1. [地质云]滑坡
磷酸盐/酵母蛋白纳米复合材料的催化合成及其机理和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过微生物发酵原理、细胞结构学和生物矿化原理多学科交叉,提出以天然营养型酵母活体细胞为模板反应器,用人体所需或能够代谢的磷酸盐来复制生物分子本身特有的复杂纳米结构新合成思路。合成了系列复杂形貌的磷酸盐纳米复合材料,并对其合成机理、结构组成和性能进行了系统的研究。
     以酵母细胞为催化模板,合成了CHA/酵母蛋白纳米复合材料,利用正交实验法对合成条件进行优化研究和放大实验,采用现代测试技术对合成材料的结构组成和性能进行了综合测试分析。结果表明:合成材料的结构组成重复性好,可实现批量合成,且反应条件温和,工艺简单,无污染,易产业化。在酵母细胞的生理环境中,能快速形成低结晶度碳酸羟基磷灰石(CHA)纳米颗粒,其晶胞参数α=9.4924?,c=6.9092 ?。与直接沉淀法合成的纳米HA(α=9.2329?,c=6.7707 ?)对比,纳米CHA的晶格结构产生了明显的膨胀畸变现象,富钙层钙原子和填隙CO32-基团在CHA颗粒表面和晶界上偏析聚集,形成呈正电性的亚稳态富钙层。CHA纳米颗粒在酵母蛋白的网状结构中均匀分布,并对酵母细胞中的复杂纳米结构进行了复制。
     CHA/酵母蛋白纳米复合材料由于其特殊的颗粒间隙孔结构和纳米复合结构及CHA的晶格结构膨胀畸变现象,表现出独特的荧光增强效应,对大鼠骨髓基质干细胞、洋葱细胞、面包酵母、鲁氏酵母和米曲霉菌细胞都有一定的荧光转染性能。体外细胞和溶血实验结果表明, L929细胞可以在其表面上很好地黏附增殖,无细胞毒性,无溶血作用。且对难溶药物的负载缓释效果明显,阿莫西林难溶药物的装载量可达112.16 mg/g,药物主要包埋负载在孔结构中,释放速率均匀,没有突释现象,6天释放出总载药量的55 %左右,缓释性能优良,其释药动力学行为属于费克扩散控制型,主要受扩散和降解两种机理控制。多孔结构和残留的各种蛋白酶的催化作用,提高了其可降解性能,因此,CHA/酵母蛋白纳米复合材料,是一种可降解的纳米生物活性材料。并具有特有的疏水亲水两亲性(接触角θ=120°)和左旋光性能(比旋光度为-23°)。同时,酵母蛋白中含有17种人体所需氨基酸(75mg/g),是补充优质完全蛋白质和钙的多功能材料,并有望成为一种新型的荧光标识材料。
     以酵母细胞为催化模板,分别合成了其他磷酸盐(锌、铁和镁)/酵母蛋白纳米复合材料,并在不同温度热处理2h,合成了不同含碳量的磷酸盐(钙、锌、铁和镁)/活性碳纳米复合材料。结果表明,四水磷酸锌晶粒和富镁型白磷镁石晶粒都沿(020)晶面方向择优生长,而无定形磷酸铁(核)则与球蛋白自组装成具有核壳结构的纳米颗粒。磷酸锌和磷酸镁/酵母蛋白纳米复合材料在不同激发波长下都能够发射不同颜色的荧光,并对洋葱细胞、鲁氏酵母、米曲霉菌和大肠杆菌细胞都有一定的荧光转染性能,也有望成为一种新型的荧光标识材料。不同的磷酸盐/活性碳纳米复合材料都具有优异的氧还原电催化活性,且远高于已经商业化的MnO2催化剂。并从孔结构、原位复合活性碳和晶格结构三个方面解释了不同温度合成样品的氧还原电催化活性的差异,这些材料可作为氧电极催化剂材料应用于生物传感器、金属空气电池、燃料电池等研究中
     合成机理研究表明:不同金属离子在酵母细胞内的吸附对蛋白质结构组成的影响不同,其氨基酸总含量Mg>Ca>Fe>Zn,对蛋白质结构规整度的影响Ca>Fe>Mg>Zn。在酵母细胞基因调控下,不同的金属离子吸附络合在不同的蛋白质分子上,并沿着其特定方向按照层生长理论择优生长,超分子自组装形成具有不同形貌的磷酸盐/酵母蛋白纳米复合材料,但都具有颗粒间隙孔结构,其孔径分布范围Fe(2~60nm)>Ca(2~40nm)>Mg(2~24nm)>Zn(2~12nm),并且异相快速成核位点都是酵母细胞代谢网络中螺旋沟槽上有序排列的极性亲水基团。酵母细胞的生物矿化过程都包括离子吸附、传输、沉积矿化和超分子自组装四个阶段,并分为酵母细胞壁上的生物诱导矿化和细胞内的生物控制生长。
By means of the multi-crossed disciplines among the principle of microbial fermentation, cytoarchitectonics and the principle of biomineralization, this paper presented a novel synthetic method which its own peculiar multilevel nanostructure of yeast cell tissues was copied with phosphate required or metabolized by human, by taking living yeast cells as templets and reactors. A series of phosphate nano-composite materials with complex surface shapes were synthesized, and synthesis mechanism, structure, composition and performance were researched systematically.
     CHA/yeast protein nanocomposite has been synthesized successfully by using yeast cells as the catalytic templates. The orthogonal test was used to optimize the synthetic parameters and its scale-up experiment was carried out. The results showed that its structure and composition had a good repetition and can be synthesized in batch. The present technology has many advantages including the mild reaction conditions, simple process, no pollution and easy to industrial production. The modern testing technologies were used to characterize the structure and composition of the synthetic samples. The synthetically analysed results indicated that the hydroxyl-carbonate-apatite (CHA) crystal nano-grains with the lower crystallinity were rapidly formed in the physiological environment of yeast calls, which has the unit cell parametersα=9.4924?, c=6.9092 ?. Compared with HA nanopowders (α=9.2329?,c=6.7707 ?) obtained by direct precipitation method, distortion phenomenon existed in the lattice structure of nano-CHA and metastable rich Ca layer with positive electrical property were formed by the aliquation of Ca atoms and CO32- groups on the surface and grain boundary of CHA particles. Nano-CHA grains were dispersed evenly in the herarchical network structure of yeast proteins, and copied the complex nanostructure in yeast cell.
     The CHA/yeast protein nanocomposite exhibited a unique fluorescence enhancement effect, because of the unique multi-level porous and nano-composite structures, and the distorting lattice structure of nano-CHA. It has the performance of transfection fluorescence to bone marrow stem cells of rat, onion cells, Saccharomyces cerevisiae, Aspergillus oryzae and Escherichia coli. The cell proliferation and hemolytic experiments in vitro show that L-929 fibroblasts had well adherence and proliferation properties on the sample surface , the toxic degree of the samples was in zero grade standard and it had no hemolysis. CHA/yeast protein nanocomposite has the visible effects loaded and slowly released insoluble drug, the quantity loaded insoluble drug amoxicillin is up to 112.16 mg/g, the drug was embedded in the porous structure of the carrier, which have sustained release rate and no burst phenomenon, and the total amount of drug releasing is up to 55% after 6 days. The dynamic equation released amoxicillin drug from the carrier belongs to Fick's diffusion control model, which mainly were control by the two mechanisms of the drug diffusion and the carrier degradation. The hierarchical porous structure and catalysis of residual proteases in CHA/yeast protein nanocomposite improved its degradation property. The CHA mineralization with heterogeneous nucleation is easy in the electric double layer formed on its grain surface. Therefore, CHA/yeast protein nanocomposite is degradable bioactivity nanomateriale and had unique amphiphilic property (contact angleθ=120°), left optical activity (specific rotation[α] 25℃D =-23°) and good affinity to hydrophobic drug. Specially, beacause there are 17 kinds of amino acids needed by human in the yeast protein, it is also a multifunctional drug carrier material supplemented with complete proteins and calcium trace element and a fluorescence-labelled material.
     Phosphates (Zn, Fe and Mg)/yeast protein nanocomposites have been synthesized successfully by using yeast cells as the catalytic templates, respectively. Phosphates/yeast protein nano-composites were calcined at different temperatures for 2h to synthesize various phosphates/active C nano-composites. The results indicated that both Zn3(PO4)2 4H2Oand rich Mg bobierite crystal grains have (020) preferred growth. The amorphous iron phosphate (core) with globulin in yeast cell can self assemble to form the grains with core-shell structure. These particles were dispersed in the herarchical network structure of yeast protein. The synthetic samples can emit different color fluorescences under different excitation wavelengths, and have the performance of transfection fluorescence to onion cells, Saccharomyces cerevisiae, Aspergillus oryzae and Escherichia coli. The synthetic samples possess better electro-catalytic activity than commercialized MnO2 catalyst. The differences of catalytic activity of samples obtianed at different temperatures in the oxidation reduction were attributed to porous structures and in situ-composite activated carbon. These materials can be used as a catalyst for oxygen electrode materials used in bio-sensors, metal-air battery, fuel cell, etc. These synthetic hybrid materials can also be used as fluorescent labeling materials.
     The study results of the synthetic mechanism shown that different metal ions adsorbed in yeast cell have different effects on the structure and composition of proteins. The order of amino acid content in the synthetic samples is Mg>Ca>Fe>Zn, the effect order on the ordered degree of protein structure is Ca>Fe>Mg>Zn. Different metal ions were adsorbed on the surface of different protein molecules by gene regulation in yeast cell, have preferred growth along the special direction according to layer growth theory. Phosphates/yeast protein nanocomposites with different morphologies were formed by supramolecular self assembly of protein molecules. These materials have herarchical porous structure with vermiform morphology, the range order of their pore size distribution is Fe(2~60nm)>Ca(2~40nm)>Mg(2~24nm)>Zn(2~12nm), and the sites of fast heterogeneous nucleation are all polar hydrophilic groups arranged orderly on helical grooves in metabolic network of yeast cell. The biomineralization of yeast cells involves four processes: ion adsorption, ion transmission, deposition mineralization and supramolecular self-assembly, which were divided into mineralization induced by organism on cell wall and growth controlled by organism in cell.
引文
[1] Galo J. de A.A.S.; Clement S.; Benedicte L.;et al. Chemical strategies to design textures materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chem. Rev. 2002, 102(11): 4093-4138
    [2] Paul A. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22:47-52
    [3] Zhang Y.; Wang G.; Pan Y.; et al. Studies of targeting effects of lactosaminated nanoparticle gene carrier on liver. J. Med. Eng. 2002, 10(6):12-16
    [4] Emilie P.; Erik D.; Annie C.; et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Materials. 2007, 6: 434-439
    [5] Vitaly L. B.; James H. C.; Rafael L.; et al. Tunable mesoporous materials optimised for aqueous phase esterifications, Green Chem., 2007, 992–995
    [6] Sollner C. Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science. 2003, 302(5643): 282-286
    [7] Helen K.; Baca C.A. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science. 2006, 313(5785): 337-340
    [8] Pooja S.; Swaranjit S. C. Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol. 2004, 22(3): 142-146
    [9] Dujardin E.; Peet C. Organization of metallic nanoparticles using tobacco mosaic virus templates. Nano Lett. 2003, 3(3): 413–417
    [10] Dujardin E.; Mann S. Bio-inspired materials chemistry. Adv Mater. 2002, 14(11): 775–88
    [11]张阳德,纳米生物材料学,北京,化学工业出版社, 2005, 1-10。
    [12] Dujardin E, Mann S. Bio-inspired materials chemistry. Adv Mater 2002;14:775-788.
    [13] Wilson S. T.; Lok B. M.; Messina C. A.; et al. Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.1982, 104(4): 1146-1147
    [14] Huo Q.; Xu, R.R. Syntheses of AlPO4-5, AlPO4-11, and AlPO4-21 from non-aqueous systems. J. Chem. Soc., Chem. Commun. 1990, 783-784
    [15] Huo Q.; Xu R.; Li S.; et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. J. Chem. Soc, Chem. Commun. 1992, 875-876
    [16] Tiemann M.; Froba M.; Rapp G.; et al. Nonaqueous synthesis of mesostructured aluminophosphate surfactant composites:sythesis,characterization,and in-situ SAXS studies. Chem Mater. 2000, 12 (5):1342-1348.
    [17] Nandhini K.U.; Arabindoo B.; Palanichamy M.; et al. Synthesis, characterization and catalytic evaluation of mesoporous AlPO supported phosphotungstic acid in the ethylation of ethylbenzene. Micro. Meso.Mater.2005, 81(1-3): 59-71
    [18] Kresge C.T.; Leonowicz M.E.; Roth W.J.; et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397):710-712
    [19] Bhaumik A.; Inagaki S. Mesoporous titanium phosphate molecular sieves with ion-exchange capacity. J. Am. Chem. Soc. 2001, 123 (4): 691-696
    [20] Czuryszkiewicz T.; Kleitz F.; Schüth F. et al. Combined use of Cosurfactant/surfactant mixtures and swelling agents in the synthesis of mesoporous titanium oxophosphates. Chem. Mater. 2003, 15 (19): 3704-3709
    [21] Jiménez-Jiménez J.; Mérida-Robles J.; Rodríguez-Castellón E.;et al. Oxidation of o-xylene on mesoporous Ti-phosphate-supported VOx catalysts and promoter effect of K+ on selectivity, Catalysis Today, 2005, 99( 1-2): 179-186
    [22] Guo X.F.; Ding W.P.; Wang X.G; et al. Synthesis of a novel mesoporous iron phosphate. Chem. Commun. 2001:709-710
    [23] Jesús S.; Patrick S.; Carlos. O.A.; et al. Electrochemical properties of mesoporous iron phosphate in lithium batteries. J. Solid State Electrochem. 2006, 10(1):1-9
    [24] Dinghua Y.; Jieshu Q.; Nianhua X.; et al. Mesoporous nanotubes of iron phosphate: synthesis, characterization, and catalytic property. Langmuir. 2007, 23(2): 382-386
    [25] Doi T.; Miyake T. Synthesis of a novel mesoporous VPO compound. Chem. Commun. 1996:1635-1636
    [26] Roca M.; El Haskouri J.; Cabrera S.; et al. Supramolecular self-assembling in mesostructured materials through charge tuning in the inorganic phase. Chem. Commun. 1998:1883-1884
    [27] Ciesla U.; Schacht S.; Stucky G. D.; et al. Formation of porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis. Angew. Chem. Int. Edit. Engl. 1996, 35(5):541-543
    [28] Jimenez-Jimenez J.; Maireles-Torres P.; Olivera-Pastor P.; et al. Surfatant-assisted synthesis of a mesoporous form of zirconium phosphate with acidic properties. Adv. Mater. 1998, 10(10):812-815
    [29] Eliche-Quesada D.; Macías-Ortiz M.I.; Jiménez-Jiménez J.; et al. Catalysts based on Ru/mesoporous phosphate heterostructures (PPH) for hydrotreating of aromatic hydrocarbons. J. Mol. Catal. A: Chemical. 2006, 255(1-2):41-48
    [30] Mal N.K.; Ichikawa S.; Fujiwara M. Synthesis of a novel mesoporous tin phosphate.SnPO4. Chem Commun, 2002:112-113
    [31] Serre C.; Auroux A.; Gervasini A.; et al. Hexagonal and cubic thermally stable mesoporous Tin (IV) phosphate with acidic and catalytic properties, Angew. Chem. Int. Edit. Engl. 2002, 41(9): 1594-1597
    [32] Jinyoung K.; Jaephil C. SnO2 filled mesoporous tin phosphate high capacity negative electrode for lithium secondary battery. Electrochem. Solid-State Lett. 2006, 9(8): A373-A375
    [33] Anbia; Mansur R.; Mohammad K.; et al. Synthesis of mesoporous lanthanum phosphate and its use as a novel sorbent. Chin. J. Chem. 2006,24(8):1026-1030
    [34] Nenoff T.M.; Thoma S.G.; Provencio P. et al. Novel zinc phosphate phases formed with chiral d-glucosamine molecules. Chem. Mater. 1998, 10(10): 3077-3080
    [35] Yang G.Y.; Sevov S.C. Zinc phosphate with gigantic pores of 24 tetrahedra. J. Am. Chem. Soc. 1999, 121(36): 8389-8390
    [36] Mann S. Molecular tectonics in biomineralization and biomimetic materials. Nature. 1993, 365:499-505
    [37]王夔.生物无机化学.第四章.北京:清华大学出版社. 1996:1-20
    [38]崔福斋.生物矿化.北京,清华大学出版社. 2007:8-18
    [39]毛传斌;李恒德;崔福斋.无机材料的仿生合成.化学进展, 1998, 10(03) 246-278
    [40] Falini G.; Albeck S.; Weiner S.; et al. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science, 1996, 271:67-69
    [41] Kr?ger N.; Deutzmann R.; Sumper M. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 1999, 286:1129-1132
    [42] Wong K.W.; Douglas T.; Gider S.; et al. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem. Mater., 1998, 10: 279-285.
    [43] Kniep R.; Busch S. Biomimetic growth and self-assembly of fluorapatite aggregates by diffusion into denatured collagen matrices. Angew. Chem. Int. Ed. Engl. 1996, 35:2624-2626
    [44] Li M.; Schnablegger H.; Mann S. Coupled synthesis and self- assembly of nanoparticles to give structures with controlled organization. Nature. 1999, 402:393-395
    [45] Ogasawara W.; Shenton W.; Davis S.A., et al. Communication template mineralization of ordered macroporous chitin silica composites using a cuttlebone-derived organic matrix. Chem. Mater., 2000, 12: 2835-2837
    [46] Shin Y.; Liu J.; Chang J.H.; et al. Hierarchically ordered ceramics throughsurfactant-templated sol-gel mineralization of biological cellular structures. Adv. Mater. 2001, 13:728-732
    [47] Bigham S.R.; Coffer J.L. The influence of adenine content on the properties of Q-CdS clusters stabilized by polynucleotides. Colloids Surfaces A, 1995, 95: 211-219.
    [48] Braun E.; Eichen Y.; Sivan U.; et al. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature. 1998, 391:775-778
    [49] Mbindyo J.K.N.; Reiss B.D.; Martin B.R. DNA-directed assembly of gold nanowires on complementary surfaces. Adv. Mater. 2001, 13:249-254
    [50] Shenton W.; Douglas T.; Young M. Directed self-assembly of nanoparticles into macroscopic materials using antibody-antigen recognition. Adv. Mater. 1999, 11:449-451
    [51] Connelly S.; Fitzmaurice D. Programmed assembly of gold nanocrystals in aqueous solution. Adv. Mater. 1999, 11: 1202-1205
    [52] Samir M.; Joerg L. Physical approaches to biomaterial design, Nature Mat. 2009, 8: 15- 23
    [53] Markus J.; Buehler.; Yu C.Y. Deformation and failure of protein materials in physiologically extreme conditions and disease. Nature Mat. 2009, 8: 175-188
    [54] Staniland S.; Williams W.; Telling Neil.; et al. Controlled cobalt doping of magnetosomes : in vivo. Nature Nanotech. 2008, 3: 158-162
    [55] Dragnea B. Bio-inspired materials: unnatural life. Nature Mat.2008, 7: 102-104
    [56] Brunner E. Biomimetic synthesis: Double-walled silica nanotubes. Nature Mat. 2007, 6: 398-399
    [57] Spoerke E.D.; Anthony S.G.; Stupp S.I. Enzyme directed templating of artificial bone mineral. Adv. Mat. 2009, 21: 425-430
    [58] Jiang Y.J.; Yang D.; Zhang L.; et al. Preparation of protamine-titania microcapsules through synergy between layer-by-layer assembly and biomimetic mineralization. Adv. Fun. Mat. 2009, 19: 150-156
    [59] Segman-Magidovich S.; Grisaru H.; Gitli T.; et al. Matrices of acidic -sheet peptides as templates for calcium phosphate mineralization. Adv. Mat. 2008, 20: 2156-2161
    [60] Cheng C.; Shao Z.Z.; Vollrath F. Silk fibroin-regulated crystallization of calcium carbonate. Adv. Fun. Mat. 2008, 18: 2172-2179
    [61] Ethirajan A.; Ziener U.; Chuvilin A.; et al. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Fun.Mat. 2008, 18: 2221-2227
    [62] Yasunobu I.; Yoshikazu T.; Norimichi K. Synthesis of mesoporous hydroxyapatite using the supramolecular templating method. Nippon Kagakkai Koen Yokoshu.2004, 84(1):263-268
    [63] Zhao Y.F.; Ma J. Triblock co-polymer templating synthesis of mesostructured hydroxyapatite. Microporous and Mesoporous Materials. 2005, 87(2) :110-117
    [64] Hammari L.E.; Merroun H.; Coradin T.; et al. Mesoporous hydroxyapatites prepared in ethanol–water media: Structure and surface properties. Materials Chemistry and Physics. 2007,104(2-3):448-453.
    [65] Ye F.; Guo H.; Zhang H. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants. Nanotechnology. 2008, 19(245):605-612
    [66] Díaz A.; López T.; Manjarrez J.; et al. Growth of hydroxyapatite in a biocompatible mesoporous ordered silica. Acta Biomaterialia. 2006,2(2):173-179
    [67]魏坤.纳米羟基磷灰石的合成动力学及其晶体结构的基础研究.博士后研究工作报告.华南理工大学. 2005, 1-5
    [68] Chen J.D.; Wang Y.; Wei K.; et al. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials. 2007, 28:2275-2280
    [69] Zhang S.; Wang Y.; Wei K.; et al. Template-assisted synthesis of lamellar mesostructured hydroxyapatites. Materiales letters. 2007, 61(6):1341-1345
    [70] Shi X.; Wang Y.; Wei K.; et al. Self-assembly of nanohydroxyapatite in mesoporous silica. Journal of Materials Science: Materials in Medicine. 2008, 19(8): 2933-2940
    [71] Bigi A.; Boanini E.; Gazzano M.; et al. Nanocrystalline hydroxyapatite–polyaspartate composites. Bio-Med Mater Eng. 2004, 14:573-579
    [72] Elisa B.; Paola T.; Massimo G.; et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells. Biomaterials. 2006,27:4428-4433
    [73] Takashi K.; Akira M.; Kunio T.; et al. Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA–PEG/hydroxyapatite composite. Biomaterials. 2005,26:73-79
    [74] Sousa A.; Souza K.C. ; Sousa E.M. Mesoporous silica/apatite nanocomposite: special synthesis route to control local drug delivery. Acta Biomater. 2008, 4(3):671-679
    [75]温涛;贾涛;王义明等.纳米载体药物应用的研究进展.药学学报.2003, 38(3): 236-240
    [76] Slowing I.I.; Trewyn B.G.; Giri S.; et al. Mesoporous silica nanoparticles for drugdelivery and biosensing applications. Adv. Func. Mater. 2007, 17(8): 1225-1236.
    [77] Zhu Y.F.; Shi J.L.; Shen W.H.; et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure. Angew. Chem. 2005, 44(32):5083-5087
    [78] Fu Q.; Rama R.G.V.; Ista L.K.; et al. Control of molecular transport through stimuli-responsive ordered mesoporous materials. Adv. Mater. 2003, 15(15): 1262-1266
    [79] Barbe C.; Bartlett J.; Kong L.; et al. Silica particles: a novel drug-delivery system. Adv. Mater. 2004, 16(21):1959-1966
    [80] Andersson J.; Rosenholm J.; Areva S.; et al. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 2004, 16 (21):4160-4167
    [81] Qu F.Y.; Zhu G.S.; Huang S.Y.; et al. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater. 2006, 92:1-9
    [82] Yiu H.H.P.; Wight P.A. Enzymes supported on ordered mesoporous solids: a special case of an inorganic-organic hybrid. J Mater Chem. 2005, 15:3690-3700
    [83] Lei C.H.; Shin, Y.S.; Liu, J.; et al. Entrapping enzyme in a functionalized nanoporous support. J American Chemical Society. 2002, 124:11242-11243
    [84] Chong A.S.M.; Zhao X.S. Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catalysis Today. 2004, 93-95: 293-299
    [85] Azzam T.; Domb A.J. Current developments in gene transfection agents. Curr. Drug Deliv. 2004, 1(2): 165-193
    [86]李新新;侯森;冯喜增.无机纳米粒子作为基因载体的研究进展.生命科学. 2008, 20 (3):402-407
    [87] Radu D.R.; Lai C.Y. ; Jeftinija K.; et al. A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. J. Am. Chem. Soc. 2004, 126:13216- 13217
    [88] Yang X.C.; Walboomers X.F.; Juliette D.; et al. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Engineering Part A. 2008, 14:71-81
    [89] Kakizawa Y.; Furukawa S.; Ishii A.; et al. Organic-inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J Control Release. 2006, 111:368-370
    [90] Strain A.J.; Wyllie A.H. The uptake and stability of simianvirus-40 DNA after calciumphosphate transfection of CV-1 cells. Biochem. J. 1984, 218:475-482
    [91] Slavkin H.; Pric P. Chemistry and biology of mineralized tissues. Excerpa Medica. 1992: 158-162.
    [92]葛介超.几种多维结构与形貌的纳米材料的制备、表征及其在生物分析中的应用.山东师范大学博士学位论文. 2008: 1-20
    [93] Douglas T.; Young M. Host-guest encapsulation of materials by assembled virus protein cages. Nature. 1998, 393:152-155
    [94]顾觉奋.微生物药品研发动态.化学工业出版社.北京: 2005:7-10
    [95]于景芝.酵母生产与应用手册.中国轻工业出版社.北京: 2005:30-45
    [96]陈坚;堵国成;卫功元等.微生物重要代谢产物.化学工业出版社.北京: 2005:13-19
    [97] Shoemaker D.D.; Lashkari D.A.; Morris D.;et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar? coding strategy. Nature Genetics. 1996, 14:450-456
    [98] Ali A.Z.; Catherine D.V.; Eva T.; et al. Antibody class switching mediated by yeast endonuclease-generated DNA breaks. Science. 2007, 315:377-381
    [99] Robert D.; Amanda H.; Stephen P.J. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science. 2007, 315:649-652
    [100] Stefano D.T.; Jan M.S.; James M.B.; et al. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature. 2007, 448:947-951.
    [101] Jeremy R.D.; Caroline S.; Linda M.K.; et al. Incipient speciation by divergent adaptation and antagonistic epistasis in yeast. Nature. 2007, 447:585-588
    [102] Sean R.C.; Kyle M. M.; Nancy L.M.; et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature. 2007, 446:806-810
    [103] Kasas, S.; Ikai A. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 1995,68:1678-1680.
    [104] Yves F.D. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 2002, 184:5205-5213
    [105] Yves F.D. Towards nanomicrobiology using atomic force microscopy. Nature Reviews Microbiology. 2008, 6:674-680
    [106]张星元,发酵原理,科学出版社,北京,2005,高等教育“十一五”规划教材
    [107] Lowenstam H A, Weiner S. On Biomineralization. Oxford, UK: Oxford University Press, Inc. , 1989.
    [108]刘粤惠,刘平安. X射线衍射分析原理与应用[M].北京:化学工业出版社, 2003:9-35
    [109]杨淑珍,周和平.无机非金属材料测试实验[M].武汉:武汉理工大学出版社, 1991:25-53
    [110]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社, 2004:145-155
    [111]沈钟,王果庭.胶体与表面化学,第二版[M].北京:化学工业出版社, 1997: 221-225
    [112]杨南如主编,无机非金属材料测试方法,武汉工业大学出版社,武汉,1990.8, 223-252
    [113] Inagaki S.; Guan S.; Ohsuna T.; et al. Mesoporous organic-silica hybrid with crystal-like pore wakks. Nature 2002;416:304-07.
    [114] Degirmenbasi N; Kalyon D; Birinci E. Biocomposites of nanohydroxyapatite with collagen and poly(vinyl alcohol). Colloids and Surfaces B Biointerfaces 2006;48:42–49.
    [115] http://www.angel.com.cn/angel.htm
    [116]陈晓峰,溶胶-凝胶生物活性材料的研制及其生物矿化性能研究,华南理工大学,博士学位论文,2003:60-81
    [117] David Clark编著,胡玨、刘文颖翻译,刘进元审校,分子生物学,科学出版社,北京,2007.1:155-194
    [118]江明; A.艾森伯格;刘国军等.大分子自组装,科学出版社,北京,2006.9:182-208
    [119]叶恒强;王元明.透射电子显微学进展,科学出版社,北京,2003.8:1-13
    [120]白春礼;田芳;罗克等.扫描力显微术[M] .北京:科学出版社, 2000. 7:1-8
    [121]汪盛;向烨;李根培等.抗真菌蛋白晶体生长的原子力显微成像研究,生物化学与生物物理进展,2003,30(5)784-792
    [122] Durbin S D; Carlson W E. Lysozyme crystal growth studied by atomic force microscopy. J Cryst Growth, 1992, 122(1-4):71-79
    [123] Manoharan R,Wang Y,Feld M S. Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochim Acta,1996,52(A):215—249
    [124]彭红军;周光明;黄成.拉曼光谱技术在生物体系研究中的应用,化学通报, 2005, 68:1-8
    [125]何季平;陈芳;李世普等.多孔β-TCP生物降解陶瓷的拉曼光谱,分析科学学报,1995,11(3):26—31
    [126]Walters M.A.; Leung Y.C.; Blumenthal N.C.; et al. A Raman and infrared spectroscopic investigation of biological hydroxyapatite. J Inorg Biochem, 1990, 3:193—200
    [127]谢栒;周平;邓风等. pH值对丝素蛋白构象转变的影响,高等学校化学学报, 2004.5(25): 961-965
    [128]Goheen S.C.; Lis L.J.; Kauffmann J.W. Raman spectroscopy of intact feline corneal collagen. Biochim Biophys Acta, 1978, 536:197—204
    [129]Clark R.J.; Hester R.E. Advances in infrared and Raman spectroscopy [M] . New York : Wiley , 1985. 85 - 97.
    [130]鲍改玲;张宗培;韩润平.啤酒酵母的红外光谱研究[J],河南科学, 2002, 20(1): 33-35
    [131]Blakeslee K.C.; Condrate R.A. Vibration spectra of hydrothermal prepared hydroxyapatites. J. Am. Ceram. Soc. 1971, 54:559–63.
    [132]Cheng Z.H.; Yasukawa A; Kandori K; et al. FTIR study on incorporation of CO2 into calcium hydroxyapatite, J. Chem. Soc. Faraday Trans. 1998, 94:15011505.
    [133]毛克亚;郝立波;唐佩福等.碳酸化羟基磷灰石水泥修复骨缺损的实验研究[J].生物医学工程与临床, 2004, 8( 3):129-132.
    [134]唐佩福;毛克亚;郝立波等.多孔结构对碳酸化羟基磷灰石骨水泥溶解度的影响,北京生物医学工程, 2006 , 25(3):296-300
    [135]郝立波;毛克亚;王继芳等.碳酸化磷灰石与骨界面结合强度的生物力学特性研究.中国临床康复, 2004, 8(20):3978-3980
    [136]高月侠;冉均国;苟立等.生物活性羟基磷灰石陶瓷.稀有金属材料与工程, 2002, 31:315-317
    [137]Canstanz B.R.; Ison I.C.; Fulmer M.T.; et al. Skeletal repair by in situformation of the mineral phase of bone. Science, 1995, 265:1796-1799
    [138]吕孟凯.固态化学,山东大学出版社,济南,1996, 302-343
    [139]Service R.F. Tissue engineers build newbone[J]. Science, 2000,289(5484):1498- 1500.
    [140]Khan S.N.;Tomin E; Lane J.M. Clinical application of bone graft substitutes[J]. Orthop Clin North Am, 2000, 31(3):389- 398.
    [141]Tanford C. The hydrophobic effect: formation of micelles and biological membranes. New York: Wiley, 1980.
    [142] Dill K. A. Biochemistry, 1990, 29:7133-7155
    [143] Tanford C. How protein chemists learned about the hydrophobic factor. Protein Sci.,1997, 6:1358-1366
    [144]任鲁华;李强;吕育齐.增加难溶性药物溶解度方法新进展,黑龙江医药, 2007, 20(1): 25-28
    [145]Wu Y; Xue P. Preparation of heterogeneous chiral catalysts and their application to asymmetric hydrogenation. Huagong Jinzhan, 2006, 25:1301-1308
    [146]Gautier C.; Bürgi T. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared. J Am Chem Soc, 2006, 128:11079-11087
    [147]Bayraktar H.; Ghosh P.S.; Rotello V.M.; et al. Disruption of protein-protein interactions using nanoparticles: inhibition of cytochrome c peroxidase. Chem Comm, 2006, 13: 1390-2
    [148] Shoema-ker D.D.; Lashkari D.A.; Morris D.; et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallelmolecular barcoding strategy [J ].Nature Genetics,1996, 14:450-456.
    [149]陈晓峰,溶胶-凝胶生物活性材料的研制及其生物矿化性能研究,华南理工大学,博士学位论文, 2003, 83-102
    [150] Cowley J.M. Drffraction Physics. North-Holland, Amsterdam, second edition,1990, 5-9
    [151] Spence J.C.H.; and Zuo J.M. Electron Microdiffraction. Plenum Press, New York and London, 1992, 21-48
    [152] Cowley J.M. editor. Electron Diffraction Techniques. Oxford University Press, Oxford, 1993, 18-33
    [153] Wang Z.L.; Elastic and Inelastic Scattering in electron diffraction and imaging. Plenum Press, New York and London, 1995, 55-67
    [154] Peng L.M.; Dudarev S.L. and Whelan M.J. High-energy electron diffraction and microscopy. Oxford University Press, Oxford, 2003, 77-90
    [155] Newton R.G. Scattering theory of waves and particles. McGraw-Hill, New York, 1996, 99-107
    [156] Remimer L. In quantitative electron microscopy. G. F. Bahr and E. Zeitler, Eds. Williams and Wilkins, Baltimore, 1965, 1082-1096
    [157] Isaacson M.; Johnson D. and Crewe A.V. Radiation Reaserch. 1973, 55:205
    [158] Capozzi F; Casadei F; Luchinat C. EF hand protein dynamics and evolution of calcium singal transduction: an NMR view [J] J Biol Inorg Chem, 2006, 11(8):949-962.
    [159] Li H.; Derosier D.J.; Nicholson W.V.; et al. Microtubule structure at 8? resolution.Structure. 2002, 10:1317~1328
    [160]叶恒强;王元明主编.透射电子显微学进展,科学出版社,北京, 2003, 239-256
    [161] Derosier D.J. and Klug A. Reconstruction of three-dimensional structures from electron micrographs. Nature. 1968, 217:130~134
    [162] Zhang P.; Toyoshima C.; Yonekura K.; et al. Structure of the calcium pump from sarcoplasmic reticulum at 8-? resolution. Nature. 392 (1998), 835~839
    [163] Miyazawa A.; Fujiyoshi Y.; Stowell M. et al. Nicotinic acetylcholine receptor at 4.6? resolution: transverse tunnels in the channel wall. J. Mol. Biol. 1999, 288:765~786
    [164] DeRosier D.J. and Moore P.B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 1970, 52:355~369
    [165]王建龙;韩英健;钱易.微生物吸附金属离子的研究进展.微生物学通报. 2000, 27(6): 449-452
    [166]于源华.酵母细胞为模板矿化合成SiO2纳米结构材料的研究.物理化学学报. 2006. 22(9):1163-1167
    [167]成亮.碳酸盐矿化菌调控碳酸钙结晶动力学、形态学的研究.功能材料. 2007. 9 (38):1511-1515
    [168]韩润平;蒋海涛;陆雍森.酵母菌对铬离子的生物吸附作用.环境保护科学. 2001, 27(104):28-33
    [169]韩润平;石杰;鲍改玲.酵母菌对铅离子的生物吸附研究.河南科技. 2000, 18(1):52-55
    [170] Ashkenazy R.; Gottlieb L. and Yannai S. Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol&Bioeng, 1997, 55:1-10.
    [171] Volesky B; May-Philips H.A. and Holan Z.R. Cadmium biosorption by Saccharomyces cerevisiae. Biotechnol&Bioeng, 1993, 41:826-829.
    [172] Blackwell K.J.; Singleton I. and Tobin J.M. Metal cation uptake by yeast-a review. Appl Microbio Biotechnol, 1995, 43(4):579-584
    [173] Pearson R. G. Hard and soft acids base [M]. Dowden: Hutching Son & Ross Inc, 1973. 187-189
    [174] Avery S.V.; Tobin J.M.Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard an d soft anions[J].Applied andEnvironmental Microbiology,1993,59(9):2851-2856
    [175] Steed J.W.; Atwood J.L.著,赵耀鹏;孙震译,超分子化学,化学工业出版社,北京,2006, 38-65
    [176]李晖编著,配位化学.化学工业出版社,北京, 2006, 75-89
    [177]陈灿;王建龙.利用QSAR模型探讨分类条件下金属离子性质与酵母吸附容量之问的关系[J].环境科学学报,2008, 28(1):76-82
    [178] Chen C.; Wang J.L. Correlating metal ionic characteristics with biosorption capacity of an yeast using QSAR model based on classifications of metal ions[J].Acta Sclentiae Circumstantiae,2008, 28(1):76-82
    [179] Mapolelo M.; Torto N.Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae[J].Talanta, 2004, 64(1):39-47
    [180] Shukla S.R.; Pal R.S.; Adsorption of Cu(Ⅱ) , Ni(Ⅱ)and Zn(Ⅱ)on dye loaded groundnut shells and sawdust[J].Separation and Purification Technology, 2005, 43(1):1-8.
    [181] Tottey S.; Waldron K. J.; Firbank S.J.; et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature, 2008, 455 (23):1138-1142
    [182] http://www.310086.com/view/ftpFolUm2qQ=
    [183] Inagaki S.; Guan S.; Ohsuna T.; et al. Immobilization of CdS nanoparticles from reverse micellar system onto mesoporous organosilicates and their photocatalytic properties Nature 2002, 416, 304-308
    [184]崔福斋.生物矿化.清华大学出版社.北京, 2007, 5:54-60
    [185]郭子键;孙为银.生物无机化学.科学出版社,北京, 2006.2,第15章
    [186] Meldrum F.C.; Wade V.J.; Nimmo D.L.; et al. Synthesis of inorganic nanophase materials in sopramolecular prptein cages. Nature, 1991, 349:684-687.
    [187] Douglas T.; Young M.; Host-guest encapsulation of materials by assembled virus protein cages. Nature, 1998, 393:152-155.
    [188] Chernov A.A. Formation of crystals in solutions. Contemp Phys, 1989, 30:251-276
    [189] Orme C.A.; Noy A.; Wierzbicki A.; et al. Selective binding of chiral amino acids to the atomic steps of calcite. Nature, 2001, 411:775-779
    [190] Satofuka H.; Fukui T.; Takngi M.; et a1.Metal—binding properties of phytochelatin—related peptides. Journal of Inorganic Biochemistry,2001.86:595-602
    [191] Kuroda K.; Shibasaki S.; Ueda M.; et a1.Cel surface-engineered yeast displaying a histidine oligopeptide(hem-His)has enhanced adsorption of an d tolerance to heavymetal ions.Appl Microbiol Biotechnol,2001, 57:697-701
    [192]徐柳;宋琴;茆灿泉.金属结合蛋白(肽)与环境重金属生物修复.中国生物工程杂志,2004, 24(4):39-43。
    [193] Mann S. Molecular recognition in biominerallization [J], Nature, 1998, 332(10):119-124
    [194] Dimitrov D.T.; Dushkin C.D.; Petrova N.L.; et al. Oxygen detection using junctions based on thin films of yttria-stabilized zirconia doped with platinum nanoparticles and pure yttria-stabilized zirconia [J]. Sens. Actuat. A, Phys , 2007, 137 (1):86-95
    [195] J?rissen L. Bifunctional oxygen/air electrodes [J]. J. Power Sources, 2006, 155:23-32
    [196] Prasanna M.; Cho E.A.; Kim H.J.; et al. Effects of platinum loading on performance of proton-exchange membrane fuel cells using surface-modified Nafion membranes, J. Power Sources [J]. 2007, 166:53-58
    [197] Zhou W.; Shao Z.P.; Ran R.; et al. A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400–600°C [J]. Chem. Commun., 2008, 5791-5793 ,
    [198] Wei Z.; Shao Z.P.; Ran R.; et al. High performance electrode for electrochemical oxygen generator cell based on solid electrolyte ion transport membrane [J]. Electrochim Acta, 2007, 52: 6297-6303
    [199] Cheng H.F.; Xu W.P.; Liu J.L.; et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis [J]. J. Hazard. Mater, 2007, 146(1-2):385-392
    [200] Thiele D.; Züttel A. Electrochemical characterisation of air electrodes based on La0.6Sr0.4CoO3 and carbon nanotubes [J]. J. Power Sources, 2008, 183:590-594
    [201] Wang R.F.; Liao S.J.; Fu Z.Y.; et al. Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction [J].Electrochem.Commun., 2008, 10:523–526
    [202] Trogadas P.; Ramani V.; Pt/C/MnO2 hybrid electrocatalysts for degradation mitigation in polymer electrolyte fuel cells [J]. J. Power Sources, 2007, 174:159-163
    [203] Bonakdarpour A.; Stevens K.; Vernstrom G.D.; et al. Oxygen reduction activity of Pt and Pt–Mn–Co electrocatalysts sputtered on nano-structured thin film support [J]. Dahn, Electrochim Acta, 2007, 53:688-694
    [204]徐国亮.原子个数n对碳分子线Cn(n=3~10)基态结构特性的影响,物理化学学报, Acta Phys. -Chim. Sin., 2006, 22(6):701-705
    [205] Thiele D.; Züttel A. Electrochemical characterisation of air electrodes based onLa0.6Sr0.4CoO3 and carbon nanotubes [J]. J. Power Sources, 2008, 183:590-594
    [206]王战勇、陈珊,富锌酵母的制备及分析,食品科技,2006,6,143-145
    [207]陈阅增;张惟杰;罗大珍;等.微量元素营养剂的最佳形式〔J〕.微量元素与健康研究, 1987 (1) :5-11.
    [208] Kamizono A.; Nishizawa M.; Mitsubishi Y.; et al. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast S. cerevisiae Mo. Gen Genet , 1998, 12-18
    [209] Jensen L.T.; Ajua-Alemanji M.; Culotta V.C. The Saccharomyces cerevisiae high affinity phosphate transporter encoded by PHO84 also functions in manganese homeostasis. J Biol Chem 2003, 278:42036-42040
    [210]张栓;杨晓红.铁类矿物药研究综述〔J〕.陕西中医学院学报, 1994, 17 ( 3):47-48
    [211]王祥;李鹏;印莉萍.酵母和植物的锌转运系统及其调控.植物学通报, 2007, 24 (6): 799-806
    [212] Wang X. Y.; Sebastian P. J.; Smit M.A. Studies on the oxygen reduction catalyst for zinc-air battery electrod[J]. J. Power Sources, 2003, 124(1):278-284
    [213]房振乾;刘文西;陈玉如;等.金属空气燃料电池氧电极催化剂[J].电池. 2003 33(3):12-19
    [214] Mandal S.; Phadtare S.; Sastry M. Interfacing biology with nanoparticles[J]. Current Applied Physics, 2005, 5(2):118-127
    [215] Sastry M. Assembling nanoparticles and biomacromolecules using electrostatic interactions[J]. Pure and Applied Chemistry, 2002, 74(9):1621-1630
    [216] Snead M.L.; Zhu D.H.; Lei Y.P.; et al. Protein self-assembly creates a nanoscale device for biomineralization[J]. Materials Science and Engineering C, 2006, 26: 1296-1300
    [217] Mendelson N.H. Production and initial characterization of bionites: materials formed on a bacterial backbone[J]. Science, 1992, 258 (5088):1633-1636
    [218] Nelson S.L. A yeast manganese transporter related to the macrophage to mycobacteria. PANS ,1996 ,93:5105-5110
    [219] Ahn S.; Tatarchuk B.J. Air electrode: identification of intraelectrode rate phenomena via AC impedance[J]. Journal of the Electrochemical Society, 1995, 142(12):4169-4175
    [220] Hajime A.; Stefan M.; Otto H. AC impedance analysis of bifunctional air electrodes for metal-air batteries[J]. Journal of the Electrochemical Society, 2000, 147(10):3584-3591
    [221]卫艳丽.基于蛋白质内源荧光磷光的分子识别作用研究.山西,山西大学博士研究生学位论文, 2006.7, 1-50
    [222]林章碧;苏星光;张家弊;等.纳米粒子在生物分析中的应用.分析化学, 2002,30(2):237-241
    [223]吴维明;陈裕泉.纳米金离子的生物组装技术与光学检测技术研究.传感技术学报,2003,1:21-23
    [224] Lakowicz J R. Anal . Surface plasmon-coupled directional emission. Biochem., 2004, 324:153-169
    [225] Lakowicz J.R. Anal . Metal-enhanced fluorescence and plasmon emission. Biochem., 2005, 337:171-194
    [226] Geddes C.D.; Lakowiez J. R. Metal-enhaneed fluoresence [J].Jorunal of Fluoresence 2002,12(2):212-219
    [227]吕凤婷;郑海荣;房喻.表面增强荧光研究进展.化学进展, 2007, 19 (2):3-5
    [228]朱晒红;周科朝;黄伯云;等.羟基磷灰石纳米颗粒:一种新型基因转染载体材料,生物医学工程学杂志, 2005, 22 (5):980-984
    [229]黄晓峰;张远强;张英起.荧光探针技术.人民军区出版社,北京, 2004:2-69
    [230]高希宝.蛋白质-金属纳米粒子体系荧光增强效应及其分析应用.济南,山东大学博士学位论文, 2007.5, 1-60
    [231] Ball P.; Gapwin L. Seienee at the atomie seale [J] .Nature, 1992, 355:761-766
    [232] Boyd G.T; Yu Z.H.; Shen Y.R. Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces.Physical Review ( B), 1986 ,33 (12):7923-7936
    [233] Neeves A.E. Composite structures of the enhancement of nonlinear optical susceptibility. J Opt Soc Am ( B ) ,1987 ,6(4):787-796
    [234]何晓晓;王柯敏;谭蔚泓;等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用,科学通报, 2001, 46(16):1353-1358
    [235]范杰.介孔材料结构和孔道的模板合成及其在生物和电池中的应用,上海,复旦大学博士学位论文, 2004.4:1-30
    [236] Ressine A.; Ekstrom S.; Marko-Varga G.; et al. Macro-/nanoporous silicon as a support for high-performance protein microarrays. Anal. Chem. 2003, 75, 6968-6974
    [237] Thomas J. J.; Shen Z. X.; Crowell J. E.; et al. Desorption/ionization on silicon (DIOS): a diverse mass spectrometry platform for protein characterization. Proc. Natl. Acad. Sci. USA, 2001, 98, 4932-4937.
    [238] Go E. P.; Prenni J. E.; Wei J.; et al. Desorption/ionization on silicon time-of-flight/time-of-flight mass spectrometry. Anal. Chem. 2003, 75:2504-2506
    [239]陈晓峰,溶胶-凝胶生物活性材料的研制及其生物矿化性能研究,广州,华南理工大学博士学位论文, 2003.7:138-157
    [240] Richardson R. J.; Miller J. A.; Reichert W. M.; Polyimides as biomaterials, preliminary biocompatibility testing[J]. Biomaterials, 1993, 14(8):627-635.
    [241]郝和平.医疗器械生物学评价标准实施指南[M],中国标准出版社, 2000, 103-104.
    [242]王迎军,刘康时.生物医学材料的研究与发展[J].中国陶瓷, 1998, 34(5):26-29.
    [243] Pizzoferrato A.; Vespucci A.; Ciapetti G.; et al. Biocompatibility testing of prosthetic implant materials by cell cultures[J], 1985, 6(5):346-351.
    [244] Webster T. J.; Siegel R. W.; Bizios R.; Osteoblast adhesion on nanophase ceramics[J]. Biomaterials, 1999, 20(13):1221-1227.
    [245] Mehlisch D.R.; Leibold D.G.; Hlatt R.; et al. Evaluation of collagen/hydroxylapatite for augmenting deficient alveolar ridges[J]. Journal of oral and maxillofacial surgery, 1987, 45(5):408-413.
    [246] Fournier E. ; Passirani C. ; Monterozmenei C.N. ; et al. Biocompatibility of implantable synthetic poly-meric drug carriers : Focus on brain biocompatibility[J ] .Biomaterials , 2003 , 24(19):3311 - 3331.
    [247] Oussoren C.; Storm G. Liposomes to target the lymphatics by subcutaneous administration[J ]. Advanced Drug Delivery Reviews, 2001, 50(1 - 2):143-156.
    [248] Kataoka K.; Hrada A.; Nagasaki Y. Block copolymer micelles for drug delivery:Design, characterization and biological significance[J ]. Advanced Drug Delivery Reviews, 2001, 47(1): 113-131.
    [249]李亮;朱英杰;曹少文;等.碳酸钙纳米结构多孔空心微球的制备及其药物缓释性能研究.无机材料学报,2009, 24(1):167-172
    [250]张淑花,层状介结构纳米羟基磷灰石的合成、形成机理及载药性能的研究,广州,华南理工大学博士学位论文,2008.12,第六章
    [251]郭佳;张淼;李云峰;等.骨靶向性柔性纳米脂质体.北京大学学报,医学版,2009, 41(2):203-208
    [252]丁清.两种药物控释载体的体外释药性能.中国组织工程研究与临床康复,2008, 12(32):6350-6354
    [253] Yang P.P.; Quan Z.W.; Lu L.L.; et al. Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems, Biomaterials, 2008, 29: 692-702
    [254] R'mila A.; M'unoz B.; P'erez-pariente J. Mesoporous MCM-41 as drug host system. Journal of Sol-Gel Science and Technology, 2003, 26:1199-1202
    [255]王海;王友法.纳米羟基磷灰石在药物载体中的应用.牙膏工业, 2006, 3:45-48
    [256] Xue J.M.; Shi M. PLGA/mesoporous silica hybrid structure for controlled drug release[J]. Journal of Controlled Release, 2004, 98:209-217
    [257] Peppas N.A.; Bures P.; Leobandung W.; et al. Hydrogels in pharmaceutical formulations [J]. Eur. J. Pharm. Biopharm., 2000, 50(1):27-46.
    [258] Higuchi T. Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in soled matrices [J]. J. Pharm. Sci., 1963, 52(12):1145-1149.
    [259] Zhu Y.F.; Shi J.K.; Li Y.S.; et al. Hollow mesoporous spheres with cubic pore network as a potential carrier for drug storage and its in vitro release kinetics[J]. Journal of Materials Research, 2005, 20(1):54-61.
    [260] Serra L.; Domenech J.; Peppas N.A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acidzgzethylene glycol) hydrogels[J ]. Biomaterials, 2006, 27(31):5440-5451.
    [261]梁旭东;李雪光;付瑶;等.井冈霉素载药二氧化硅空心微球的原位制备及缓释性能评价,过程工程学报, 2008, 8 (3):595-599
    [262]王志辉;王洁欣;文利雄;等.盐酸环丙沙星/二氧化硅复合粒子的原位制备及其缓释性能.北京化工大学学报, 2007, 34(5):500-504.
    [263]曾敬;赵桂贞;段纪东.药物控制释放的研究进展.化学通报, 2006, 69:32-37
    [264] Mu L. and Feng S.S., A novel controlled release formulation for the anticancer drug paclitaxel (Taxol?): PLGA nanoparticles containing vitamin E TPGS. J. Cont. Rel., 2003, 86:33-48.
    [265] Kenawy E.R.; Bowlin G.L.; Mansfield K.; et al. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Contr Rel, 2002, 81(1-2):57-64
    [266] Zeng J.; Yang L.X.; Jing X.B.; et al. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Contr. Rel., 2005, 105(1-2):43-51.
    [267]陈晓峰.溶胶-凝胶生物活性材料的研制及其生物矿化性能研究.广州,华南理工大学博士学位论文, 2003,第五章:83-103
    [268] Vaz C.M.; Reis R.L.; Cunha A.M. Degradation model of stareh-EV0H+ HA composites.Mat Res Innovat. 2001, 4:375
    [269]浙江大学.硅酸盐物理化学.中国建筑工业出版社,北京, 1980, 144-156