用户名: 密码: 验证码:
三值光学计算机监控系统之任务管理及其理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光的天然空间巨并行性使光计算机拥有比电子计算机多很多的数据位,目前已建立起一个近千位并行的三值光学计算机实验系统,将来三值光学计算机系统会有更多的数据位数。如此多的数据位不可能总为一个任务所独享。
     另一方面,降值设计理论使三值光学计算机具有一个很好的特性:根据用户需要在光学运算器的不同数据位区段上随时重构出各种运算器。这样三值光学运算器可以作为复合运算器供不同用户同时使用。所以,三值光学计算机能够为多个用户的多个运算请求提供并行计算服务。
     本课题主要研究千位并行硬件可重构三值光学计算机监控系统关于任务管理问题及其理论,设计可行的监控系统结构及其核心功能模块,实现能并行处理多个任务的三值光学计算机监控系统之任务管理雏型。这项研究已经取得的主要成果和创新点有:
     1)建立了三值光学计算机监控系统关于任务管理问题的第一个雏型结构,详细讨论了其核心模块的功能及其通信协议。
     2)提出了一种按比例分配三值光学计算机光学处理器资源的算法,实现了相应的管理程序。
     3)实现了三值光学计算机运算请求的定时调度算法,分析了该调度算法的特点和优缺点。
     4)在RadASM平台上,使用Win32汇编语言实现了三值光学计算机监控系统关于任务管理问题的第一个雏型,并对其进行了一系列的测试,验证了其健壮性、可靠性和正确性。
     本文开辟了三值光学计算机监控系统理论的研究,其研究成果将丰富计算机中关于任务调度和资源分配方面的基础理论。为三值光学计算机早日走向实际应用奠定坚实的理论和技术基础。
The optical computer has much more data bits than the electrical computer because of the natural parallelism of light. Now an experiment system of Ternary Optical Computer (TOC), which has almost one thousand data bits, has been built in Shanghai University. In the future, the TOC will have more and more data bits. It is unreasonable that so many data bits are used by only one task in practice.
     On the other hand, Decrease-Radix Design Principle (DRDP) ensures that the TOC can reconfigure each operating units at different data bit segments of the optical processor (OP) at runtime, according to the users’requirement. Therefore, the OP can be employed as a complex processor, and the TOC can provide parallel computing for many operation requests of different users.
     This dissertation studies task management in the monitor system of the TOC which possesses thousand parallel data bits and one reconfigurable OP. A prototype and some kernel function modules of the monitor system are achieved in the thesis.
     The achievements of this paper can be summarized as follows:
     1) The architecture of TOC monitor system, including some kernel function modules and the communication protocols among them, is proposed.
     2) The time scheduling algorithm is implemented in the monitor system. And the fertures of the algorithm are analyzed in the thesis.
     3) An optical-processor-allocation-in-proportion algorithm is proposed.
     4) A prototype of task management in the TOC monitor system is implemented in Win32 assembly language. And the robustness, reliability and correctness of the monitor system are verified via a series of experiments.
     This paper is the first time to study the TOC monitor system. This study can enrich the basic theories on task scheduling and resource allocation. And the work sets up a theoretical foundation which will put the TOC into practical application as soon as possible.
引文
[1] Xu, G. S., Lu, F. K., Yu, H. S. and Xu, Z. Q. A distributed parallel computing environment for bioinformatics problems[C]. In: Sixth International Conference on Grid and Cooperative Computing. Los Alamitos, CA: IEEE Computer Society, 2007, 593-599
    [2]魏文国,谢桂园.高性能分布计算的数据管理与优化[J].计算机工程, 2008, 34(13): 64-66
    [3]何琨.多任务调度问题的研究与实现[D].博士学位论文.武汉:华中科学技术大学, 2005
    [4]黄金贵.网络并行计算环境中基于多处理机任务的调度研究[D].博士学位论文.长沙:中南大学, 2003
    [5] Song, T. X., Wang, C. and Xiong, J. M. Implementing Distributed Simulation in Grid Computing Environment: Application to Electromagnetic Field[C]. In: 2004 International Symposium on Distributed Computing and Applications to Business, Engineering and Science. Wuhan, China: Hubei Science and Technology Press, 2004, 59-62
    [6] Hayashi, H. eScience meets eBusiness: blueprint for next generation grid computing[C]. In: 25th IEEE International Conference on Distributed Computing Systems. Columbus, OH: IEEE Computer Society, 2005, 529
    [7] Schmidt, M., Fallenbeck, N., Smith, M. and Freisleben, B. Secure Service-Oriented Grid Computing with Public Virtual Worker Nodes[C]. In: 35th Euromicro Conference on Software Engineering and Advanced Applications. Patras: IEEE Computer Society, 2009, 555-562
    [8]中国新研制“天河一号A”取代美国超级电脑世界最快地位http://www.zaobao.com/photoweb/pages2/computer101029.shtml. 2010.10.29
    [9] Landauer, R. Irreversibility and Heat Generation in the Computing Process [J]. IBM J. Res. Dev., 1961, 5: 183
    [10] Fu, L., Luo, J., Xiao, L. and Zeng, X. Experimental realization of discrete Fourier transformation on NMR quantum computer[J]. Appl Magn Reson, 2000, 19(2): 153-159
    [11]吴楠,宋方敏.量子计算与量子计算机[J].计算机科学与探索, 2007, 1(1): 1-16
    [12] DiVincenzo, D. P. Quantum Computation[J]. Science, 1995, 270 (5234): 255-261
    [13] Quantum computer. http://en.wikipedia.org/wiki/Quantum_computer. 2010.3.12
    [14] Adamatzky, A. I. Information-processing capabilities of chemical reaction-diffusion systems. 1. Belousov-Zhabotinsky media in hydrogel matrices and on solid supports[J]. Advanced Materialsfor Optics and Electronics, 1997, 7(5): 263-272
    [15] Kuhnert, L., Agladze, K. I. and Krinsky, V. I. Image processing using light-sensitive chemical waves[J]. Nature, 1989, 337( 6204): 244-247
    [16]许进,李菲. DNA计算机原理、进展及难点( V) :DNA分子的固定技术[J].计算机学报, 2009, 32(12): 2283-2299
    [17] Adleman, L. Molecular computation of solution to combinatorial problems[J]. Science, 1994, 66(11): 1021-1024
    [18] Kari, L., Gloor, G. and Yu, S. Using DNA to solve the Bounded Post Correspondence Problem[J]. Theoretical Computer Science, 2000, 231(2): 192-203
    [19] Lewin, D. I. DNA Computing[J]. Computing in Science & Engineering, 2002, 4(3): 5-8
    [20] Al-Ghoneim, K. and Casasent, D. High-accuracy pipelined iterative-tree optical multiplication[J]. Applied Optics, 1994, 33(8): 1517-1527
    [21] Athale, R. A. Highly redundant number representation for medium accuracy optical computing[J]. Applied Optics, 1986, 25(18): 3122-3127
    [22] Baranoski, E. J. and Casasent, D. P. High-accuracy optical processors: a new performance comparison[J]. Applied Optics, 1989, 28(24): 5351-5357
    [23] Bocker, R. P., Clayton, S. R. and Bromley, K. Electrooptical matrix multiplication using the twos complement arithmetic for improved accuracy[J]. Applied Optics, 1983, 22(13): 2019-2021
    [24] Bocker, R. P., Drake, B. L., Lasher, M. E. and Henderson, T. B. Modified signed-digit addition and subtraction using optical symbolic substitution[J]. Applied Optics, 1986, 25(15): 2456-2457
    [25] Brenner, K.-H. A programmable optical processor based on symbolic substitution[J]. Applied Optics, 1988, 27(9): 1687-1691
    [26] Casasent, D. and Taylor, B. K. Banded-matrix high performance algorithm and architecture[J]. Applied Optics, 1985, 24(10): 1476-1480
    [27] Cherri, A. K. and Alam., M. S. Recoded and nonrecoded trinary signed-digit adders and multipliers with redundant-bit representations[J]. Applied Optics, 1998, 37(20): 4405-4418
    [28] Ellett, S. A., Krile, T. F. and Walkup, J. F. Throughput analysis of digital partitioning with error-correcting codes for optical matrix-vector processors[J]. Applied Optics, 1995, 34(29): 6744-6751
    [29] Ellett, S. A., Walkup, J. F. and Krile, T. F. Error-correction coding for accuracy enhancement inoptical matrix-vector multipliers[J]. Applied Optics, 1992, 31(26): 5642-5653
    [30] Gary, C. K. Matrix-vector multiplication using digital partitioning for more accurate optical computing[J]. Applied Optics, 1992, 31(29): 6205-6211
    [31] Goutzoulis, A. P. Systolic time-integrating acousto-optic binary processor[J]. Applied Optics, 1984, 23(22): 4095-4099
    [32] Heinz, R. A., Artman, J. O. and Lee, S. H. Matrix multiplication by optical methods[J]. Applied Optics, 1970, 9(9): 2161-2168
    [33] Huang, A., Tsunoda, Y., Goodman, J. W. and Ishihara, S. Optical computation using residue arithmetic[J]. Applied Optics, 1979, 18(2): 149-162
    [34] Kawai, S. and Kohga, Y. Modified signed-digit optical processors using computer-generated holograms[J]. Applied Optics, 1992, 31(29): 6193-6199
    [35] Mada, H. Architecture for optical computing using holographic associative memories[J]. Applied Optics, 1985, 24(14): 2063-2066
    [36] Mosca, E. P., Griffin, R. D., Pursel, F. P. and Lee, J. N. Acoustooptical matrix-vector product processor: implementation issues[J]. Applied Optics, 1989, 28(18): 3843-3851
    [37] Ngo, N. Q. and Binh, L. N. Fiber-optic array algebraic processing architectures[J]. Applied Optics, 1995, 34(5): 803-815
    [38] Shen, Z. Y. and Wu, L. L. Reconfigurable optical logic unit with a terahertz optical asymmetric demultiplexer and electro-optic switche unit with a terahertz optical asymmetric demultiplexer and electro-optic switches[J]. Applied Optics, 2008, 47(21): 3737-3742
    [39] Toyohiko, Y. Cellular logic architectures for optical computers[J]. Applied Optics, 1986, 25(10): 1571-1577
    [40] Wang, X. C., Peng, J. J. and Ouyang, S. Control method for the optical components of a dynamically reconfigurable optical platform[J]. Applied Optics, 2011, 50(5): 662-670
    [41] Jin, Y., He, H. C. and L?, Y. T. Ternary optical computer principle[J]. Sci. China Ser. F, 2003, 46(2): 145-150
    [42]金翊.三值光计算机原理和结构[D].博士学位论文.西安:西北工业大学, 2003
    [43]金翊,何华灿,吕养天.三值光计算机基本原理[J].中国科学, E辑, 2003, 33(1): 111-115
    [44] Hossin, A. and Donald, O. F. Optical computing :need and challenge[J]. COMMUNICATIONS OF THE ACM, 2007, 50(9): 60-62
    [45] Caulfield H J, V. C. S., Zavalin A. . Optical Logic Redux[J]. Optik-International Journal for Light and Electron Optics, 2006, 117(5): 199-209
    [46] Caulfield, H. J. Zero-Energy Optical Logic: Can It Be Practical?[C]. In: Proceedings of the 2nd International Workshop on Optical SuperComputing Bertinoro, Italy: Springer-Verlag, 2009, 30-36
    [47] Caulfield, H. J., Soref, R. A., Qian, L., Zavalin, A. and Hardy, J. Generalized optical logic elements- GOLE[J]. Optics Communication, 2007, 271(2): 365-376
    [48] Qian, L. and Caulfield, H. J. What can we do with a linear optical logic gate?[J]. Information Sciences, 2006, 176(22): 3370-3392
    [49] Ambs, P. A short history of optical computing: rise, decline and evolution[C]. In: Ninth International Conference on Correlation Optics. Chernivtsi, Ukraine: SPIE, 2009, 73880H
    [50] Wang, Q., Dong, H. and Zhu, G. All-optical logic OR gate using SOA and delayed interferometer [J]. Optic Communication, 2006, 260(1): 81-86
    [51] Caulfield, H. J., Soref, R. A. and Vikram, C. S. Universal reconfigurable optical logic with silicon-on-insulator resonant structures[J]. Photonics Nanostruct, 2007, 5(1): 14-20
    [52] Wong, W. M. and Blow, K. J. Design and analysis of an all-optical processor for modular arithmetic[J]. Optics Communication, 2006, 265(2): 425-433
    [53] Sakaguchi, J., Nishida, T. and Ueno, Y. 200-Gb/s wavelength conversion using a delayed-interference all-optical semiconductor gate assisted by nonlinear polarization rotation[J]. Optics Communication, 2009, 282(9): 1728-1733
    [54] Sharma, P. and Roy, S. All-optical biomolecular parallel logic gates with bacteriorhodopsin[J]. Ieee Transaction on Nano bioscience, 2004, 3(2): 129-136
    [55] Dong, J., Zhang, X. and Wang, Y. 40 Gbit/s reconfigurable photonic logic gates based on various nonlinearities in single SOA[J]. Electronics Letters, 2007, 43(16): 884-886
    [56] Zhang, J. Y., Wu, J. and Feng, C. F. 40 Gbit/s all-optical logic NOR gate based on nonlinear polarisation rotation in SOA and blue-shifted sideband filtering[J]. Electronics Letters, 2006, 42(21): 1243-1244
    [57] Feng, Y. M., Zhao, X. F. and Wang, L. High-performance all-optical OR/NOR logic gate in a single semiconductor optical amplifier with delay interference filtering[J]. Applied Optics, 2009, 48(14): 2638-2641
    [58] Huang, A. Parallel algorithms for optical digital computers[C]. In: 10th International OpticalComputing Conference. New York: IEEE, 1983, 13-17
    [59] Louri, A. Parallel implementation of optical symbolic substitution logic using shadow-casting and polarization[J]. Applied Optics, 1991, 30(5): 540-548
    [60] Karl-Heinz, B. Programmble optical processor based on Symbolic Substitution[J]. Applied Optics, 1988, 27(9): 1687-1691
    [61] Goodman, S. D. and Rhodes, W. T. Symbolic substitution applications to image processing[J]. Applied Optics, 1988, 27(9): 1708-1714
    [62] Thalmann, R., Pedrini, G. and Weible, K. J. Optical symbolic substitution using diffraction gratings[J]. Applied Optics, 1990, 29(14): 2126-2134
    [63] Imam, T. and Kaykobad, M. A New Symbolic Substitution Based Addition Algorithm[J]. Computers & Mathematics with Applications, 2005, 50(8-9): 1303-1310
    [64]曹明翠,刘夏安,李幼平,游立德,陈绍仔.一种实现二进制加法符号替换规律的光逻辑系统[J].光学学报, 1989, 9(12): 1129-1133
    [65]余飞鸿,洪华,张俊.基于异或逻辑运算的光学单通道符号替换系统[J].光学仪器, 1995, 17(Z1): 80-85
    [66]申铉京,千庆姬,张晓旭.基于符号替换算法的光电混合型计算机的设计[J].光学技术, 2000, 26(1): 62-65
    [67] Minemoto, T., Numata, S. and Miyamoto, K. Optical parallel logic gate using spatial light modulators with the Pockels effect: implementation using three PROM devices[J]. Applied Optics, 1986, 25(6): 948-955
    [68] Iwata, M., Tanida, J. and Ichioka, Y. Database management using optical array logic[J]. Applied Optics, 1993, 32(11): 1987-1995
    [69] Nishimura, N., Awatsuji, Y. and Kubota, T. Analysis and Evaluations of Logical Instructions Called in Parallel Digital Optical Operations Based on Optical Array Logic[J]. Applied Optics, 2003, 42(14): 2532-2545
    [70] Li, G. Q., Liu, L. R., Shao, L. and Wang, Z. J. Negative binary arithmetic algorithms for digital parallel optical computation[J]. Optics Letter, 1994. 19(17): 1337-1339
    [71]钟立晨,张戟,刘薇薇,郭奕理,周炳琨.基于光学数字计算空间振幅编码图形法的光学并行阵列逻辑[J].中国激光, 1991, 18(1): 56-62
    [72]余飞鸿.光学并行阵列逻辑门系统整体结构以及液晶编码脉动进位加法器的优化设计及其实现[J].光子学报, 1995, 24(3): 212-219
    [73]梁艳明,张培晴,关烨锋,李丽,周建英.基于空间光调制器的多层图像的构建与可视化[J].光子学报, 2010, 39(10): 1820-1824
    [74] Charles, B., El, D. V., Craig, P. and BBN. All-Optical Computing and All-Optical Networks are Dead[J]. ACM QUEUE, 2009, 10-11
    [75] Jin, Y., He, H. C. and Ai, L. R. Lane of parallel through carry in ternary optical adder[J]. Sci China SerF-Inf Sci, 2005, 48(1): 107-116
    [76]金翊,何华灿,艾丽蓉.进位直达并行三值光加法器原理[J].中国科学, E辑, 2004, 34(8): 930-938
    [77]孙浩,金翊,严军勇.三值光计算机编码器与解码器原理的实验研究[J].计算机工程与应用, 2004, 40(16): 82-83, 136
    [78]严军勇,金翊,孙浩.三值光计算机多位编码器与解码器的可行性实验研究[J].计算机工程, 2004, 30(14): 175-177
    [79]左开中,金翊,严军勇.三值光计算机的数值表示及其基本算法[J].计算机技术与发展, 2007, 17(9): 8-11
    [80]蔡超,金翊,包九龙等.三值光计算机的对称三进制半加器原理设计[J].计算机工程, 2007, 33(17): 278-279
    [81]尹逊玮,金翊,李军.三值光计算机半加器结构的简化[J].计算机工程与设计, 2008, 29(14): 3773-3775
    [82]蔡超,金翊.对称三进制光学加法器的进位直达通道设计[J].微电子学与计算机, 2007, 24(6): 150-152, 155
    [83]包九龙,金翊,蔡超.三值光计算机百位量级编码器的实现[J].计算机技术与发展, 2007, 17(2): 19-22
    [84]黄伟刚,金翊,艾丽蓉等.三值光计算机百位编码器的设计与构造[J].计算机工程与科学, 2006, 28(4): 139-142
    [85]李军,金翊,尹逊玮. C51单片机在三值光计算机编码器中的应用[J].计算机技术与发展, 2008, 18(9): 180-182, 186
    [86] Zuo, K. Z., Jin, Y. and Xue, T. Tri-state Light Decoder of Ternary Optical Computer [C]. In: The 3rd International Conference on Computer Science & Education. Xiamen: Xiamen University Press, 2008, 442-444
    [87]左开中,金翊,薛涛等.三值光计算机解码模拟器的图像采集系统[J].半导体光电, 2008, 29(6): 135-138
    [88]金翊.三值光计算机高数据宽度的管理策略[J].上海大学学报(自然科学版) 2007, 13(5): 519-523
    [89] Yan, J. Y., Jin, Y. and Zuo, K. Z. Decrease-Radix Design principle for carrying / borrowing free multi-valued calculator and application in Ternary Optical Computer[J]. Sci China Ser F-Inf Sci, 2008, 51(10): 1415-1426
    [90]严军勇.降值设计理论[D].上海:上海大学, 2009
    [91]严军勇,金翊,左开中.无进(借)位运算器的降值设计理论及其在三值光计算机中的应用[J].中国科学E辑:信息科学, 2008, 38(12): 2112-2122
    [92]詹小奇,彭俊杰,金翊,王先超.三值光计算机数据位资源的静态分配策略[J].上海大学学报(自然科学版), 2009, 15(5): 528-533
    [93] Shen, Z. Y., Jin, Y. and Peng, J. J. Experimental system of ternary logic optical computer with reconfigurability[C]. In: 4th International Symposium on Advanced Optical. Chengdu, China: SPIE, 2009, 72823I
    [94]李双凤,金翊.三值光学计算机数据位与运算部件像素的映射技术[J].计算机工程与设计, 2010, 31(5): 1077-1080
    [95] Liu, S. B., Peng, J. J., Jin, Y. and Li, M. The Response Time Measurement System of Optical Computer Component[C]. In: International Conference on Information Engineering and Computer Science. Wuhan, China: IEEE Computer Society, 2009, 1-5
    [96] Li, M., He, H. C. and Jin, Y. A new method for optical vector matrix multiplier[C]. In: International Conference on Electronic Computer Technology. Macau: IEEE Computer Society, 2009, 191-194
    [97] Li, M., He, H. C. and Jin, Y. Principle, Equipment and Experiment of Vector-Matrix Multiplication by Liquid Crystal Array[C]. In: International Conference on Information Management and Engineering. Kuala Lumpur: IEEE Computer Society, 2009, 103-107
    [98]李梅,何华灿,金翊等.一种实现平衡三进制向量矩阵乘法的光学方法[J].计算机应用研究, 2009, 26(10): 3812-3814
    [99]李梅,金翊,何华灿等.基于三值逻辑光学处理器实现向量矩阵乘法[J].计算机应用研究, 2009, 26(8): 2840-2842
    [100] Teng, L., Peng, J. J., Jin, Y. and Li, M. A Cellular Automata Calculation Model based on Ternary Optical Computer[C]. In: 2nd International Conference on High Performance Computing and Applications. Shanghai, China: Springer-Verlag, 2009, 377-383
    [101]王先超,姚云飞,金翊.基于三值光计算机的并行无进位加法[J].计算机科学, 2010, 37(2): 290-293
    [102] Wang, X. C., Peng, J. J., Jin, Y., Li, M., Shen, Z. Y. and Ouyang, S. Vector-Matrix Multiplication Based on a Ternary Optical Computer[C]. In: 2nd International Conference on High Performance Computing and Applications. Shanghai, China: Springer-Verlag, 2009, 426-432
    [103] Wang, X. C., Peng, J. J., Li, M., Shen, Z. Y. and Ouyang, S. Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform[J]. Applied Optics, 2010, 49(12): 2352-2362
    [104] Jin, Y., Shen, Y. F., Peng, J. J., XU, S. Y., Ding, G. T., Yue, D. J. and You, H. H. Principles and construction of MSD adder in ternary optical computer[J]. Sci China Ser F-Inf Sci, 2010, 53(11): 2159-2168
    [105]金翊,沈云付,彭俊杰等.三值光学计算机中MSD加法器的理论和结构[J].中国科学E辑:信息科学, 2010, 38(12): 2112-2122
    [106] El-Rewini, H., Lewis, T. G. and Ali, H. H. Task scheduling in parallel and distributed systems[M]. 1994, New Jersey: Prentice Hall
    [107] Garey, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of NP-Completeness[M]. 1990, San Francisco: W. H. Freeman
    [108] Shahul, A. Z. S. and Sinnen, O. Scheduling task graphs optimally with A*[J]. Journal of Supercomputing, 2010, 51(3): 310-332
    [109]陈华平,林洪,陈国良.并行分布计算中的启发式任务调度[J].计算机研究与发展, 1997, 34(Supp l.): 74-78
    [110] Kwok, Y.-K. and Ahmad, I. Benchmarking the Task Graph Scheduling Algorithms[C]. In: 12th International Parallel Processing Symposium. Orlando, FL: IEEE Computer Society, 1998, 531-537
    [111] Tang, X. Y., Li, K. L., Liao, G. P. and Li, R. F. List scheduling with duplication for heterogeneous computing systems[J]. Journal of Parallel & Distributed Computing, 2010, 70(4): 323-329
    [112]张宏莉,胡铭曾,方滨兴等.群机系统上单并发任务簇的近优分配算法[J].计算机研究与发展, 1999, 36(9): 1076-1079
    [113] Cirou, B. and Jeannot, E. Triplet: A Clustering Scheduling Algorithm for Heterogeneous Systems[C]. In: International Conference on Parallel Processing Workshops. Valencia: IEEE, 2001, 231-236
    [114] Fallenbeck, N., Picht, H.-J., Smith, M. and Freisleben, B. Xen and the Art of Cluster Scheduling[C]. In: Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing. Tampa, FL: IEEE Computer Society, 2006, 4-10
    [115] Gkoutioudi, K. and Karatza, H. D. Task cluster scheduling in a grid system[J]. Simulation Modelling Practice and Theory, 2010, 18(9): 1242-1252
    [116] Bozdag, D., Catalyurek, U. and Ozguner, F. A task duplication based bottom-up scheduling algorithm for heterogeneous environments[C]. In: 20th International Parallel and Distributed Processing Symposium. Rhodes Island, Greece: IEEE Computer Society, 2006,
    [117] Park, C. I. and Choe, T. Y. An optimal scheduling algorithm based on task duplication[J]. IEEE Transactions on Computers, 2002, 51(4): 444-448
    [118] Sinnen, O., To, A. and Kaur, M. Contention-aware scheduling with task duplication[J]. Journal of Parallel & Distributed Computing, 2011, 71(1): 77-86
    [119] Zaki, M. J.,Li, W.,and Parthasarathy, S. Customized Dynamic Load Balancing for NOW[J]. Journal of Parallel and Distributed Computing, 1997, 43(2):156-162
    [120] Bozyigit, M. and Melhi, M. Load balancing framework for distributed system[J]. Computer System Science & Engineering, 1997, 12(5):287-293
    [121] Abdallah, C. T., Alluri, N., Birdwell, J. D,,et al. Linear time delay model for studying load balancing instabilities in parallelcomputations[J]. International Journal of Systems Science, 2003, 34 (10) :563-573
    [122]Chiasson, J.,Tang, Z.,Ghanem, J., et al. The effect of tiem delays on the stability of load balancing algorithms for parallel computations. IEEE Transactions on Control SystemsTechnology, 2005, 13 (6) :932-942
    [123] Tang, Z., Birdwell, J. D., Chiasson, J., et al. Resource-constrained load balancing controller for a parallel database[J]. IEEE Transactions on Control Systems Technology, 2008, 16 (4) :834-840
    [124]李三立,都志辉,马群生等.网络并行超级计算系统THNPSC-1[J].计算机学报,2001,24(6):628-632
    [125]李巧玲,闵联营.一种基于负载平衡的网格调度算法[J].现代计算机(专业版), 2010, 17(10):13-17
    [126] Antonio, F., Emiliano N., and Maria G. S. A Multi-Exchange Neighborhood for Minimum Makespan Parallel Machine Scheduling Problems [J]. Journal of Combinatorial Optimization, 2004, 8: 195-220
    [127] Lee, M. J. Minimum Cost Scheduling of Stored Video in Dynamic Bandwidth Allocation Networks[J]. IEEE Transactions on consumer electronics, 2007, 53(2): 454 - 460
    [128]金翊,王先超,彭俊杰,谌章义,欧阳山.三值光计算机与高性能计算机系统融合的概念结构[J].高性能计算技术, 2010, 1(6): 1-4
    [129]谌章义.千位三值光学处理器理论、结构和实现[D].博士学位论文.上海:上海大学, 2011
    [130] Beeckler, J. S. and Gross, W. J. Particle graphics on reconfigurable hardware[J]. ACM Transactions on Reconfigurable Technology and Systems, 2008, 1(3): 15:11-27
    [131] Curreri, J., Koehler, S., George, A. D., Holland, B. and Garcia, R. Performance Analysis Framework for High-Level Language Applications in Reconfigurable Computing[J]. ACM Transactions on Reconfigurable Technology and Systems, 2010, 3(1): 5:1-23
    [132] Dragomir, O. S., Stefanov, T. and Bertels, K. Optimal Loop Unrolling and Shiftingfor Reconfigurable Architectures[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(4): 25:21-24
    [133] DuBois, D., DuBois, A., Boorman, T., Connor, C. and Poole, S. Sparse matrix-vector multiplication on a reconfigurable supercomputer with application[J]. ACM Transactions on Reconfigurable Technology and Systems, 2010, 3(1): 2:1-31
    [134] El-Araby, E., Gonzalez, I. and El-Ghazawi, T. Exploiting partial runtime reconfiguration for high-performance reconfigurable computing[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 1(4): 21:21-23
    [135] H?bner, M. and Becker, J. Exploiting dynamic and partial reconfiguration for FPGAs-toolflow, architecture, and system integration[C]. In: Proceedings of the 19th SBCCI Symposium on Integrated Circuits and Systems Design. Ouro Preto, MG, Brazil ACM Press, 2006, 1-4
    [136] Huffmire, T., Levin, T., Nguyen, T., Irvine, C., Brotherton, B., Wang, G., Sherwood, T. and Kastner, R. Security primitives for reconfigurable hardware-based systems[J]. ACM Transactions on Reconfigurable Technology and Systems, 2010, 3(2): 10:11-35
    [137] Hymel, R., George, A. D. and Lam, H. Evaluating partial reconfiguration for embedded FPGAapplications[C]. In: Proceedings of the 11th Workshop on High-Performance Embedded Computing. 2007, 1-2
    [138] Jin, Q. W., Thomas, D. B., Luk, W. and Cope, B. Exploring Reconfigurable Architectures for Tree-Based Option Pricing Models[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(4): 21:21-17
    [139] Lu, S.-L. L., Yiannacouras, P., Suh, T., Kassa, R. and Konow, M. A desktop computer with a reconfigurable Pentium[J]. ACM Transactions on Reconfigurable Technology and Systems, 2008, 1(1): 5:1-15
    [140] Luo, J. W. and Jong, C. C. Partially Reconfigurable Matrix Multiplication for Area and Time Efficiency on FPGAs[C]. In: Proceedings of the EUROMICRO Systems on Digital System Design. IEEE Computer Society, 2004, 244-248
    [141] Thomas, D. B. and Luk, W. Multivariate Gaussian random number generation targeting reconfigurable hardware[J]. ACM Transactions on Reconfigurable Technology and Systems, 2008, 1(2): 12:11-29
    [142] Underwood, K. D., Hemmert, K. S. and Ulmer, C. D. From Silicon to Science: The Long Road to Production Reconfigurable Supercomputing[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009,2(4): 26:21-15
    [143] Vassiliadis, N., Theodoridis, G. and Nikolaidis, S. An Application Development Framework for ARISE Reconfigurable Processors[J]. ACM Transactions on Reconfigurable Technology and Systems, 2009, 2(4): 24:21-30
    [144]如何让密码"固若金汤" 12位密码最安全方便.http://news.163.com/10/0824/09/ 6ERH9LHL000146BC.html. 2010.10.10
    [145]龚光华,车惠军.μC/OS优先级调度机制在PowerPC上的优化[J].单片机与嵌入式系统应用, 2010, 10(10): 8-10
    [146]张益嘉,马洪连,丁男.实时多处理器系统的双优先级调度算法[J].计算机工程, 2011, 37(1): 265-267
    [147]Andrew S. T.著,陈向群等译.现代操作系统[M].北京:机械工业出版社,2002.3,44-49
    [148]Andrew S. T. and Albert S. W.著,陈渝,谌卫军译.操作系统设计与实现(第三版)上册[M].北京:电子工业出版社, 2007.3, 66-75
    [149] Waldspurger, C. A., and Weihl, W. E. Lottery scheduling: Flexible proportional-share resourcemanagement[C]. In: Proceeding of First Symposium on Operating System Design and Implement, USENIX, 1994, 93-109
    [150] Yen, H. C. Communicating processes, scheduling, and the complexity of nontermination[J]. Theory of computing systems, 1990, 23(1): 33-59
    [151]罗云彬. Windows环境下32位汇编语言程序设计(第二版)[M].北京:电子工业出版社, 2007.3, 45-84
    [152]杜春雷. ARM体系结构与编程[M].北京:清华大学出版社, 2003.1, 395-447

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700