Lichtler AC. An efficient procedure for separate extraction of nuclear and cytoplasmic RNA from cell culture[J]. Biotechniques. 1994, 16(3): 374-376.
    [46] Yoon JR, Laible PD, Gu M, Scott HN, Collart FR. Express primer tool for high-throughput gene cloning and expression[J]. Biotechniques. 2002, 33(6): 1328-1333.
    [47] Reed KD, Stemper ME, Vandermause MF, Mitchell PD. Evaluation of a commercial DNA purification system for plasmid analysis of nosocomial bacterial pathogens[J]. Am J Clin Pathol. 1993, 100(3): 304-307.
    [48] Spackman E, Ip HS, Suarez DL, Slemons RD, Stallknecht DE. Analytical validation of a real-time reverse transcription polymerase chain reaction test for Pan-American lineage H7 subtype Avian influenza viruses[J]. Vet Diagn Invest. 2008, 20(5): 612-616.
    [49] Gibson UE, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR[J]. Genome Res. 1996, 6(10): 995-1001.
    [50] Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential[J].Biotechniques. 1999, 26(1):112-122, 124-125.
    [51] Fleige S, Walf V, Huch S, Prgomet C, Sehm J, Pfaffl MW. Comparison of relative mRNA quantification models and the impact of RNA integrity in quantitative real-time RT-PCR[J]. Biotechnol Lett. 2006, 28(19): 1601-1613.
    [52] Takaishi S, Wang TC. Gene expression profiling in a mouse model of Helicobacter-induced gastric cancer[J]. Cancer Sci. 2007, 98(3): 284-293.
    [53] Dai H, Tian B, Zhao WD, Leung A, Smith SR, Wan JS, Yao X. Dynamic integration of gene annotation and its application to microarray analysis[J]. Bioinform Comput Biol. 2004, 1(4): 627-645.
    [54] Kube DM, Savci-Heijink CD, Lamblin AF, Kosari F, Vasmatzis G, Cheville JC, Connelly DP, Klee GG. Optimization of laser capture microdissection and RNA amplification for gene expression profiling of prostate cancer[J]. BMC Mol Biol. 2007, 8: 25.
    [55] Wang Z, Lewis MG, Nau ME, Arnold A, Vahey MT. Identification and utilization of inter-species conserved (ISC) probesets on Affymetrix human GeneChip platforms for the optimization of the assessment of expression patterns in non human primate (NHP) samples[J]. BMC Bioinformatics. 2004, 5: 165.
    [56] Lu J, Lal A, Merriman B, Nelson S, Riggins G. A comparison of gene expression profiles produced by SAGE, long SAGE, and oligonucleotide chips[J]. Genomics. 2004, 84(4): 631-636.
    [57] Wick N, Bruck J, Gurnhofer E, Steiner CW, Giovanoli P, Kerjaschki D, Thurner S. Nonuniform hybridization: a potential source of error in oligonucleotide-chip experiments with low amounts of starting material[J]. Diagn Mol Pathol. 2004, 13(3): 151-159.
    [58] Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data[J]. Nucleic Acids Res. 2003, 31(4): e15.
    [59] Hartmann O. Quality control for microarray experiments[J]. Methods Inf Med. 2005, 44(3): 408-413.
    [60] Liu G, Loraine AE, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-Rose MA. NetAffx: Affymetrix probesets and annotations[J]. Nucleic Acids Res. 2003, 31(1): 82-86.
    [61] Twigger SN, S Smith J, Zuniga-Meyer A, Bromberg SK. Exploring phenotypic data at the rat genome database[J]. Curr Protoc Bioinformatics. 2006, Chapter 1: Unit 1.
    [62] Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF. A new method to measure the semantic similarity of GO terms[J]. Bioinformatics. 2007, 23(10): 1274-1281.
    [63] Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ. A preliminary analysis of genome structure and composition in Gossypium hirsutum[J]. BMC Genomics. 2008, 9: 314.
    [64] Bult CJ, Eppig JT, Kadin JA, Richardson JE, Blake JA; Mouse Genome Database Group. The Mouse Genome Database (MGD): mouse biology and model systems[J]. Nucleic Acids Res. 2008, 36: D724-D728.
    [65] Doniger SW, Salomonis N, Dahlquist KD, Vranizan K, Lawlor SC, Conklin BR. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data[J]. Genome Biol. 2003, 4: R7.
    [66] Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes[J]. Nucleic Acids Res. 1999, 27(1): 29-34.
    [67] Osband ME, Cashon GW. Biocare: biotechnology in the clinical practice of medicine[J]. Clin Res. 1990, 38(1): 5-9.
    [68] Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patternswith a complementary DNA microarray[J]. Science. 1995, 270(5235): 467-470.
    [69] Jang S, Uzelac A, Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection[J]. Leukoc Biol. 2008, 84(5): 1264-1270.
    [70] Prasad TV, Babu RP, Ahson SI. GEDAS - Gene Expression Data Analysis Suite[J]. Bioinformation. 2006, 1(3): 83-85.
    [71] Harrach B, Benko M. Phylogenetic analysis of adenovirus sequences[J]. Methods Mol Med. 2007, 131: 299-334.
    [72]尹珊珊,吴登俊,张翔宇,周明亮.绵羊QM基因的电子克隆及其生物信息学分析[J].安徽农业科学. 2008, 36 (14): 5767-5769, 5898.
    [73]李立奇,万瑛.蛋白质的亚细胞定位预测研究进展[J].免疫学杂志. 2009, 25 (5): 602-604.
    [74] Shen HB, Chou KC. PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition[J]. Anal Biochem. 2008, 373 (2): 386- 388.
    [75] Quandt K, Frech K, Karas H, Wingender E, Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data[J]. Nucleic Acids Res. 1995; 23 (23): 4878-4884.
    [76] Zhang LR, Luo LF. Splice site prediction with quadratic discriminate analysis using diversity measure. Nucleic Acids Res. 2003; 31 (21): 6214-6220.
    [77] Chou KC, Zhang CT. Prediction of protein structural classes[J]. Crit Rev Biochem Mol Biol. 1995, 30 (4): 275-349.
    [78] Nikitin A, Egorov S, Daraselia N, Mazo I. Pathway studio-the analysis and navigation of molecular networks[J]. Bioinformatics. 2003, 19(16): 2155-2157.
    [79] WB Wang, J Fan, X Zhang, J Xu, W Yao. Serial Expression Analysis of Liver Regeneration-Related Genes in Rat Regenerating Liver[J]. Molecular biotechnology. 2009, 43(3): 221-231.
    [80]张永晶,谢来峰,王磊,樊晋宇,徐存拴.大鼠肝星形细胞的分离、鉴定及纯度、活性分析[J].河南科学. 2009, 27(6): 670-674.
    [81] Israel J, London WT. Liver structure, function, and anatomy: effects of hepatitis B virus[J]. Curr Top Microbiol Immunol. 1991, 168: 1-20.
    [82] Wake K. Perisinusoidal Stellate cells (fat-storing cells, interstitial cells, lipoeytes), their related structure in and around the liver sinusoids,and vitamin A-storing cells in extrahepatic organs[J]. Hat Rev Cyto1. 1980, 66: 303-353.
    [83] Wake K. "Sternzellen" in the liver: perisinusoidal cells with special reference to storage of vitamin A[J]. Am J Anat. 1971, 132(4): 429-462.
    [84]朱永红,聂青和,胡大荣.储脂细胞与肝脏循环[J]《.国外医学》流行病学传染病学分册. 1998, 25: 17-20.
    [85]施贵静,赵金满.肝星形细胞的生物学特性和肝纤维化[J].世界华人消化杂志. 2004, 12(5): 1179-1183.
    [86]谭龙益,孔宪涛.储脂细胞的激活与肝纤维化的发生[J].临床肝胆病杂志. 1996, 12(3): 118-120.
    [87] Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells[J]. Semin Liver Dis. 2001, 21(3): 311-335.
    [88]巫协宁.肝内四种非实质细胞的功能[J].肝脏. 1998, 3(1): 56-57.
    [89] Mann J, Mann DA. Transcriptional regulation of hepatic stellate cells[J]. Adv Drug Deliv Rev.2009, 61(7-8): 497-512.
    [90] Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A, Krebs B, Kraft S, Zahn S, Brocks B, Feirt N, Mei B, Cho MS, Ramamoorthi R, Roldan G, Ng P, Lum P, Hirth-Dietrich C, Tomkinson A, Brenner DA. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats[J]. Hepatology. 2004, 40(5): 1106-1115.
    [91] Oben JA, Yang S, Lin H, Ono M, Diehl AM. Norepinephrine and neuropeptide Y promote proliferation and collagen gene expression of hepatic myofibroblastic stellate cells[J]. Biochem Biophys Res Commun. 2003, 302(4): 685-690.
    [92] Kreamer BL, Staecker JL, Sawada N, Sattler GL, Hsia MT, Pitot HC. Use of a low-speed, iso-density percoll centrifugation method to increase the viability of isolated rat hepatocyte preparations[J]. In Vitro Cell Dev Biol. 1986, 22(4): 201-211.
    [93] Ferry N. Retroviral-mediated gene transfer into hepatocytes in vivo[J]. The Proceedings of the National Academy of Sciences Online USA. 1991, 8(1): 8377-8381.
    [94] Rohan JN, Weigel NL. 1Alpha, 25-dihydroxyvitamin D3 reduces c-Myc expression, inhibiting proliferation and causing G1 accumulation in C4-2 prostate cancer cells[J]. Endocrinology. 2009, 150(5): 2046-2054.
    [95] Bell AH, Skov L, Lundstr?m KE, Saugstad OD, Greisen G. Cerebral blood flow and plasma hypoxanthine in relation to surfactant treatment[J]. Acta Paediatr. 1994, 83(9): 910-914.
    [96] Valasek MA, Weng J, Shaul PW, Anderson RG, Repa JJ. Caveolin-1 is not required for murine intestinal cholesterol transport[J]. J Biol Chem. 2005, 280(30): 28103-28109.
    [97] Klein D, Demory A, Peyre F, Kroll J, Augustin HG, Helfrich W, Kzhyshkowska J, Schledzewski K, Arnold B, Goerdt S. Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway[J]. Hepatology. 2008, 47(3): 1018-1031.
    [98] Bogan RL, Hennebold JD. The reverse cholesterol transport system as a potential mediator of luteolysis in the primate corpus luteum[J]. Reproduction. 2010, 139(1): 163-176.
    [99] Wang HY, Burns LH. Naloxone's pentapeptide binding site on filamin A blocks Mu opioid receptor-Gs coupling and CREB activation of acute morphine[J]. PLoS One. 2009, 4(1): e4282.
    [100] McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor[J]. Nature. 1998, 393(6683): 333-339.
    [101] Sordella R, Jiang W, Chen GC, Curto M, Settleman J. Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis[J]. Cell. 2003, 113(2): 147-158.
    [102] Lütcke A, Jansson S, Parton RG, Chavrier P, Valencia A, Huber LA, Lehtonen E, Zerial M. Rab17, a novel small GTPase, is specific for epithelial cells and is induced during cell polarization[J]. J Cell Biol. 1993, 121(3): 553-564.
    [103] Demarchi DA, Mosher MJ, Crawford MH. Apolipoproteins (apoproteins) and LPL variation in Mennonite populations of Kansas and Nebraska[J]. Am J Hum Biol. 2005, 17(5): 593-600.
    [104] Kamon H, Kawabe T, Kitamura H, Lee J, Kamimura D, Kaisho T, Akira S, Iwamatsu A, Koga H, Murakami M, Hirano T. TRIF-GEFH1-RhoB pathway is involved in MHCII expression on dendritic cells that is critical for CD4 T-cell activation[J]. EMBO J. 2006, 25(17): 4108-4019.
    [105] Helms MW, Kemming D, Contag CH, Pospisil H, Bartkowiak K, Wang A, Chang SY, Buerger H, Brandt BH. TOB1 is regulated by EGF-dependent HER2 and EGFR signaling, is highly phosphorylated, and indicates poor prognosis in node-negative breast cancer[J]. Cancer Res. 2009,69(12): 5049-5056.
    [106] Ishibashi Y, Maita H, Yano M, Koike N, Tamai K, Ariga H, Iguchi-Ariga SM. Pim-1 translocates sorting nexin 6/TRAF4-associated factor 2 from cytoplasm to nucleus[J]. FEBS Lett. 2001, 506(1): 33-38.
    [107] Kurian N, Hall CJ, Wilkinson GF, Sullivan M, Tobin AB, Willars GB. Full and partial agonists of muscarinic M3 receptors reveal single and oscillatory Ca2+ responses by beta 2-adrenoceptors[J]. J Pharmacol Exp Ther. 2009, 330(2): 502-512.
    [108] Hwang IY, Park C, Kehrl JH. Impaired trafficking of Gnai2+/- and Gnai2-/- T lymphocytes: implications for T cell movement within lymph nodes[J]. J Immunol. 2007, 179(1): 439-448.
    [109] Miranda M, EscotéX, Alcaide MJ, Solano E, Ceperuelo-MallafréV, Hernández P, Wabitsch M, Vendrell J. Lpin1 in human visceral and subcutaneous adipose tissue: similar levels but different associations with lipogenic and lipolytic genes[J]. Am J Physiol Endocrinol Metab. 2010, 299(2): E308-317.
    [110] Diviani D, Scott JD. AKAP signaling complexes at the cytoskeleton[J]. J Cell Sci. 2001, 114(Pt 8): 1431-1437.
    [111] Frantz C, Coppola T, Regazzi R. Involvement of Rho GTPases and their effectors in the secretory process of PC12 cells[J]. Exp Cell Res. 2002, 273(2): 119-126.
    [112] Tanoue T, Takeichi M. Mammalian Fat1 cadherin regulates actin dynamics and cell-cell contact[J]. J Cell Biol. 2004, 165(4): 517-528.
    [113] Riou P, Villalonga P, Ridley AJ. Rnd proteins: Multifunctional regulators of the cytoskeleton and cell cycle progression[J]. Bioessays. 2010, 32(11): 986-992.
    [114] Russell MA, Lund LM, Haber R, McKeegan K, Cianciola N, Bond M. The intermediate filament protein, synemin, is an AKAP in the heart[J]. Arch Biochem Biophys. 2006, 456(2): 204-215.
    [115] Tamura K, Chen YE, Chen Q, Nyui N, Horiuchi M, Takasaki I, Tamura N, Pratt RE, Dzau VJ, Umemura S. Expression of renin-angiotensin system and extracellular matrix genes in cardiovascular cells and its regulation through AT1 receptor[J]. Mol Cell Biochem. 2000, 212(1-2): 203-209.
    [116] Lin WH, Huang CJ, Liu MW, Chang HM, Chen YJ, Tai TY, Chuang LM. Cloning, mapping, and characterization of the human sorbin and SH3 domain containing 1 (SORBS1) gene: a protein associated with c-Abl during insulin signaling in the hepatoma cell line Hep3B[J]. Genomics. 2001, 74(1): 12-20.
    [117] Mitko K, Ulbrich SE, Wenigerkind H, Sinowatz F, Blum H, Wolf E, Bauersachs S. Dynamic changes in messenger RNA profiles of bovine endometrium during the oestrous cycle[J]. Reproduction. 2008, 135(2): 225-240.
    [118] Peacock JD, Lu Y, Koch M, Kadler KE, Lincoln J. Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance[J]. Dev Dyn. 2008, 237(10): 3051-3058.
    [119] Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B, Bender O, Górecki DC, Murrell-Lagnado RD, Soto F. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice[J]. J Biol Chem. 2009, 284(38): 25813-25822.
    [120] Kuehnle K, Ledesma MD, Kalvodova L, Smith AE, Crameri A, Skaanes-Brunner F, Thelen KM, Kulic L, Lütjohann D, Heppner FL, Nitsch RM, Mohajeri MH. Age-dependent increase in desmosterol restores DRM formation and membrane-related functions in cholesterol-freeDHCR24-/- mice[J]. Neurochem Res. 2009, 34(6): 1167-1182.
    [121] Weissman JT, Aridor M, Balch WE. Purification and properties of rat liver Sec23-Sec24 complex[J]. Methods Enzymol. 2001, 329: 431-438.
    [122] Page KM, Heblich F, Margas W, Pratt WS, Nieto-Rostro M, Chaggar K, Sandhu K, Davies A, Dolphin AC. N terminus is key to the dominant negative suppression of Ca(V)2 calcium channels: implications for episodic ataxia type 2[J]. J Biol Chem. 2010, 285(2): 835-844.
    [123] Aquilano K, Vigilanza P, Baldelli S, Pagliei B, Rotilio G, Ciriolo MR. Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis[J]. J Biol Chem. 2010, 285(28): 21590-21599.
    [124] Nakamoto K, Ito A, Watabe K, Koma Y, Asada H, Yoshikawa K, Shinomura Y, Matsuzawa Y, Nojima H, Kitamura Y. Increased expression of a nucleolar Nop5/Sik family member in metastatic melanoma cells: evidence for its role in nucleolar sizing and function[J]. Am J Pathol. 2001, 159(4): 1363-1374.
    [125] Billy E, Wegierski T, Nasr F, Filipowicz W. Rcl1p, the yeast protein similar to the RNA 3'-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis[J]. EMBO J. 2000, 19(9): 2115-2126.
    [126] Rubin CI, Atweh GF. The role of stathmin in the regulation of the cell cycle[J]. J Cell Biochem. 2004, 93(2): 242-250.
    [127] Leng M, Chan DW, Luo H, Zhu C, Qin J, Wang Y. MPS1-dependent mitotic BLM phosphorylation is important for chromosome stability[J]. Proc Natl Acad Sci U S A. 2006, 103(31): 11485-11490.
    [128] Midorikawa R, Yamamoto-Hino M, Awano W, Hinohara Y, Suzuki E, Ueda R, Goto S. Autophagy-dependent rhodopsin degradation prevents retinal degeneration in Drosophila[J]. J Neurosci. 2010, 30(32): 10703-10719.
    [129] Walus M, Kida E, Golabek AA. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I[J]. Hum Mutat. 2010, 31(6): 710-721.
    [130] Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G. Regulation of replication fork progression through histone supply and demand[J]. Science. 2007, 318(5858): 1928-1931.
    [131] Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Facciolli A, Morello R, Agoulnik AI, Foresta C. New roles for INSL3 in adults[J]. Ann N Y Acad Sci. 2009, 1160: 215-218.
    [132] Bellido T, Borba VZ, Roberson P, Manolagas SC. Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation[J]. Endocrinology. 1997, 138(9): 3666-3676.
    [133] Lu X, Kambe F, Cao X, Yoshida T, Ohmori S, Murakami K, Kaji T, Ishii T, Zadworny D, Seo H. DHCR24-knockout embryonic fibroblasts are susceptible to serum withdrawal-induced apoptosis because of dysfunction of caveolae and insulin-Akt-Bad signaling[J]. Endocrinology. 2006, 147(6): 3123-3132.
    [134] Liu H, Liu S, Tang S, Ji K, Wang F, Hu S. Molecular analysis of signaling events mediated by the cytoplasmic domain of leukemia inhibitory factor receptor alpha subunit[J]. Mol Cell Biochem. 2004, 258(1-2): 15-23.
    [135] Janmaat ML, Giaccone G. Small-molecule epidermal growth factor receptor tyrosine kinase inhibitors[J]. Oncologist. 2003, 8(6): 576-586.
    [136] Porter LA, Donoghue DJ. Cyclin B1 and CDK1: nuclear localization and upstream regulators[J].Prog Cell Cycle Res. 2003, 5: 335-347.
    [137] Yoshida K. Cell-cycle-dependent regulation of the human and mouse Tome-1 promoters[J]. FEBS Lett. 2005, 579(6): 1488-1492.
    [138] Kashima H, Shiozawa T, Miyamoto T, Suzuki A, Uchikawa J, Kurai M, Konishi I. Autocrine stimulation of IGF1 in estrogen-induced growth of endometrial carcinoma cells: involvement of the mitogen-activated protein kinase pathway followed by up-regulation of cyclin D1 and cyclin E[J]. Endocr Relat Cancer. 2009, 16(1): 113-122.
    [139] Naishiro Y, Yamada T, Idogawa M, Honda K, Takada M, Kondo T, Imai K, Hirohashi S. Morphological and transcriptional responses of untransformed intestinal epithelial cells to an oncogenic beta-catenin protein[J]. Oncogene. 2005, 24(19): 3141-3153.
    [140] Smits P, Li P, Mandel J, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B, Lefebvre V. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation[J]. Dev Cell. 2001, 1(2): 277-290.
    [141] Wagner K, Hemminki K, Grzybowska E, Bermejo JL, Butkiewicz D, Pamula J, Pekala W, F?rsti A. Polymorphisms in the growth hormone receptor: a case-control study in breast cancer[J]. Int J Cancer. 2006, 118(11): 2903-2906.
    [142] Ahuja HS, Tenniswood M, Lockshin R, Zakeri ZF. Expression of clusterin in cell differentiation and cell death[J]. Biochem Cell Biol. 1994, 72(11-12): 523-530.
    [143] Liew CG, Shah NN, Briston SJ, Shepherd RM, Khoo CP, Dunne MJ, Moore HD, Cosgrove KE, Andrews PW. PAX4 enhances beta-cell differentiation of human embryonic stem cells[J]. PLoS One. 2008, 3(3): e1783.
    [144] Saravanamuthu SS, Gao CY, Zelenka PS. Notch signaling is required for lateral induction of Jagged1 during FGF-induced lens fiber differentiation[J]. Dev Biol. 2009, 332(1): 166-176.
    [145] Sahara S, O'Leary DD. Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors[J]. Neuron. 2009, 63(1): 48-62.
    [146] Pellegrino M, Maiorino R, Schonauer S. WNT4 signaling in female gonadal development[J]. Endocr Metab Immune Disord Drug Targets. 2010, 10(2): 168-174.
    [147] Sabroe I, Dower SK, Whyte MK. The role of Toll-like receptors in the regulation of neutrophil migration, activation, and apoptosis[J]. Clin Infect Dis. 2005, 41(Suppl 7): S421-426.
    [148] Li X, McFarland DC, Velleman SG. Transforming growth factor-beta1-induced satellite cell apoptosis in chickens is associated with beta1 integrin-mediated focal adhesion kinase activation[J]. Poult Sci. 2009, 88(8): 1725-1734.
    [149] Pu YS, Hour TC, Chuang SE, Cheng AL, Lai MK, Kuo ML. Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells[J]. Prostate. 2004, 60(2): 120-129.
    [150] Knott AW, Juno RJ, Jarboe MD, Zhang Y, Profitt SA, Thoerner JC, Erwin CR, Warner BW. EGF receptor signaling affects bcl-2 family gene expression and apoptosis after massive small bowel resection[J]. J Pediatr Surg. 2003, 38(6): 875-880.
    [151] Roskams T. Relationships among stellate cell activation, progenitor cells, and hepatic regeneration[J]. Clin Liver Dis. 2008, 12(4): 853-860.
    [152] Svegliati-Baroni G, Saccomanno S, van Goor H, Jansen P, Benedetti A, Moshage H. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells[J]. Liver. 2001, 21(1): 1-12.
    [153]毕丽青,赵龙凤,郝彦琴,李红.类胰蛋白酶对肝星状细胞增殖及I型胶原mRNA表达的影响[J].中国现代医药杂志. 2008, 10(1): 7-9.
    [154] Taub R. Liver regeneration: from myth to mechanism[J]. Nat Rev Mol Cell Biol. 2004, 5(10): 836-847.
    [155] Chang C, Xu C. Transcriptome atlas of aromatic amino acid family metabolism-related genes in eight liver cell types uncovers the corresponding metabolic pathways in rat liver regeneration[J]. Int J Biochem Cell Biol. 2010, 42(10): 1708-1716.
    [156]胡珂,徐存拴.核酸及其衍生物的代谢、加工、运输相关基因在大鼠肝再生中表达模式分析[J].解剖学报. 2008, 39(3): 329-334.
    [157] Carrithers SL, Ott CE, Hill MJ, Johnson BR, Cai W, Chang JJ, Shah RG, Sun C, Mann EA, Fonteles MC, Forte LR, Jackson BA, Giannella RA, Greenberg RN. Guanylin and uroguanylin induce natriuresis in mice lacking guanylyl cyclase-C receptor[J]. Kidney Int. 2004, 65(1): 40-53.
    [158] Chen J, Patton JR. Pseudouridine synthase 3 from mouse modifies the anticodon loop of tRNA[J]. Biochemistry. 2000, 39(41): 12723-12730.
    [159] LaRusso J, Li Q, Jiang Q, Uitto J. Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6(-/-))[J]. J Invest Dermatol. 2009, 129(6): 1388-1394.
    [160]徐存拴等.大鼠肝再生中糖代谢相关基因的表达变化[J].解剖学报. 2008, 39(3): 296-301.
    [161] Nordlie RC, Foster JD, Lange AJ. Regulation of glucose production by the liver[J]. Annu Rev Nutr. 1999, 19: 379-406.
    [162] Jenniskens YM, Koevoet W, de Bart AC, Weinans H, Jahr H, Verhaar JA, DeGroot J, van Osch GJ. Biochemical and functional modulation of the cartilage collagen network by IGF1, TGFbeta2 and FGF2[J]. Osteoarthritis Cartilage. 2006, 14(11): 1136-1146.
    [163] Hansmannel F, Mordier S, Iynedjian PB. Insulin induction of glucokinase and fatty acid synthase in hepatocytes: analysis of the roles of sterol-regulatory-element-binding protein-1c and liver X receptor[J]. Biochem J. 2006, 399(2): 275-283.
    [164] Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, Hayward BE, Asipu A, Bonthron DT. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme[J]. J Histochem Cytochem. 2009, 57(8): 763-774.
    [165] Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V. On the mechanism of alpha-amylase[J]. Eur J Biochem. 2003, 270(19): 3871-3879.
    [166] Vavaiya KV, Briski KP. Effects of caudal fourth ventricular lactate infusion on hypoglycemia-associated MCT2, GLUT3, GLUT4, GCK, and sulfonylurea receptor-1 gene expression in the ovariectomized female rat LHA and VMH: impact of estradiol[J]. J Mol Neurosci. 2008, 34(2): 121-129.
    [167] Xu CS, Zhang SB, Yang ZL, Cui SN, Zhang M. The expression changes of genes associated with protein metabolism, folding, transport, localizati on and assembly during rat liver regeneration[J]. Fen Zi Xi Bao Sheng Wu Xue Bao. 2008, 41(2): 107-119.
    [168] STAIB W, MILLER LL. On protein metabolism during liver regeneration[J]. Biochem Z. 1964, 339: 274-280.
    [169] Szaszák M, Chen HD, Chen HC, Baukal A, Hunyady L, Catt KJ. Identification of the invariant chain (CD74) as an angiotensin AGTR1-interacting protein[J]. J Endocrinol. 2008, 199(2): 165-176.
    [170] van Lith M, Benham AM. The DMalpha and DMbeta chain cooperate in the oxidation and folding of HLA-DM[J]. J Immunol. 2006, 177(8): 5430-5439.
    [171] Liu W, Wang P. Cofactor regeneration for sustainable enzymatic biosynthesis[J]. Biotechnol Adv.2007, 25(4): 369-384.
    [172] Oskarsson A, Fowler BA. Alterations in renal heme biosynthesis during metal nephrotoxicity[J]. Ann N Y Acad Sci. 1987, 514: 268-277.
    [173] Sadlon TJ, Dell'Oso T, Surinya KH, May BK. Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis[J]. Int J Biochem Cell Biol. 1999, 31(10): 1153-1167.
    [174] Gardi C, Arezzini B, Monaco B, De Montis MG, Vecchio D, Comporti M. F2-isoprostane receptors on hepatic stellate cells[J]. Lab Invest. 2008, 88(2): 124-131.
    [175] Asling B, Jirholt J, Hammond P, Knutsson M, Walentinsson A, Davidson G, Agreus L, Lehmann A, Lagerstr?m-Fermer M. Collagen type III alpha I is a gastro-oesophageal reflux disease susceptibility gene and a male risk factor for hiatus hernia[J]. Gut. 2009, 58(8): 1063-1069.
    [176] Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium[J]. J Cell Biol. 1996, 132(6): 1133-1149.
    [177] Lin HW, Levison SW. Context-dependent IL-6 potentiation of interferon- gamma-induced IL-12 secretion and CD40 expression in murine microglia[J]. J Neurochem. 2009, 111(3): 808-818.
    [178] Bae JA, Park HJ, Seo YM, Roh J, Hsueh AJ, Chun SY. Hormonal regulation of proprotein convertase subtilisin/kexin type 5 expression during ovarian follicle development in the rat[J]. Mol Cell Endocrinol. 2008, 289(1-2): 29-37.
    [179] Kubota T, Matsuoka M, Chang TH, Tailor P, Sasaki T, Tashiro M, Kato A, Ozato K. Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression[J]. J Biol Chem. 2008, 283(37): 25660-25670.
    [180] Saito O, Svensson CI, Buczynski MW, Wegner K, Hua XY, Codeluppi S, Schaloske RH, Deems RA, Dennis EA, Yaksh TL. Spinal glial TLR4-mediated nociception and production of prostaglandin E(2) and TNF[J]. Br J Pharmacol. 2010, 160(7): 1754-1764.
    [181] Catalán D, Aravena O, Sabugo F, Wurmann P, Soto L, Kalergis AM, Cuchacovich M, Aguillón JC; Millenium Nucleus on Immunology and Immunotherapy P-07-088-F. B cells from rheumatoid arthritis patients show important alterations in the expression of CD86 and FcgammaRIIb, which are modulated by anti-tumor necrosis factor therapy[J]. Arthritis Res Ther. 2010, 12(2): R68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700