用户名: 密码: 验证码:
徐家围子断陷营城组火山岩流体包裹体发育特征及其地质意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地北部徐家围子断陷营城组火山岩内同时发育有大规模的烃类气藏和二氧化碳气藏,对这些气藏中天然气的成因和充注期次目前还存在较大争议。气藏形成时捕获的流体包裹体保留了天然气充注时的原始特征,可以避免气藏形成后的演化作用对原始天然气的改造,因而在判断气藏内天然气的成因方面具有较大的优势;其均一温度也是目前研究气藏充注期次的主要手段。本文对该地区19口钻井中营城组火山岩内发育的次生气液两相流体包裹体的岩石学特征、成分、均一温度以及包裹体内的天然气碳同位素进行了系统的研究,并结合前人已有成果,对松辽盆地北部徐家围子断陷营城组火山岩气藏中天然气的成因、充注期次和充注模式进行了探讨。
     激光拉曼成分分析结果表明营城组储层内发育了富CH4和富CO:的流体包裹体。汪家屯地区和兴城地区所测得的流体包裹体均为富CH4流体包裹体,昌德地区、昌五镇地区和丰乐地区富CH4和富CO:流体包裹体都有发育。富CH4流体包裹体均一温度介于40.0℃~298.0℃之间,出现频率最高的均一温度区间有3个:146.0℃~173.0℃(低温段)、180.0℃~225.0℃(中温段)和230.0℃248.0℃(高温段)。汪家屯地区三个温度段的流体包裹体均有发育;昌德地区发育低温段和中温段的流体包裹体;兴城地区、昌五镇地区和丰乐地区发育中温段和高温段的流体包裹。富CO2流体包裹体均一温度区间介于213.8℃~325.0℃之间,主要集中在230.0℃~270.0℃温度段,在昌德地区、昌五镇地区和丰乐地区地区均检测到。
     以均一温度测试结果和烃源岩沙河子组的最高地温为依据,利用爆破法提取了不同均一温度段的流体包裹体内的天然气,并对其进行了碳同位素测试。结果表明,流体包裹体内天然气δ13Cco2值介于1.4‰~-66.8‰之间,烷烃碳同位素分布存在正序、反序和局部反序三种类型,说明徐家围子断陷火山岩气藏中有机和无机天然气均有充注。在230℃(低温段)爆破时提取的天然气以有机为主,其碳同位素分布基本呈正序;而在350℃(高温段)爆破时提取的天然气则以混合成因为主,其碳同位素分布大多呈局部反序。汪家屯地区低温段包括正序和局部反序分布,以正序分布为主,高温段均为局部反序分布;昌德地区芳深701井低温段和高温段均为正序分布,芳深9井低温段和高温段均为反序分布;兴城地区低温段和高温段都包括了三种分布类型,且都以正序分布为主;昌五镇地区低温段和高温段都包括了正序和局部反序分布,低温段以正序分布为主,高温段以局部反序分布为主;丰乐地区低温段均为正序分布,高温段正序分布和局部反序分布各占一半。
     汪深101井检测到两期富CH4流体包裹体,碳同位素结果显示有机和无机天然气均发生过充注,但现今气藏成分主要为CH4,说明早期充注的无机天然气气藏被晚期CH4天然气取代,汪家屯地区各井、兴城地区各井和徐深9-1井、徐深23井和徐深302井均为相同充注方式。芳深701井捕获低温段富CH4流体包裹体和富CO2流体包裹体,碳同位素结果显示曾发生有机天然气充注,且井内不同深度气层主要成分不同,其为多期天然气混合充注形成,徐深22井充注方式和芳深701井相同。芳深9井检测到中温段CH4流体包裹体,碳同位素显示曾发生无机天然气充注,且现今气藏成分主要为CO2,说明芳深9井气藏由早期无机天然气充注并保存至今,徐深19井和徐深28井充注方式和芳深9井相同。徐深15井检测到中温段富CH4流体包裹体,碳同位素结果显示曾发生有机天然气充注,气藏内天然气成分主要为CH4,说明徐深15井直接由晚期有机天然气充注成藏。徐家围子断陷存在四种天然气充注模式:第一种是晚期天然气取代早期天然气成藏;第二种是早期天然气成藏之后保存至今;第三种是直接由晚期天然气充注成藏;第四种不同时期天然气混合充注成藏。汪家屯地区和兴城地区均为第一种充注模式;昌德地区包括后三种充注方式;昌五镇地区以第一种和第二种充注方式为主;丰乐地区则以第二种和第三种模式充注为主。
     本文的研究结果证实了徐家围子断陷营城组火山岩气藏中确实存在有无机天然气充注,但仍以有机天然气充注为主;发现了断陷内不同地区的天然气充注方式不同,这很有可能就是不同气藏内天然气成分存在差异的原因;还丰富了对徐家围子断陷天然气成藏规律的认识,对松辽盆地内其他断陷深层天然气的勘探开发具有较大的实践指导意义。
There are both hydrocarbon gas and carbon dioxide gas reservoirs in Yingcheng Formation of Xujiaweizi Faulted-basin, Songliao Basin. Fluid inclusions may preserve the geochemic information of the gas when it was charging. This approach avoids the multiple impacts of gas passing post-dating, and also has great advantages in determining the genesis of gas. Homogenization temperatures are generallly used in understanding the gas charging time. In order to discuss the gas genesis and charging mode in Xujiaweizi Faulted-basin, petrographic characterization, composition, homogenization temperatures and carbon isotope of fluid inclusions in volcanic rocks in 19 wells of the Yingcheng Formation are studied in this paper.
     Based on Fluid-inclusion petrography, CH4-rich and CO2-rich gas-liquid secondary fluid inclusions are discovered in volcanic rocks of the Yingcheng Formation. The homogenization temperatures of CH4-rich fluid inclusions in different samples range from 40.0℃to 298.0℃, and its main-frequency are 146.0℃-173.0℃, 180.0℃-225.0℃and 230.0℃-248.0℃. The CO2-rich ones range from 213.8℃to 325.0℃, while its main-frequency is 230.0℃-270.0℃.
     The homogenization temperature and the highest buried temperature of source rocks (Shahezi Formation) have been inferred as inclusion-breaking temperatures. Heating the samples to these temperatures breaks the inclusions and subsequently natural gas in fluid inclusions can be extracted for carbon isotope analysis. Theδ13Cco2 values of fluid-inclusion-gas range from 1.4%o to -66.8‰. Distribution sequence of carbon isotopes display normal, reverse and partially reverse distribution. This indicates that both organic and inorganic natural gas charged in Xujiaweizi Fault-basin according to comprehensive analysis of various geochemical conditions, and organic hydrocarbon takes dominance.
     The comparison between main components of fluid inclusions and natural gas indicates there are four charging modes in this area:(1) former gas replaced by the later; (2) early gas preserved and the later not charged; (3) gas charged in later stage; (4) gas charged by multiple stages.
     Wangjiatun experienced three gas charging events, but early natural gas was replaced by later natural gas charging.
     CH4-rich fluid inclusions of 146.0℃~173.0℃and 180.0℃~225.0℃and CO2-rich fluid inclusions are detected in Changde region. It experienced organic and inorganic gas charging. Gas of Fangshen701 Well was charged by multiple times, and Fangshen9 Well was charged by early inorganic gas.
     CH4-rich fluid inclusions of 180.0℃~225.0℃and 230.0℃~248.0℃are detected in Xingcheng region. It experienced organic and inorganic gas charging, with a charging model of the early natural gas was replaced by the later.
     CH4-rich fluid inclusions of 180.0℃~225.0℃and 230.0℃~248.0℃and CO2-rich fluid inclusions are detected in Changwu Town region. It experienced organic and inorganic gas charging. The gas charging mode of Xushen23 and Xushen302 Well is that the former gas charging was replaced by the later. Gas of Xushen22 Well was charged by multiple times, and Xushen28 Well was charged by early inorganic gas.
     CH4-rich fluid inclusions of 180.0℃~225.0℃and 230.0℃~248.0℃and CO2-rich fluid inclusions are detected in Fengle region. It experienced organic and inorganic gas charging. The gas charging mode of Xushen15 is that gas charged by late time. Gas of Xushen19 Well was charged by early inorganic gas.
     The results of this study confirmed that the inorganic gas charged in Xujiaweizi Fault-basin, but the organic gas took dominance. The natural gas charging in different regions have differente modes, resulting to the variation of gas components in respective reserviors. Different gas charging modes have been revealed in Xujiaweizi Fault-basin is understood, which will provide guidance for further exploration and development of natural gas.
引文
曹熹,党增欣,张兴洲,等.佳木斯复合地体[M].长春:吉林科学技术出版社,2002.
    陈荣书.天然气地质学[M].武汉:中国地质大学出版社,1989.264-265.
    戴金星.各类天然气的成因鉴别[J].中国海相油气(地质),1992a,(1):11-19.
    戴金星.各类烷烃气的鉴别[J].中国科学,B辑,1992b,22(2):185-193.
    戴金星,戚厚发,郝石生.天然气地质学概论[M].北京:石油工业出版社,1989,154-156.
    戴金星,宋岩,戴春森等.中国东部无机成因气及其气藏形成条件[J].科学出版社.1995.
    戴金星,卫延召,赵靖舟.晚期成藏对大气田形成的重大作用[J].中国地质,2003a,30(1):10-19.
    戴金星,夏新宇,秦胜飞,等.中国有机烷烃气碳同位素系列倒转的成因[J].石油与天然气地质,2003b,24(1):3-6.
    戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势和天然气地学理论重要进展[J].天然气地球科学,2005,]6(2):127-142.
    戴金星.中国含油气盆地的无机成因气及其气藏[J].天然气工业,1995,15(3):22-27.
    冯子辉,任延广,王成,等.松辽盆地深层火山岩储层包裹体及天然气成藏期研究[J].天然气地球科学.2003,14(6):436-442.
    冯子辉,李景坤,王雪,等.松辽盆地北部深层天然气生成条件与资源潜力研究[A].见贾承造,主编:松辽盆地深层天然气勘探研讨会报告集[C],2004,67-73.
    冯子辉,刘伟.徐家围子断陷深层天然气的成因类型研究[J].天然气工业,2006,26(6):18-20.
    付广,吕延防,孟庆芬.松辽盆地北部深层火山岩气藏形成时期及成藏模式研究[J].中国海上油气(地质).2003,17(4):236-239.
    付广,刘江涛.大庆长垣以东地区深层天然气输导特征及成藏[J].特种油气藏,2006,13(1):20-23.
    付晓飞,王朋岩,吕延防,等,松辽盆地西部斜坡北段构造特征及对油气成藏的控制[J].地质科学,2007,42(2):209-222.
    付晓飞,沙威,于丹,等.松辽盆地徐家围子断陷火山岩内断层侧向封闭性及与天然气成藏[J].地质论评,2010,56(1):60-70.
    高瑞祺,蔡希源,迟元林,等.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997.164-173.
    郭占谦,王先彬.松辽盆地非生物成因探讨[J].中国科学D辑:地球科学,1994,24(3):304--309.
    郭占谦,王先彬,刘文龙.松辽盆地非生物成因气的成藏特征[J].中国科学D辑:地球科学,1997,27(2):143--148.
    郭占谦,王先彬.松辽盆地无机成因气藏模式[J].天然气工业,2000,20(6):30-33.
    郭占谦,王连生,刘立,等.大庆长垣伴生气中二氧化碳的成因研究[J].天然气地球科学,2006.17(01):48-50.
    郭占谦,刘俊峰,李贵顺.对大庆油田深层气田气源的讨论[J].石油与天然气地质,2007,28(4):441-448.
    侯启军,杨玉峰.松辽盆地无机成因天然气及勘探方向探讨[J].天然气工业,2002,22(3):5-10.
    胡明,付广,吕延防,等.松辽盆地徐家围子断陷断裂活动时期及其与深层气成藏关系分析[J].地质论评.2010,56(5):710-718.
    黄海平,杨玉峰,陈发景,等.徐家围子断陷深层天然气的形成[J].地学前缘,2000,17(4):515-522.
    黄海平.松辽盆地徐家围子断陷深层天然气同位素倒转现象研究[J].地球科学,2000,25(6):617-623.
    霍秋立.松辽盆地徐家围子断陷深层天然气来源与成藏研究[D].大庆石油学院,2007.
    纪学雁,舒萍,曲延明,等.流体包裹体在庆深气田火山岩气藏研究中的应用[J].吉林大学学报:地球科学版,2007,37(4):739-743.
    李纯泉,陈红汉.徐家围子断陷火山岩储层流体包裹体研究.天然气工业,2007,(08):26-28.
    李景坤,方伟,曾花森,等.徐家围子断陷烷烃气碳同位素反序机制[J].石油学报,2011,32(1):54-61.
    李晓锋,彭仕宓,邵明礼,等.松辽盆地深层天然气成因分析及气源对比以长岭断陷长深1区块营城组气藏为例.天然气工业,2009,29(11):5-8.
    林锦荣,田华,董文明,等.松辽盆地东南部油气、煤层气后生蚀变硫同位素特征.世界核地质科学[J],2009,(02):63-67.
    刘超,王震亮.刘池洋,等鄂尔多斯盆地延长矿区延长组流体包裹体特征.地球学报,2009., (02):215-220.
    刘婷,米敬奎,张敏.松辽盆地深层天然气碳同位素倒转数值模拟[J].天然气地球科学,2008,19(5):722-726.
    柳广弟,张厚福.石油地质学[J].北京:石油工业出版社,2009,134-139.
    卢焕章.一种寻找石油的新方法_流体包裹体法[J].桂林工学院学报,2000,20(1):82-83.
    卢焕章,范宏瑞,倪培,等.流体包裹体[M].北京:科学出版社,2004.172-268.
    鲁雪松,宋岩,柳少波,等.松辽盆地幔源co_2分布规律与运聚成藏机制.石油学报2009,(05):661-666.
    陆同兴和路轶群.激光光谱技术原理及应用[M].安徽:中国科技大学出版社,2006.
    罗群,白新华,等.断裂控烃理论与实践——断裂活动与油气聚集研究[M].武汉:中国地质大学出版社,1998.124-137.
    罗霞,孙粉锦,邵明礼,等.松辽盆地深层煤型气与气源岩地球化学特征[J].石油勘探与开发,2009,36(3):339-346.
    马文平,丁云杰,李永旺,等.费托合成反应动力学研究的回顾与展望[J].2001,26(03):42-46.
    倪云燕,戴金星,周庆华,等.徐家围子断陷无机成因气证据及其份额估算[J].石油勘探与开发.2009,36(1):35-45.
    秦胜飞,唐修义,宋岩,等.煤层甲烷碳同位素分布特征及分馏机理[J].中国科学.D辑:地球科
    学,2006,(12):1092-1097.
    任战利.中国北方沉积盆地构造热演化史恢复及其对比研究[D],西北地质大学,1998.
    任战利,萧德铭,迟元林.松辽盆地古地温恢复[J].2001,20(01):13-14.
    邵济安.中朝板块北缘中段地壳演化[M].北京:北京大学出版社,1991.
    邵奎政,梁晓东.徐家围子地区天然气成藏期次及其模式[J].大庆石油地质与开发,2002,21(6):4-5.
    施锡贵.东南极索龙达讷山泛非期花岗质岩石的年代学和流体包裹体研究[B].2007,浙江大学.
    水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报,1989,63(3):204-215
    孙贺和肖益林.流体包裹体研究:进展、地质应用及展望[J].地球科学进展,2009,24(10):1105-1121.
    王力,王可勇,葛文春,等.松辽盆地深层火山岩储层中的CH4包裹体:产状特征及其地质意义[J].岩石学报.2008,24(9):2171-2178.
    王璞珺,侯启军,刘万洙,等.松辽盆地深层火山岩储层岩相特征和天然气的来源[J].世界地质,2007,26(3):319-326.
    王璞珺,高有峰,任延广,等.松辽盆地青山口组橄榄组安岩:40Ar/39Ar年龄、地球化学及其成盆、成烃和成藏意义[J].岩石学报,2009,25(05):1178-1190.
    王清海,徐文良.松辽盆地形成与演化的深部作用过程——中生代火山岩探针[J].吉林大学学报(地球科学版),2003,33(1):37-42.
    王先彬,李春园,陈践发,等.论非生物成因天然气[J].科学通报,1997,42(12):1233-1241.
    王先彬,郭占谦,妥进才,等.中国松辽盆地商业天然气的非生物成因烷烃气体[J].中国科学D辑:地球科学,2009,39(5):602-614.
    王玉净,樊智勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫硅虫的发现及其地质意义[J].古生物学报,1997,36(1):58-69.
    魏志平,张景廉,方乐华,等.松辽盆地天然气成因探讨[J].新疆石油地质,2009.
    徐永昌,刘文汇,沈平等.辽河盆地天然气的形成与演化[J].北京:科学出版社.1993,32-45.
    闫全人,高山林,王宗起,郝杰,肖文交,李继亮.2002.松辽盆地火山岩的同位素年代、地球化学特征及意义[J].地球化学,31(2):169-179.
    杨宝俊,张梅生,王璞珺,等.中国油气区地质地质——地球物理解析[M].北京:科学出版社,2003.
    杨春,刘全有,米敬奎,等.松辽盆地大庆长垣伴生气中二氧化碳成因讨论[J].天然气地球科学,2008.
    杨春,刘全有,周庆华,等.松辽盆地庆深气田天然气成因类型鉴别[J].地球科学(中国地质大学学报).2009,34(5):792-798.
    杨春.松辽盆地深层不同类型天然气成因机理及其成藏贡献[D].浙江大学,2009,1-20.
    杨玉峰,任延广,李景坤,等.松辽盆地汪升地区深层天然气地球化学特征及成因.石油勘探与开发,1999,26(4):18-21.
    杨玉峰,张秋,黄海平,等.松辽盆地徐家围子断陷无机成因天然气及其成藏模式.地学前缘,2000,7(4):523-533.
    叶慧文,张兴洲,周裕文.从蓝片岩及蛇绿岩的特点看满洲里—绥芬河断面岩石圈结构与演化[C].见:中国满洲里——绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京:地震出版社,1994.
    张居和,方伟,李景坤,等.松辽盆地徐家围子断陷深层天然气成因类型及各种成因气贡献[J].地质学报.2009,83(4):579-589.
    张鼐,邢永亮,曾云,等.塔东地区寒武系白云岩的流体包裹体特征及生烃期次研究[J].石油学报.2009,(05):692-697.
    张晓东,杨玉峰,殷进垠,等.松辽盆地昌德气田天然气成因及成藏模式[J].现代地质.2000,14(2):203-208.
    张兴洲,Sklyarov E V中国东北及邻区蓝片岩的构造意义[C].见:长春地质学院地质研究所文集.北京:地震出版社,1992.
    张学军,邹育良,霍秋立.流体包裹体在松辽盆地成藏期次研究中的应用[J].中国石油勘探,2008,(04):50-55.
    张义纲等.天然气的生成聚集和保存[M].南京:河海大学出版社.1991,pp56-58,78-81.
    张永忠,何顺利,甯波,等.大庆兴城地区天然气地球化学特征及成因[J].地质与资源,2007,16(4):288-292.
    章凤奇,陈汉林,董传万,等.升平-兴城气田营城组火山岩储层流体包裹体研究[J].矿物岩石地球化学通报,2006,25(1):92-97.
    章凤奇.松辽盆地北部早白垩世火山事件与地球动力学[D].浙江大学,2007,1-32.
    章凤奇,陈汉林,董传万,等.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨[J].地层学杂志,2008,32(1):15-20.
    邹艳荣,魏志福,蔡玉兰,陶伟,刘金钟.非生物成因气与松辽盆地深层气:综述与思考[J].天然气地球科学,2009,20(5):657-663.
    Abrajano T A, Sturchio N C, Bohlke J K, et al. Methane-hydrogen gas seeps, Zambales ophiolite. Philippines:Deep or shallow origin? [J]. Chemical Geology,1988,71(1/3):211-222.
    Baatartsogt B., Wagner T., Taubald H. et al. Hydrogen isotope determination of fluid inclusion water from hydrothermal fluorite:constraining the effect of the extraction technique[J]. Chem Geol,2007,244(3-4):474-482.
    Baron M., Parnell J., Mark D. et al. Evolution of hydrocarbon migration style in a fractured reservoir deduced from fluid inclusion data, clair field, west of Shetland, uk. Mar Petrol Geol, 2008,25(2):153-172.
    Cramer B, Krooss B M and Littke R. Modelling isotope fractionation during primary cracking of natural gas:a reaction kinetic approach [J]. Chemical Geology.1998,149(3-4):235-250.
    Dai J X, Xia X Y, Qin S F, et al. Origins of partially reversed alkane 13C values for biogenic gases in China. Org Geochem,2004,35:405-411.
    Dai J, Yang S. Chen H and Shen X. Geochemistry and occurrence of inorganic gas accumulations in Chinese sedimentary basins [J]. Organic Geochemistry,2005a,36(12):1664-1688.
    Dai J, Li J, Luo X, et al. Stable carbon isotope compositions and source rock geochemistry of the giant gas accumulations in the Ordos Basin, China [J]. Organic Geochemistry,2005b,36(12): 1617-1635.
    Des Marais D J, Donchin J H, Nehring N L, et al. Molecular carbon isotope evidence for the origin of geothermal hydrocarbon [J]. Nature,1981,292:826-828.
    Fu Q, Sherwood Lollar B, Horita J, Lacrampe-Couloume G and Seyfried Jr. W E. Abiogenic formation of hydrocarbons under hydrothermal conditions:constraints from chemical and isotopic data[J]. Geochim. Cosmochim. Acta,2007,71,1982-1998.
    Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J]. Chemical Geology,1988,71(1-3):77-95.
    Galimov E M. Sources and mechanisms of hydrocarbon gases in sediments[J]. Geochemistry International,1989,26,1-15.
    Horita J, Berndt M E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions[J]. Science,1999,285(5430):1055-1057.
    Hu G X, Ouyang Z Y, et al. Carbon isotopic fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula[J]. Science in China (Series D),1998,41(2):202-207.
    Huang H P, Yang J, Yang Y F, et al. Geochemistry of natural gases in deep strata of the Songliao Basin, NE China. Int J Coal Geol,2004,58:231-244.
    James A T. Correlation of natural gas by use of carbon isotope distribution between hydrocarbon components [J], AAPG,1983,67(7),1176-1191.
    Jenden P D, Hilton D R, Kaplan I R, et al. Abiogenic hydrocarbons and mantle helium in oil and gas fields[A]. In:David G H, ed. The Future of Energy Gases[C], Washington:United State Government Printing Office,1993,31-56.
    Lancet M S, Anders E. Carbon isotope fractionation in the Fischer-Tropsch synthesis and in meteorites [J]. Science,1970,170(3961):980-982.
    Li C Q, Pang Y M, Chen H L, et al. Gas charging history of the Yingcheng Formation igneous reservoir in the Xujiaweizi Rift, Songliao Basin, China[J]. Journal of Geochemical Exploration.2006.89:210-213.
    McCollom T M.Seewald J S.Carbon isotope composition of organic compounds produced by abiotic synthesis under hydrothermal conditions[J]. Earth and Planetary Science Letters, 2006,243(1/2):74-84.
    Schoell M. Genetic characterization of natural gas [J]. AAPG Bulletin,1983,67(12):2225-2238.
    Sherwood Lollar B, Frape S K, Weise S M, et al. Abiogenic methanogenesis in crystalline rocks [J]. Geochim Cosmochim Acta,1993,57:5087-5097.
    Tang Y, Huang Y, Ellis S G, et al. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil [J]. Geochimica et Cosmochimica Acta,2005,69(18):4505-4520.
    Taran Yuri A. George A, Kliger V S. Carbon isotope effects in the open-system Fischer-Tropsch synthesis[J]. Geochimica et Cosmochimica Acta,2007,71:4474-4487.
    Xu Y and Shen P. A study of natural gas origins in China[J]. AAPG Bulletin,1996,80(10): 1604-1614.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700