用户名: 密码: 验证码:
苹果果实病害近红外光谱信息获取与识别模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苹果果实采后病害可分为生理性病害和细菌性病理两大类:生理性病害已有很好的前人研究基础,通过气调、温度调整及其他方法可以有效控制;细菌性病害的无损检测目前除了有少量基于电学参数特性等方法外,相关研究很少,利用近红外光谱进行无损检测还鲜有报道。因此利用近红外光谱的快速、绿色、无损等特性建立苹果病害的检测模型,具有重要理论意义和实用价值。
     本文以苹果果实为研究对象,采后病害识别(轮纹病和炭疽病)为目标、近红外光谱检测为研究手段,在对前人对苹果病害无损检测研究的基础上,分别从近红外光谱信息采集的影响因素、样品选择与模型参数和病害分类识别模型等方面开展研究,并在此基础上研制了基于近红外光谱的苹果病害识别软件系统。本文主要研究成果如下:
     (1)苹果光谱信息采集影响因素研究。对同一样品、同一位置连续9个小时共53次光谱采集证明,ASD公司的Field Spec 3型光谱仪性能稳定;杂散光仅对光谱的可见光部分影响明显,在近红外波段几乎没有影响;果实的不同部位对近红外光谱的影响不同,苹果赤道线上的采样点光谱重复度好,可信度高,而果实顶部和底部的光谱差异较大;在0mm距离下由于光纤探头对照射光源产生了一定的遮挡,光谱差异很大;在2.5mm-12.5mm的距离上,由于裸光纤的视角是25°,对应的采光界面没有超过苹果的最大高度,因此变化不大;超过12.5mm之后由于入射能量的损失,信号能量降低,误差变大;不同货架期的苹果失重率变化明显,由于内部水分的流失,所采集的近红外光谱差异显著;果实的不同色差在赤道面上的近红外光谱的近红外波段差异不明显而对可见光波段差异明显,因此在实际的近红外检测中可以忽略果实的表面颜色差异。
     (2)样品选择和建模参数研究。以相关度最好的糖度为研究对象,通过实验证明通过剔除异常样品可以大幅提高模型的精度;通过对比分析不同光谱预处理方法、不同平滑点数、不同交互验证因子数和不同建模波段对苹果糖度PLS定量预测模型预测精度的影响,得到最佳预处理方法是SNV和MSC,最佳平滑点数为3,交互验证时最佳因子数为3,建模波段的选择为整个近红外区。
     (3)苹果病害识别模型研究。以苹果果实轮纹病和炭疽病为实验对象,使用PCA定性分析模型可以将健康苹果和病害苹果分开,但是两种病害之间互相识别率低。利用主成分分析法将得分矩阵的前3个主成分作为输入参数,使用KNN最近邻域法、BP神经网路分类算法,将这两种病害之间的识别率提高到85%和90%。
     (4)实现了基于近红外光谱的苹果病害识别软件系统。
Post harvest fruit diseases can be divided into a living bacterial diseases and physiological reason two categories: physiological diseases have a very good basis of previous studies, through the atmosphere, temperature and other methods can be effectively transferred control; bacterial disease of non-destructive evaluation With the exception of a small amount of electrical parameters based on characteristics of methods, very few studies, using near infrared spectroscopy for nondestructive evaluation has rarely been reported. Therefore, using fast near infrared spectroscopy, green, and other characteristics of non-destructive test to establish disease models Apple has important theoretical and practical value.
     Taking Apple fruit as the research object to post harvest diseases (ring rot and anthracnose) and near infrared spectroscopy to study the means, in the previous study on apple diseases on the basis of non-destructive evaluation were collected from the near-infrared spectral information Factors, sample selection and classification model parameters and model of disease areas such as research and development on this basis, near infrared spectroscopy-based disease identification software system Apple. In this paper, results are as follows:
     (1) Apple spectral factors of information acquisition. The same sample, the same location a total of 9 hours straight 53 proof of spectral acquisition, ASD's Field Spec 3 Spectrometer performance and stability; stray light only visible part of the spectrum showed that the effect in the near infrared band almost no effect; fruits of different Parts of the near infrared spectra of different samples Apple equator line spectral repeatability is good, reliability, and the pedicel and fruit quite different spectrum E; 0mm distance in the fiber optic probe of the radiation sources as generated A certain block, spectrum very different; in a distance of 2.5mm-12.5mm, the perspective of the bare fiber is 25°, corresponding to the lighting interface, Apple did not exceed the maximum height, so little change; more than 12.5mm After the incident Energy loss, the signal energy is reduced, the error becomes larger; different weight loss shelf life of apple changed significantly, due to internal water loss, the acquisition significantly different near-infrared spectroscopy; fruit of different color in the equatorial plane near infrared spectroscopy No significant difference between the near infrared and visible bands of significant differences, the actual detection of near-infrared surface color of the fruit can be ignored.
     (2) Sample selection and modeling parameters: with the best sugar content of the relevant degree of proof for the study sample by removing the anomalies can significantly improve the accuracy of the model; comparative analysis of the different spectral pretreatment methods, different smooth points, the number of different factors and different cross validation PLS modeling band Sugar Apple predicted quantitative prediction accuracy. Concluded that the best pretreatment method for the SNV and MSC; optimal smoothing of 3 points; interaction factor authentication is the best number is 3; modeling the choice of band for the entire near infrared region.
     (3) Building the identify model of Apple's disease. Taking the apple ring rot and anthracnose fruit as experimental subjects, the qualitative analysis PCA model can be controlled separately from health apples and infected apple, but low recognition rate among the two diseases. Using principal component analysis, the PCA principal component as an input parameter, use the nearest neighbor KNN, BP neural network classification algorithm, and the identification between these two diseases was increased to 85% and 90%.
     (4) To achieve near-infrared spectra based on Apple's disease identification, a software system was developed.
引文
1.陈斌,邹贤勇,朱文静,PCA结合马氏距离法提出近红外异常样品.江苏大学学报(自然科学版)2008,29(4):278-281.
    2.崔婷,中国苹果产业国际竞争力研究[硕士学位论文].陕西:西北农林科技大学,2008.
    3.窦英,人工神经网络-近红外光谱法用于药物无损非破坏定量分析的研究[博士学位论文].长春:吉林大学,2006.
    4.段焰青,样品粒度和光谱分辨率对烟草烟碱NIR预测模型的影响.云南大学学报(自然科学版)2006,28(4):340-344.
    5.段焰青等,影响烟草近红外光谱分析结果准确性的因素.光谱实验室,2007,24(7):705-710.
    6.范国强,闸建文,用用近红外漫反射技术检测苹果内部品质.农业装备与车辆工程,2006,(11):33-35.
    7.付兴虎,苹果含糖量近红外检测系统的研究[博士学位论文].秦皇岛:燕山大学,2007.
    8.傅霞萍,水果内部品质可见/近红外光谱无损检测方法的实验研究[博士学位论文].浙江:浙江大学,2008.
    9.方中达,植病研究方法(第三版)[专著].北京:中国农业出版社,1998:179-185.
    10.郭文川,朱新华,郭康权,果品内在品质无损检测技术的研究进展.农业工程学报,2001,17(5):1-5.
    11.巩文峰,苹果采后病害桔抗酵母菌的分析、筛选及其防治研究[硕士学位论文].陕西:西北农林科技大学,2007.
    12.高荣强,现代近红外光谱仪器定标和模型传递[硕士学位论文].天津:天津大学,2003.
    13.古瑜,贾占温等,植物抗病机制研究。天津农业科学,2008,14(4):45-48.
    14.侯明生,黄俊斌,农业植物病理学[专著].北京:科学出版社,2003:298-364.
    15.黄安民,费本华,表面粗糙度对近红外光谱分析木材密度的影响.光谱学与光谱分析,2007,27(9):1700-1702.
    16.韩东海,刘新鑫,鲁超等,苹果内部褐变的光学无损伤检测研究.农业机械学报,2006(6):86-90.
    17.胡心中,近红外谷物品质分析仪工作稳定性研究.粮食与饲料工业,2001,(6):46-48.
    18.蒋焕宇,彭永石,谢丽娟,应义斌,扫描次数对番茄叶漫反射光谱和模型精度的影响研究.光谱学与光谱分析,2008,28(8):1763-1766.
    19.蒋焕宇,谢丽娟,彭永石,应义斌,湿度对叶片近红外光谱的影响.光谱学与光谱分析,2008,28(7):1510-1513.
    20.江晶,苹果炭疽菌分子鉴定和检测及其致病性分子变异初步研究[硕士学位论文].浙江:浙江大学,2008.
    21.柯大观,基于介电特性的苹果无损检测系统研究[硕士学位论文].浙江:浙江工业大学,2002.
    22.柯以侃,董慧茹,分析化学手册[专著].北京:化学工业出版社,1998:866-1116.
    23.李宝聚,周长力等,黄瓜黑星病菌致病机理的研究-细胞壁降解酶及其在致病中的作用.植物病理学报,2000,31(1):63-70.
    24.李宝聚,周长力等,黄瓜黑星病菌致病机理的研究-细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用.植物病理学报,2000,30(1):13-20
    25.罗长兵,陈立伟,严衍路等,小麦PLS近红外定量分析中温度修正的研究.光谱学与光谱分析,2007,27(10):1993-1996.
    26.李东华,南果梨内在品质近红外光谱无损检测技术研究[博士学位论文].沈阳:沈阳农业大学,2009.
    27.刘峰,河北省苹果产业发展研究[硕士学位论文].河北:河北农业大学,2010.
    28.李桂峰,苹果果肉褐变机理和近红外无损检测技术研究[博士学位论文].陕西:西北农林科技大学,2008.
    29.陆辉山,水果内部品质可见/近红外光谱试无损检测关键技术研究[博士学位论文].浙江:浙江大学,2006.
    30.刘辉军,李文军,吕进等,近红外光谱柑橘货架期的快速鉴别模型-基于主成分分析神经网络.农机化研究,2009,5:174-181.
    31.刘婧,中国苹果产业国际竞争力研究[硕士学位论文].陕西:西北农林科技大学,2009.
    32.李军会,秦西云,张文娟等.局部偏最小二乘回归建模参数对近红外检测结果的影响研究.光谱学与光谱分析,2007,27(2):262-264.
    33.刘建学,使用近红外光谱分析技术[专著].北京:科学出版社,2008:27-56.
    34.刘莉,黄岚,严衍路等.近红外漫反射光谱中散射对化学定量分析模型的影响.光谱学与光谱分析,2008,28(10):2290-2295.
    35.刘立波,基于图像的水稻叶部病害诊断技术研究[博士学位论文].北京:中国农业科学院研究生院,2009.
    36.李民赞,光谱分析技术及其应用[专著].北京:科学出版社,2006:112-162.
    37.李鹏飞,王加华,草南宁,韩东海,BiPLS结合GA优选可见/近红外光谱MLR变量.光谱学与光谱分析,2009,29(10):3637-3641.
    38.陆婉珍,袁洪福等,现代近红外光谱分析技术[专著].北京:中国石化出版社,2000:35-86.
    39.刘燕德,水果糖度和酸度的近红外光谱无算检测研究[博士学位论文].浙江:浙江大学,2006.
    40.林月莉,陕西省苹果轮纹病菌的致病性分化及其对果实的侵染过程研究[硕士学位论文].陕西:西北农林科技大学,2010.
    41.刘新鑫,苹果水心病及褐变光学无损伤检测研究[硕士学位论文].北京:中国农业大学,2004.
    42.李勇,影响近红外光谱分析记过准确性的因素.核农学报,2005,19(3):236-240.
    43.李振,陕西苹果产业发展的制约因素与对策研究[硕士学位论文].陕西:西北农林科技大学,2010.
    44.刘志,苹果抗轮纹病病种资源和基因筛选以及NO介质的防御响应[硕士学位论文].山东:山东农业大学,2009.
    45.李宗儒,基于图像分析的苹果病害识别技术研究[硕士学位论文].陕西:西北农林科技大学,2010.
    46.马本学,基于图像处理和光谱分析技术的水果品质快速无损检测方法研究[博士学位论文].浙江:浙江大学,2009.
    47.马海军,用电学参数标志苹果采后病害和机械损伤[博士学位论文].陕西:西北农林科技大学,2010.
    48.闵顺耕,李宁,张明祥,近红外光谱分析中异常值的判别与定量模型优化.光谱学与光谱分析,2004,24(10):1205-1209.
    49.秦冲,陈雯雯等,近红外光谱分析中建模校正集的选择.光谱学与光谱分析,2009,29(10):2661-2664.
    50.秦西云,李军会等,国产光栅近红外光谱仪扫描条件对检测结果的影响.光谱学与光谱分析,2007,27,(2):411-413.
    51.束怀瑞,苹果学[专著].北京:中国农业出版社,1999:588-612.
    52.史永刚,粟斌,田高友等,化学计量学方法及MATLAB实现[专著].北京:中国石化出版社,2000:216-232.
    53.檀根甲,采后苹果与炭疽菌的相互作用及病害控制机理研究[博士学位论文].安徽:安徽农业大学,2009.
    54.田海清,西瓜品质可见/进红外光谱无损检测技术研究[博士学位论文].浙江:浙江大学,2006.
    55.王春生,李建华,赵猛等,苹果在不同货架条件下的胜利及品质变化.山西农业科学,1997,25(1):76-79.
    56.吴芳芳,苹果采后炭疽病的病理生理学及病害控制的研究[硕士学位论文].安徽:安徽农业大学,2002.
    57.温孚凯,出口苹果和梨贮藏期病害控制技术研究[硕士学位论文].山东:山东农业大学,2007.
    58.旺景彦,国内外苹果产销现状、发展趋势与今后对策.山西果树,1997(1):3-6.
    59.王金友,冯明祥,新编苹果病虫害防治技术[专著].北京:金盾出版社,2009:90-92.
    60.王素芳,陕西苹果炭疽病病院及采后发病规律初探[硕士学位论文].陕西:西北农林科技大学,2009.
    61.王一兵,王宏宇等,近红外光谱分辨率对定量分析的影响.分析化学研究简报,2006,5:699-701.
    62.王艳斌,人工神经网络在近红外分析方法中的应用及深色油品的分析[博士学位论文].北京:石油化工科学研究院,2000.
    63.王文真,在近红外光谱定量分析中应注意的几个问题.现代科学仪器,1996(7):24-36.
    64.王宣,陕西省运城市苹果产业发展对策研究[硕士学位论文].北京:北京林业大学,2007.
    65.夏俊芳,基于近红外光谱的贮藏脐橙品质无算检测方法研究[硕士学位论文].武汉:华中农业大学,2007.
    66.徐立,陕西苹果产业竞争力评价研究[硕士学位论文].陕西:西北农林科技大学,2010.
    67.谢丽娟,刘东红等,分辨率对近红外光谱和定两份洗的影响研究.光谱学与光谱分析,2007,27(8):1489-1492.
    68.袁方,王汉生,社会研究方法教程[专著].北京:北京大学出版社,2004:112-155.
    69.于海燕,应义斌,刘燕德,农产品品质近红外光谱分析结果影响因素研究综述.农业工程学报,2005,21(11):160-163.
    70.于欣,陕西苹果产业竞争力分析[硕士学位论文].陕西:西北农林科技大学,2010.
    71.严衍路,傅里叶变换近红外漫反射光谱分析仪器参数的确定.北京农业大学学报,1990,16:67-72.
    72.中本一雄,无机和配位化合物的红外和拉曼光谱[专著].北京:化学工业出版社,1986:8-47.
    73.张帆,1_MCP处理对采后富士苹果灰霉病和炭疽病的影响[硕士学位论文]:陕西:西北农林科技大学,2008.
    74.张录达,赵丽丽,严衍路,MAXR回归法在近红外光谱定量分析及最有波长选择中的应用研究.光谱学与光谱分析,2005,25(8):1227-1229.
    75.赵丽丽等,傅里叶变换近红外光谱仪扫描条件对数学模型预测精度的影响.光谱学与光谱分析,2004,24(1):41-44.
    76.祝诗平,近红外光谱品质检测方法研究[博士学位论文].北京:中国农业大学,2003.
    77.祝诗平,基于PCA与GA的近红外光谱建模样品选择方法.农业工程学报,2009,24(9):126-130.
    78.祝诗平,王刚,粉末样品颗粒大小对花椒挥发油近红外光谱定量预测的影响研究.光谱学与光谱分析,200828(4):775-779.
    79.朱晓峰,主成分分析与因子分子在体育科研中的应用研究[硕士学位论文].安徽:安徽师范大学,2006.
    80.褚小丽,袁洪福,陆婉珍,近红外分析中光谱预处理及波长选择方法与应用.化学进展,2004,16(4):528-556.
    81.周莹,傅霞萍,应义斌,湿度对近红外光谱检测的影响.光谱学与光谱分析,2007,27(11):2197-2199.
    82.张云贵,刘祥云,李天俊,生物化学实验指导[专著].天津:天津科学技术出版社,2005:8-15.
    83.郑永梅,小麦近红外特征波长提取及蛋白质含量测定.激光与红外,2003,33(2):125-128.
    84.赵艺泽,采后热处理对苹果贮藏品质的影响以及贮期主要病害的控制[硕士学位论文].南京:南京农业大学,2005.
    85. Abrams S M, shenk J S, Westerhaus M O et al. Determination of forage quality by near infrared reflectance spectroscopy:Efficacy of broadbaesd calibration equations.J Dairy Sci,1987,70:806-813.Ben-Dor E, Banin A. Near-infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Sci Soc Am J,1995,59:364-372.
    86. Alsberg,B.K.,Woodward,A.M.,Winson,M.K.,Wavelet denoissing of infrared spectra.Analyst,1997,122:645-652.
    87. Arnalda T, Mcelhinney J,Fearn T et al. A hierarchical discriminant analysisi for species indentification in raw meat by visible and near infrared spectroscopy.Near Infrared Spectroscopy,2004,12:183-188.
    88. Anguita,D.,Parodi,G.R.1993,Zunino Speed improvement of the Back-Propagation on current-Generation workstations WCNN.July 11-15 Portland,USA,165-168.
    89. Baker, D.Norris, Karl, H.,Norris Near-infrared reflectance measurement of total sugar contentof breakfast cereals.Applied Spectroscopy,1985,39(4): 618-621.
    90. Barclay,V.J.,Bonner,R.F.,Application of wavelet transforms to experimental spectral:smoothing,denoising,and data set compression.Anal.,Chem.1997,69:78-90.
    91. Ben-Gera I,Norris K H. Determination of moisture in soybeans by direct spectrophostometry.Israel Journal of Agricultural Research,1968,18:125-132.
    92. Blanco,M.,Coello,J.,Iturriaga,H.,et al. NIR calibratin in non-linear systems:different PLS approaches at artificial neural networks.Chemometrics and Intelligent Laboratory System,2000,50:75-82.
    93. Blosser T H,Reeves III J B, Bond J. Factors affecting analysis of the chemical composition of tall fescue with near infrared reflectance spectroscopy.J Dairy Sci,1988,71:398-408
    94. Brown W F, Moore J E, Kunkle W E et al. Forage testing using infrared reflectance spectroscopy . J Anim Sci,1990,68:1416-1427.
    95. Campbell M R, Brumm TJ, Glover D V . Whole grain anulose analysisi in maize using near infrared transmittance spectroscopy. Cereal Chemistry,1997,74 (3):300-303.
    96. Che Man Y B ,Moh H M,van de Voort F R.. Determination of free fatty acids in palm oil by near-infrared reflectance spectroscopy[C].JAOCS,1998,75 (5):557-562.
    97. Ciurczak E W. Use of near infrared spectroscopy in cereal products. Food testing and Analysis,1995,5:35-39.
    98. Cozzolino D, Kwiatkowski M J, Parker M et al. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy. Analytica Chimica Acta,2004,513:73-80.
    99. Dalal R C, Henry R J.Simulltanous determination of moisture, organic canbon, and total nitrogen by near infrated reflectance spectrophotometry. Soil Sci Soc An J,1986,50:120-123.
    100. Danile Cozzolino, Heather Eunice Smyth, Mark Gishen. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J Agric Food Chem,2003,51:7703-7708.
    101. Ding,Q.,Boyd,B.L.,Small,G.W.Applied Spectrosc.,2000,54:1047-1054.
    102. Dull G G,Leffler R G ,Birth G S et al. Instrument for nondestructive measurement of soluble solid in honeydew melons. Trans of the ASAE,1992,35(2):735-737.
    103. Dull G,Birth G S, Smittle D A ,et al. Near infrared analysis of soluble solids in intact cantaloupe.Journal of Food Science,1989,54(2):393-395.
    104. Fales S,Cummins D G. Reducing moisture-induced error associated with measuring forage quality using near infrared reflectance. Agron J,1982,74:585-588.
    105. Frant M S,Labutti G. Process infrared measurements. Analytical Chemistry, 1980.52(12):1331A-1335A.
    106. Gabriele R. Near-infrared spectroscopy and imaging :Basic principles and pharmaceutical applications. Advanced Drug Delivery Reviews,2005,57, 1109-1143.
    107. Geladi,P.,MacDougall,D.,Martens,H..Linearizatin and scatter-correctin for near-infraredreflectance spectra of mear.Applied Spectroscopy,1985, 39(4):618-621.
    108. Gomez Antihus , Hemndez, He Yong, Garcia Pereira Annia. Non-Destructive mesaurementg of acidity, soluble solides and firmness of Satsuma mandarin using VIS/NIR-spectroscopy techniques.Jornal of Food Engineering,2006,77(2):313-319.
    109. Golebiowski T. Near infrared reflectance spectroscopy of oil in intact canola seed (Brasserca napusL.). I.Attributes of the intact seed spectrum. Near Infrared spectroscopy,2004,12:325-330.
    110. Han Donghai, Tu Runlin, Lu Chao, et al. Nondestructive detection of brown core in the Chinese pear’Yali’by transmission visible-NIR Spectroscopy Food Control ,2006,17:604-608.
    111. Hannibal,H.Madde.. Comments on the Savitzky-Golay convolution method for least-quares-fit smoothing and differentiation of dagital data,Analytical Chemistry,1978,50(9):1383-1386.
    112. H. B. Ding, R.J. Xu. Near infrared spectroscopy technique for detection of beef hamburger adulteration.Journal of agricultural and food chemistry, 2000,48:2193-2198.
    113. J. Moros, S. Armenta, S. Garrigues, et al. Quality control of Metamitron in agrochemicals using Fourier transform infrared spectroscopy in the middle and near range. Analytica Chimica Acta,2006,(565):255-260.
    114. Jouan,R.D.,Walczak,B.,Poppi,R.J.,DeNOE,Massart,D.L.,1997.Anal,Chem.,69(21):4317-4323.
    115. Kawano S. Present condition of nondestructive quality evaluation of fruits and vegetables inJapan.JARQ,1992,28:212-216.
    116. Lafrance D, Lands L C ,Bums D H. Measurement of lactate in whole human flood with near-infrared transmission spectroscopy, Talanta,2003,60(4):635-651.
    117. LammeRtyn,J.B.,Nicolai,K.Ooms,et al.Nondestructive measurement of acidity soluble solids and firmness of Jonagold apples using Nir-spectroscopy Trans.of the ASAE,1998,41(4):1089-1094.
    118. L. S. Mendes, F. C. C. Oliveira, P. A. Z. Suarez, et al. Determination of ethanol in fuel ethanol and beverages by Fourier transform(FT)-near infrared and FT-Raman spectrometries.Analytica Chimica Acta,2003(493): 219-231.
    119. Lu R.Predicting firmness and sugar content of sweet cherries using near infrared diffuse reflectance spectroscope.Trans.of the ASAE,2001,44(5):1265-1271.
    120. Liu Fei,He Yong, Wang Li.Determination of effective wavelengths for discrimination of fruit vinegars using NIR Spctroscopy and multivariate analysis. Analytica Chimica Acta,2008,615:10-17.
    121. Liu Yande, Ying Yibin.Use of FT-NIR spectrometry in non-invasive measurements of internal quality of‘Fuji’apples .PostHarvest Biology and Technology,2005,37:65-71.
    122. Liu Yande, Ying Yibin, Fu Xiaping, et at. Experiments on predicting sugar content in apples by FT_NIR Technique. Journal of Food Engineering,2007 80:986-989.
    123. Liu Yande, Chen Xingmiao, Ouyang Aiguo.Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry.LWT-Food Science and Technology , 2008,41:1720-1725.
    124. Mahayohtee B,Muhlbauer W, Neidhart S, Leitenberger M, Carle R. Nondestructive determination of maturity of Thai mangoes by near-infrared spectroscopy. Acta Horiticulturae, 2004,645:581-588.
    125. Masahiro,I.,Non-destructive sugar content measuring apparatus,United States Patent,US 5708271A,Jan.13,1998.
    126. McGlone V. Andrew, Jordan Robert B,Seelye Richard,Martinsen Paul J.Comparing density and NIR methods for measurement of Kiwifruit dry matter and soluble solids content Postharvest Biology and Technology,2002a,26 191-198.
    127. McGlone V.Andrew,Jordan Robert B,Martinsen Paul J.Vis/Nir estimatin at harvest of prestorage and poststorage quality indices for‘Royal Gala’apple .Postharvest Biology and Technology ,2002b.,25:135-144
    128. Mclntosh L M, Jackson M, Mantsch H H, et al.Near-infrared spectroscopy for dermatological applications Vibrational Spctroscopy,2002,28(1):53-58.
    129. Miller,B.K.,Delwiche,M.J.. Spectral analysis of peach surface defects,Trans of the ASAE,1991,34(6):2509-2515.
    130. Moons A,Prinsen E,Bauw G.Antagonistic effects of abscisic acid and jasmonates on saltstress-inducible transcripts in rice roots .The Plant Cell,1997,9:677-685.
    131. Norris K H, Butler W L. Techniques for obtaining absorbance spectra on intact biological samples .IRE Transactions on Bio-Medical Electronics, 1961,8:153-157.
    132. Norris K H. History ,present status, future prospects for NIRS .In:Creaser CS,Davies A M C. Analytical applications of spectroscopy.Royal Society of Chemistry,London,UK,1988.
    133. Norris K H, Williams P C. Optimization of mathematical treatment of rea near infrared signal in the measurement of protein in hard red spring wheat. I. Influence of particle size.Cereal Chemitry,1984,64,61(2):158-165.
    134. Osborne B G. Near infrared spectroscopy in food analysis . Harlow,UK:Longman Scientific & Technical,1986.
    135. Paulo,H.F.,Ronei,J.P.,De Andrade,J.C.. Determination application of organic matter in soils using radial basis functino networks and near infrared spectroscopy.Analytical Chimica Acta,2002,453:125-134.
    136. Peter,A.G.Generalleast-squares smoothing and differentiation by the convolution method.Analytical Chemistry,1990,62(6):570-573.
    137. Richard ,M.O. . Appartus and method for measuring and correlating characteristics of fruit with visible/near infrared spectun,United States Patent,US6512577B1,2003,Jan.28.
    138. Schare,P.N.,Fraser,D.G...Comparision of reflectance ,interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit.Postharvest Biology and Technology,2000,Vol,2(20):175-184.
    139. Schmilovitch Z, Mizrach A,hoffman A,Haim E H, Fuchs Y. Determination of mango physiological indices by near-infrared spectrometry. Postharvest Biology andTechnology,2000,19(3):245-252.
    140. Small,G,Amold,M.A.,Marquardt,L.A..Anal.Chem.,1993,65:3279-3289.
    141. Slaughter D C. Nondestructive determination of internal quality in peaches and nectarines.Trans of the ASAE,1995,38(2):617-623.
    142. Sohn M R, Rae K C.Possibility of nondestructive evaluation of pectin in apple fruit using near-infrared reflectance spectroscopy.J Korean Soc Hort Sci,2000,41:65-70.
    143. Steinier,J.Termonia,Y.Deltour,J.,Smoothing and differentaition ofdata by simplified least square procedureAnalytical Chemistry,1972,44(11): 1906-1909.
    144. Svante,V.,Johan,T.,Anders,B.,et al.2001.Some recent developments in PLS modeling,Chemometrics and Intelligent Laboratory Systems,2001,58:131-150.
    145. Thomas E V, Ge N. Development of robust multivariate calibration models.Technometrics,2000,42:168-177.
    146. Tomas,Isaksson,Burce,Kowalski,.Piece-wise multiplicative scatter correction applied to near-infrared diffuse transmittance data from meat products.Applied Spectroscopy,1993,47(6):702.
    147. Walczak,B.,Bouveresse,E.Massart,D.L..Standardization of near-infrared spectra in the wavelet domain.Chemometrics and Intelligent Laboratory Systems,1997,36(1):41-51.
    148. Willams P C ,Norris K H,Sobering D C.Determination of protein and moisture in wheat and barley by NIR transmission . J Agric Food Chem,1985,(33) 239-244.
    149. Zude M,Bernd H,RogerJ M,Bellon-MaurelV, Landahl S.Non destructive tests on prediction of apple fruit flesh firmness and soluble content on tree and shelf-life.J Food Eng,2006,77:254-360.
    150. Zhu Bin,JIang Lu,Luo Yaguang,et al. Gabor feature-based apple quality inspection using kernel principal component analysisi.Journal of Food Engineering,2007,81(1):741-749.
    151. Zou XiaoBo,Zhao Jiewen,Li Yanxiao.Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of‘Fuji’apple based on BiPLS and FiPLS models.Vibrational spectroscopy,2007a,44:220-227.
    152. Zhu Dazhou, Ji Baoping, Meng Chaoying, et al. The performance of v-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy .Analytica Chimica Acta ,2007,598:227-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700