用户名: 密码: 验证码:
铝合金气膜连铸工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是国家重点基础研究发展规划(973)资助项目“高性能铝材与铝资源高效利用的基础研究”中的部分内容,主要研究气膜及磁场对铝合金连铸坯坯质量的影响,旨在开发高表面质量,经济的铝合金连铸新技术。
     本文的研究内容包括:气体压力及磁场对弯月面形状的影响;结晶器有效冷却长度及结晶器冷却模式对铸锭表面质量及内部组织的影响;气膜连铸过程中工艺参数对铸锭表面质量及铸态组织的影响;静磁场对气膜连铸坯表面质量及内部组织的影响;低频磁场对气膜连铸坯表面质量及内部组织的影响;设计一种异形坯结晶器,研究了分流器及气膜对异形坯连铸时的温度场及铸锭质量的影响。取得的主要成果如下:
     首先根据拉普拉斯方程,建立了气膜连铸(Air film casting,简称AFC)过程中弯月面形状、高度与气体压力的关系。施加的气体压力决定弯月面的形状、尺寸和稳定性,适当的气体压力可以使熔体与结晶器内壁脱离,大幅度降低铸坯的一次冷却强度,为铸锭表面质量的提高奠定了基础。
     由于气膜连铸过程中一次冷却(结晶器壁)很小,铸锭的热量主要由二次冷却水带走。所以,根据热传导公式导出由于二次冷却水的逆向传热所产生的从二次冷却水击水点向上的凝固高度(UCD),发现UCD必须与弯月面高度良好配合,才能获得高表面质量的铸坯。配合原则是:
     B(弯月面高度)+UCD=D(结晶器的有效冷却长度)
     当B+UCD<D时,弯月面与UCD之间有间距,导致液体金属与结晶器内壁直接接触,可能导致表面偏析瘤的产生;当B+UCD>D时,弯月面与UCD重叠,凝壳伸入弯月面,可能导致表面冷隔的产生。
     详细考察了热顶形状和二次冷却方式对气膜连铸铸锭表面质量的影响,发现采用漏斗型热顶和双排水冷有利于保证气膜铸造的顺利进行。在此基础上,设计了可以获得高表面质量的铸锭的新型气膜连铸结晶器。
     采用此种结晶器详细考察了铸造温度、铸造速度、冷却水量、气体流量及润滑油流量和气体类型等工艺参数对Φ174mm铝合金铸锭表面质量、铸态组织和合金元素宏观偏析的影响,确定了6063铝合金的最佳工艺参数为:浇注温度710℃,铸造速度120mm/min,冷却水流量0.07m~3/min,气体流量为2L/min,润滑油流量为6ml/min。在最佳工艺条件下,铸锭表面光滑,消除了冷隔和偏析瘤等表面缺陷;皮下偏析层较薄,约为100μm,铸锭内部组织均匀,完全达到了采用多孔石墨的气滑铸造的水平。
     系统地研究了静磁场对气膜铸造铸锭的表面质量和内部铸造组织的影响。在气膜连铸时施加静磁场,由于熔体切割磁力线可以产生与熔体流动方向相反的洛仑磁力,产生电磁制动,所以施加静磁场可以减少熔体的横向流动,能有效地遏制熔体的流动对弯月面的冲刷,稳定弯月面,因此可以提高气膜连铸的铸造速度。在Φ174mm6063铝合金铸锭气膜连铸最佳工艺条件的基础上,施加10000At的静磁场,铸造速度可以提高到180mm/min,提高50%;铸锭表面光滑,消除了高速铸造下的偏析瘤;没有明显的皮下偏析层,铸锭内部组织均匀。
     考察了低频电磁场对气膜连铸铸锭表面质量和内部铸造组织的影响。施加低频磁场后熔体的流场显著改变,熔体流动方向与无磁场时相反,流动速度显著提高,温度场也发生了显著变化。低频磁场影响弯月面的稳定性,但是提高磁场频率可以降低这种影响。在Φ174mm铸锭气膜连铸最佳工艺条件的基础上,施加30Hz低频磁场,铸锭表面光滑,消除了冷隔,基本消除了表面偏析瘤;铸锭皮下偏析层较薄,铸锭内部组织均匀细小。
     利用气膜铸造一次冷却强度低的特点,开发了异性(三角形)坯的气膜连铸新工艺。发现施加气膜后,可以有效地减小熔体的接触高度和消除一次冷却不均匀的影响,有效地消除冷却不均导致的角部弯曲,减少凝固壳与结晶器内壁的摩擦,消除表面划痕及裂纹,铸锭表面光滑。重点考察了三角形锭坯气膜连铸时的分流特点,获得了异性坯气膜连铸的最佳工艺条件为:浇注温度730℃,铸造速度120mm/min,冷却水流量0.05m~3/min,气体流量为2L/min,润滑油流量为5ml/min。在最佳工艺条件下,铸造工艺稳定,铸锭表面光滑,消除了冷隔和偏析瘤等表面缺陷;皮下偏析层较薄,约为100μm,铸锭内部组织均匀。
This project is a part work of "Foundational research on the high quality aluminum alloy products and high efficient use of aluminum resource", which is supported by the Key Fundamental Research Program of China (973 ) . This work is aimed to study the effects of air film and electromagnetic field on ingot quality, and to develop an economical casting technology of aluminum alloy with high surface quality.
     The work in this thesis includes that effects of air pressure on the shape and size of meniscus, effects of effective cooling length and cooling mode on surface quality and microstructure of ingots, effects of casting parameters on surface quality and microstructure in air film casting (AFC) process, effects of static magnetic field on surface quality and microstructure of ingots, effects of low frequency electromagnetic field (LFEF) on surface quality and microstructure of AFC ingots, effects of flow divider and air film on the temperature field and surface of shaped-blank. The main results are presented as follows:
     The relationship between meniscus shape, height and air pressure was established in AFC process using Laplace equation. It is found that the meniscus shape, size and stability are decided by air pressure. An appropriate gas pressure can separate the melt from the inner mold, which decreases the first cooling intensity of ingot significantly, and thus improves the ingot surface quality.
     In AFC process, the primary cooling intensity is very low, so that the ingot is cooled mainly by the second cooling water. According to the results of heat transfer calculation, a good surface quality can be gained by adjusting the upstream conduction distance (UCD) caused by the reverse heat transfer by second cooling, and the height of meniscus, which obeys the following equation:
     B (the height of meniscus) + UCD = D(the effective cooling length of the mold) When B+UCDD, the meniscus overlaps with UCD, the shell can extend into the meniscus, so that the cold shuts will occur.
     Effects of hot top shape and secondary cooling mode on the ingot surface quality during AFC were detailed investigated. The funnel-shaped hot top and double-layers water cooling can ensure the AFC process. A new AFC mold was designed to produce high surface quality ingots. Effects of casting parameters, such as casting temperature, casting speed, cooling water, air flow, lubricants and gas type, etc., on surface quality, microstructure, and macrosegregation ofΦ174mm aluminum alloy ingots using the new mold were studied. When the casting temperature, casting speed, the flux of cooling water, air flow and oil flow are 710℃, 120mm/min, 0.07m~3/min, 21/min and 6ml/min, respectively, a smooth ingot surface of 6063 alloy ingot is obtained with few cold shuts and thin surface segregations about 100μm, which is same as the ingots using air-slip casting with porous graphite ring.
     Effects of static magnetic field on the surface quality and microstructure of AFC ingots were investigated also. It is well known that when electro-conducting melt moves cross the static magnetic field, flux variations are generated which leads to the local electro-motive forces. The interaction of induced electric currents with the applied static magnetic field gives rise to Lorentz force in the direction against melt flow, which brakes the flow of melt. Thus, the magnetic field can effectively stabilize meniscus by suppressing the melt flow which brushes meniscus. All these conditions are beneficial to increase the casting speed of AFC. The casting speed of AFCΦ174mm 6063 alloy is increased by 50% to 180mm/min, and the ingot surface is smooth with few casting defects when 100000At static electromagnetic field was applied.
     Effects of LFEF on the surface quality and microstructure of the AFC ingots were investigated. Both the flow field and temperature field are changed significantly in LFEF casting. The melt flow direction is reverse to that without LFEF, the melt flow speed increases obviously, and the temperature field also changes evidently. LFEF influenced the stability of meniscus.However,increasing the frequency could decrease this impact. When the magnetic frequency is 30Hz, a good surface ingot is gained with few casting defects.
     A new technology of air-film casting for shaped-blank (triangle ingot) was developed due to low first cooling intensity in AFC. It is found that the meniscus could be stabilized with applied air-film, so the contact height of the melt with mold could be reduced effectively. The uneven cooling intensity by first cooling which causes corner bending is eliminated. The friction between shell and mould is reduced and the scratches and cracks on surface disappear, so that the smooth surface of ingots can be obtained. The optimum casting parameters of triangle ingots using air film casting are that the casting temperature and velocity are 730℃and 120mm/min, respectively, and the flux of cooling water, air flow and oil flow are 0.05 m~3/min, 2L/min and 5ml/min, respectively. Under the optimal conditions the ingot surface is smooth and has no cold shuts and surface segregations. The subsurface segregation zone of the ingot is thin about 100μm, and the as-cast microstructures are fine and uniform.
引文
1.周家荣.铝合金熔铸问答[M].北京:冶金工业出版社,1987,174-176.
    2.J.F.Grandfield,P.T.Mcglade.Water cooling in direct chill casting[J].Mater.Forum,1996,vol.20:29-51.
    3.Schneider W.Lossack E.Improvement of billet quality by use of a hot top mold with a two phase lubrication[J].Light Metals,1987,13:763-768.
    4.Christiani G..C.著,刘启文译.旋转式挤压铝合金铸锭的装置[J].轻合金加工技术,1989,25(6):36-40.
    5.E.F.Emley.Casting of Aluminum[J].International Metals Reviews,1976,5:75-115.
    6.D.Davis.Aluminum billet casting[J].Light metals age,1979,3:26-31.
    7.杨国英,任智森,陈建华.热顶模铸造常见的缺陷及防止措施[J].郑州轻金属研究院:铸造学报,1993.
    8.郭焕林.铝合金大园铸锭热项铸造工艺研究[J].轻合金加工技术,1985,12(5):1-5.
    9.C.baker,V.subramanian.DC continuous casting Aluminum transformation technology and applications[J].American society for metals,metals park,OH,1980,(5):335-388.
    10.李小亚,王东立,许振明等.气膜成形连续铸造技术[J].特种铸造及有色金属合金,2002,(5):27-29
    11.F.Kaempffer,F.Weinberg.Macrosegregation in a copper alloy directionally cast with exudation of liquid[J].Metallurgical Trans,1971,2(9):2477-2483.
    12.A.Mo,T.E.Johnsen,B.R.Henriksen.Modelling the surface segregation development in DC casting[J].Light metals 1994,the minerals,metals and materials society,1994,20:889-896.
    13.Hltoshl Matsuzakl.,Kastuyukl Yoshlkawa,Makoto Morishita.Investigation in the effects of casting aped on inverse segregation behavior in DC casting of aluminum slabs[J].Light metals 1995,the minerals,metals and materials society,1995,15:1033-1037.
    14.Havard J,Thevik.Asbjorn Mo,Torgeir Rusten.A mathematical model for surface segregation in aluminum direct chill casting[J].Metallurgical transaction B,1999,30B(1):135-142.
    15.A.Mo,T.Rusten,J.Yhevik.Modeling of surface segregation development during DC casting of rolling slab ingots[J].Light metals 1997,the minerals,metals & materials society,1997,667-674.
    16.Mc Cubbin J.G.Inverse solidification theory of the formation of the surface on Dccast roumd ingot [J],Light metals,1975,3:137-159.
    17.Havard J,Thevik.Asbjom Mo.Torgeir Rusten.A mathematical model for surface segregation in aluminum direct chill casting[J].Metallurgical transaction B,1999,30B(1):135-142.
    18.Flemings M C.Behavior of metal alloys in the semi-solid state[J].Metallurgical Transactions B, 1991,22B:269-293.
    19.Johen E,Jacoby.Function of molds and starting blocks in vertical casting processes[C],4~(th)Australasian Asian Pacific Course and Conference Aluminum cast house technology:theory&practice,1995,12:293-315.
    20.Wolfgang Schneider,Einar K.Jensen,Bertrand Carrupt.Development of a new starting block shape for the D.C.casting of sheet ingots Partl:experimental results[J],Light Metals,1995,24:961-967.
    21.孝云祯,马宏声.有色金属熔炼与铸锭[M].沈阳:东北大学出版社,1994,141-156.
    22.Luck M,Hamburg J,Spokane L.Milestones in the development of ingot casting technology[J].Aluminum,1996,72(11):772-776.
    23.Nofal A A.Surface Defect formation in the DC-Cast Aluminum Products.Advances in Continuous Casting Research and Technolog[M].Gairo:Taha M T.E1-Mahallawy N.A,Cairo,1992:205-218.
    24.Lorenz H,Schneider W..Improvements in plant operation of the AIRSOL VEIL~(TM) billet casting system[A].Euel R C.Light Metals[C].San Diego,CA:Minerals,Metals & Materials Soc(TMS),1991:889-893.
    25.Singh R V.Latest semi-continuous casting systems for rolling ingots and extrusion billets tips to a buyer[J].Recent Developments in Light Metals,1995:513-524.
    26.Schneider W,Reif W.Present situation of continuous casting for aluminum alloys.Advances in Continuous Casting Research and Technology[M].Edited by Taha M T.E1-Mahallawy N.A,Cairo,1992:173-190.
    27.Hangenberg F C,Pestel G,Honeycutt C R.Grain refinement of steel ingots by solidification in a moving electromagnetic field[J],Trans Metall Soc AIME,1961,221:993-1001
    28.Johnston W C,Kotler G R,Tiller W A.The influence of electromagnetic stirring on the nucleation of Tin and Tin-lead alloy[J],Trans Metall Soc AIME,1963,227(4):890-896.
    29.Johnston W C,Kotler G R,Tiller W A.Grain refinement via electromagnetic stirring during solidification[J],Trans Metall Soc AIME,1965,233(9):1856-1960.
    30.E1-Bassyouni T A.Effect of electromagnetic forces on aluminum cast structure[J],Light Metals,1983,33(12):733-742.
    31.Vives C.Solidification of Tin in the presence of electric and magnetic field[J],Journal of Crystal Growth,1986,76:170-184.
    32.Vives C.Electromagnetic refining of aluminum alloys by the CERM process:part Ⅰ.Working principle and metallurgical results[J],Metallurgical Transactions,1989,20B:623-629.
    33.Vires C.Electromagnetic refining of aluminum alloys by the CREM process:part Ⅱ.Specific practical problems and their solutions[J],Metallurgical Transactions,1989,20B:631-643.
    34.李树索,赵爱民,毛卫民等.半固态过共晶Al-Si合金显微组织中近球形α相形成机理的研究[J],金属学报,2000,36(5):545-549.
    35.朱明原,史文,杨森龙等.电磁搅拌作用对铝合金显微组织的影响[J],中国有色金属学报(增刊 1),1999:29-34.
    36.毛卫民,赵爱民,崔成林等.电磁搅拌对半固态AlSi7Mg合金初生α-Al的影响规律[J],金属学报,1999,35(9):971-974.
    37.毛卫民,李树索,赵爱民等.电磁搅拌Al-24%Si合金的显微组织[J],中国有色金属学报,2001,11(5):819-823.
    38.Vives C.Effects of forced electromagnetic vibrations during the solidification of Aluminum Alloys:Part Ⅰ.Solidification in the presence of crossed alternating electric fields and stationary magnetic fields[J],Metallurgical and Materials Transactions,1996,27B:445-455.
    39.Vives C.Effects of forced electromagnetic vibrations during the solidification of Aluminum Alloys:Part Ⅱ.Solidification in the presence of collinear variable and stationary magnetic fields[J],Metallurgical and Materials Transactions,1996,27B:457-464.
    40.Kozuka T,Mitsuo T,Asoda T.Wave suppression of molten metal by imposing both stationary magnetic field and direct electric current[J],Journal of the Iron and Steel Institute of Japan,80(8):37-42.
    41.Levdansky V V,Kim H Y,Kim H C.Effect of electromagnetic field on transfer processes in heterogeneous systems[J],International Journal of Heat and Mass Transfer,2001,44:1065-1071.
    42.张勤,崔建忠,路贵民等.电磁振荡强度对半连铸7075铝合金微观组织的影响[J],中国有色金属学报,2002,12(5):222-226.
    43.张勤.低频电磁连续铸造铝合金工艺及理论研究[D],沈阳:东北大学,2003.
    44.张北江,崔建忠,路贵民等.电磁场频率对电磁铸造7075铝合金微观组织的影响[J],金属学报,2002,38(2):215-218.
    45.张北江,崔建忠,路贵民等.外加电磁场对连续铸造7075铝合金宏观偏析规律的影响[J],东北大学学报,2002,23(10):63-65.
    46.Zhang B J,Cui J Z,Lu G M,Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys[J],Journal of Materials Science and Technology,2002,18(5):1-3.
    47.Zhang B J,Cui J Z,Lu G M.Effect of electromagnetic field on macrosegregation of continuous casting 7075 aluminum alloy[J],Transactions of Nonferrous Metals Society of China,2002,12(4):545-548.
    48.Jie Dong,Jianzhong Cui,Fuxiao Yu,Chunyan Ban,Zhihao Zhao.Effect of Low-Frequency Electromagnetic Casting on the Castability,Microstrure,and Tensile Properties of Direct-Chill Cast Al-Zn-Mg-Cu Alloy[J],Metallurgical and Materials Transactions,2004,35A:2487-2494.
    49.左玉波,董杰,崔建忠.铸造工艺参数对超高强铝合金低频电磁半连续铸锭微观组织的影响[J],铸造,2005,54(5):455-458.
    50.Zuo Yubo,Cui Jianzhong,Zhao Zhihao,Zhang Haitao,Qin Ke.Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots[J],Materals Science and Engineering A,2005,406:286-292.
    51.左玉波.超高强铝合金DC铸造组织电磁调控工艺与理论研究[D],沈阳:东北大学,2006.
    52.董杰,刘晓涛,赵志浩等.结晶器材料对低频电磁铸造超高强铝合金铸态组织的影响[J],金属学报,2004,40(2):215-219.
    53.董杰,石路,石安平等.低频电磁铸造Al-Zn-Mg-Cu-Zr合金[J],高技术通讯,2003,13(1):45-49.
    54.董杰,崔建忠,赵志浩.低频电磁铸造超高强高韧铝合金元素晶内固溶度和力学性能研究[J],航空材料学报,2003,23(1):16-20.
    55.董杰,崔建忠,刘晓涛等.低频电磁铸造7A60超高强铝合金(Ⅰ)φ0.2m锭坯铸态组织[J],中国有色金属学报,2003,13(6):1494-1499.
    56.董杰,刘晓涛,赵志浩等.低频电磁铸造7A60超高强铝合金(Ⅱ)φ0.2m锭坯合金元素晶内固溶度和力学性能研究[J],_中国有色金属学报,2004,14(2):117-121.
    57.董杰.超高强铝合金低频电磁连续铸造工艺与理论研究[D],沈阳:东北大学,2003.
    58.赵志浩.轻合金低频电磁水平连续铸造工艺及理论研究[D],沈阳:东北大学,2006.
    59.Zhao Z H,Cui J Z,Dong J.Effect of low-frequency magnetic field on microstructures and macrosegregation of horizontal direct chill casting 7075 aluminum alloy[J],Journal of Materials Processing Technology,2007,182:185
    60.Zhao Z,Cui J,Dong J.Microstructures of horizontal direct chill casting 2024 aluminum alloy[J],Journal of Alloy and Compounds,2005,396:164-168.
    61.刘小霞,朱宇妹,汪先明等.气膜润滑及其应用[J].江西科学,2002(9):174-177.
    62.王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999.
    63.Ekenes J M,Storey K W,Peterson W S,et al.Fiber optics-a new look at AIRSLIP~(TM)casting[A].Elw in L.Light Metals[C].New Orleans,LA:Minerals Met-als & Materials Soc(TMS),1990:933-938.
    64.Ekenes J M,Wagstaff F E.Expanding Capabilities of the AIRSLIP~(TM) Casting Process[J]Light Metals,1985,1311-1316.
    65.Fauce J P,ValdoA.The AIR-SLIP~(TM) Casting Mold An Established Technology[J]Light Metals,1985,1317-1330.
    66.Schneider W,Lossack E.Improvement of Billet Quality by Use of a Hot-Top Mold with a Two Phase Lubrication.Light Metals,1987,763-768.
    67.Sekiguchi T,Mitamura R,Fukuda S.Forgeability of Cast Bar by New Hot-Top Continuous Casting Process.Light Metals,1984,871-883.
    68.Schneider W.Improved Technology of the Airsol-Veil~(TM) Billet Casting System.Light Metals,1994,985-989.
    69.Faunce J P,Wagstaff F E,Show H.New Casting Method for Improving Billet Quality.Light Metals,1984,1145-1158.
    70.程常桂,任忠鸣,邓康等.气膜软接触连铸技术的研究[J].特种铸造与有色合金,2003,23(2):29-31.
    71.程常桂,邓康,任忠鸣,罗鸿博等.工艺参数对气膜软接触连铸坯组织性能的影响[J].有色金属学报,2004,14(3):359-365.
    72.罗鸿博,邓康,程常桂,雷作胜等.软接触气膜连铸的实验研究[J],上海大学学报,2002,8(5):415-419.
    73.程常贵,气膜软接触连铸技术的基础研究[D],上海:上海大学,2003.
    74.张国志,屈福,辛启斌等.新型气膜约束成形铝合金连续铸锭的研究[J].特种铸造及有色金属合金,2007,27(7):540-542.
    75.Getselev Z V.Casting in an electromagnetic field[J].Journal of Metals,1971,23(10):38-44.
    76.Lavers J D,Bringer P P.Electromagnetic transport and confinement of liquid metals[J].IEEE Transactions on Magnetics,1989,25(3):495-502.
    77.P.W.Baker,J.F.Grandfield.The role of surface tesion foces in gas pressurized VDC casting[A].7~(th)Australian Asian pacific conference aluminium cast house technology,2001:195-204.
    78.贾非.电磁连续铸造过程工艺优化及组织性能研究[D].大连:大连理工大学,2002.
    79.J.M.Drezet,M.Rappaz,B.Carrupt and M.Plata;Experimental investigation of thermomechanical effects during direct chill and electromagnetic casting of aluminum alloys.Metall Trans,1995,26(8):821-827.
    80.陶文铨,数值传热学[M].西安交通大学出版社,1988,431-447.
    81.Launder B E,Spalding D B.Computer methods in applied mechanics and engineering[M],1974,3:269-289.
    82.Rodi W.Turbulence models and their application in hydraulics state of the art review[M].IAHR Edlft,the Netherlands,1980.
    83.Sheng Y Y,Irons G A.Measurement and modeling of turbulence in the gas/liquid two-phase zone during gas injection[J],Metall Trans B,1993,24B:695-705.
    84.Li B K,He J C.Numerical simulation on circulating flow and mixing of molten steel in RH degassing system employed a coupled domain-splitting and coordinate interlocking[A],ISS,Steelmaking Conference Proceedings,1994,77:723-727.
    85.J Dong and J Z Cui.Effect of low-frequency electromagnetic field on microstructures and macrosegregation of φ270 mm DC ingots of an A1-Zn-Mg-Cu-Zr alloy[J],Mater.Lett.59(2005)1502-1506.
    86.S Asai and I Muchi:Trans.Iron Steel Inst.Jpn.,1978,Vol.18,pp.90-98.
    87.Trovant M and Argyropoulos S.Technique for the Eatimation of Instanteneous Heat Transfer at the Mold/Metal Interface during Casting[J],Light Metals,1997:927-931.
    88.Drezet J M.Direct Chill and Electromagnetic Casting of Aluminum Alloys:Thermomechanical Effects and Solidifcation Aspects[D],Ph.D Thesis,Department of Materials,Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland, 1996.
    
    89. Schneider W, Reif W. Present Situation of Contiuous Casting for Aluminum Wrought Alloys[A], Proceedings of the 6~(th) Arab International Aluminum Conference, Arab Federation for Engineering Industries, 1994:173-190.
    
    90. Weckman D C, Niessen P. A Numerical Simulation of the D.C. Casting Process Including Nucleate Boling Heat Transfer[J], Metallurgical Transactions B, 1982(13B):593-602.
    
    91. Ho K and Pehlke R D. Metal-Mold Interfacial Heat Transfer[J], Metallurgical Transactions B,1985,(16B):858-594.
    
    92. Nishida Y, Droste W and Engler E, The Air-gap Formation Process at the Casting-Mold Interface and the Heat Transfer Mechanism through the Gap[J], Metallurgical Transactions B,1986(17B):833-844.
    
    93. Kraushaar H, Jeschar R, Heidt V, Jensen E K, Schneider W. Correlation of Surface Temperatures and Heat Transfer by D.C. Casting of Aluminum Ingots[J], Light Metals 1995 (Ed. J. Evans), The Minerals, Metals and Materials Society, Warrendale,USA, 1995, pp. 1055-1059.
    
    94. Langlais J, Bourgeois T, Caron Y, Beland G and Bernard D. Measuring the Heat Extraction Capacity of D.C. Casting Cooling Water[J], Light Metals 1995 (Ed. J. Evans),The Minerals, Metals and Materials Society, Warrendale, USA, 1995, pp. 979-986.
    
    95. Maermer L, Magnin B, and Caratini Y. A Comprehensive Approach to Water Coolingin D.C. Casting[J], Light Metals 1997 (Ed. R. Huglen), The Minerals, Metals and Materials Society, Warrendale, USA,1997,pp.701-707.
    
    96. Larouche A, Caron Y and Kocaefe D. Impact of Water Heat Extraction and Casting Conditions on Ingot Thermal Response during D.C. Casting[J], Light Metals 1998 (Ed. B.Welch), The Minerals, Metals and Materials Society, Warrendale, USA, 1998, pp. 1059-1064.
    
    97. Larouche A, Langlais J, Bourgeois and Gendron A. An Integrated Approach to Measuring D.C. Casting Water Quenching Ability[J], Light Metals 1999 (Ed. M. Bouchard and A. Faucher), MetSoc, Warrendale, USA, 1999, pp. 235-245.
    
    98. Opstelten Ivo J, Rabenberg Jan M. Determination of the Thermal Boundary Conditions during Aluminum D.C. Casting from Experimental Data using Inverse Modeling[J], Light Metals 1999 (Ed. C. E. Eckert), The Minerals, Metals and Materials Society, Warrendale, USA, 1999, pp: 729-735.
    
    99. Zuidema Jr, J, Katgerman L, Opstelten L J and Rabenberg J M. Secondary Cooling in D.C. Casting: Modeling and Experimental Results[J], Light Metals 2001 (Ed. J. L.Anjier), The Minerals, Metals and Materials Society, Warrendale, USA, 2001, pp: 873-878.
    
    100. Li D, Wells M A, Lockhart G. Effect of Surface Morphology on Boiling Water Heat Transfer During Secondary Cooling of the DC Casting Process[J], Light Metals 2001(Ed. J. L. Anjier), The Minerals, Metals and Materials Society, Warrendale, USA, 2001, pp: 865-871.
    101.Wells M A,Li D,Cockcroft S L.Influence of Surface Morphology,Water Flow Rate,and Sample Thermal History on the Boiling-Water Heat Transfer during Direct-Chill Casting of Commercial Aluminum Alloys[J],Metallurgical Transactions B,2000,32B:929-939.
    102.Kiss L I,Meenken T,Charette A,Lefebvre Y and Levesque R.Experimental Study of the Heat Transfer along the Surface of a Water-film Cooled Ingot[J],Light Metals 2002(Ed.W.Schneider),The Minerals,Metals and Materials Society,Warrendale,USA,2002,9:981-985.
    103.Weckman D C,Niessen P.Mathematic Models of the DC Continuous Casting Process[J],Canadian Metallurgical Quarterly,1984,23(2):209-216.
    104.Bakken J A,Bergstrom T.Heat Transfer Measurements during DC Casting of Aluminum Part Ⅰ:Measurement Technique[J],Light Metals 1986,9:883-889.
    105.Tarapore E D.Thermal Modeling of DC Continuous Billet Casting[J],Light Metals 1989,15:875-879.
    106.Watanabe Y and Hayashi N.3-D Solidification Analysis of the Initial State of the DC Casting Process[J],Light Metals 1996,9:979-984.
    107.Wiskel J B,Cockcroft S L.Heat-flow-based Analysis of Surface Crack Formation during the Start-up of the Direct Chili Casting Process,Part Ⅰ:Development of the Inveerse Heat-transfer Model[J],Metallurical Transaction B,1996,27B:119-127.
    108.John E.Hatch,Aluminium:Properties and Physical Metallurgy[M],ASM,Metals Park,Ohio,1983.
    109.D P Cook,J W Evans.Three-dimensional mathematical model of electromagnetic casting and testing against a physical model:Part Ⅰ.The mathematical model[J],Metall.Mater.Trans.1995,26B:1263-1270.
    110.D P Cook,J W Evans.Three-dimensional mathematical model of electromagnetic casting and testing against a physical model:Part Ⅰ.The mathematical model[J],Metall.Mater.Trans.1995,26B:1271-1279.
    111.张海涛,崔建忠等,磁场增强型铝合金低频电磁铸造结晶器,2005201460865,2006,10.
    112.路贵民,柯东杰.铝合金熔炼理论与工艺[M],沈阳:东北大学出版社,1999,255-258.
    113.Davis C J.Solidification and Casting[M],Cambridge:Cambridge University,1973:112.
    114.Mehrabian R.Experiments on macrosegregation and freckle formation[J],Mat.Trans.1970,1(11):3238-3241.
    115.Vreeman C J,Incropera F P.The effect of free-floating dendrites and convention on macrosegregation in direct chill cast aluminum alloys Part Ⅱ:predictions for Al-Cu and Al-Mg alloys[J],International Journal of Heat and Mass Transfer,2000,43:687-704.
    116.Zheng L L,Dong L,Zhang H.Role of thermotransport(Soret effect) in macrosegregation during eutectic/off-eutectic directional solidification[J],Journal of Crystal Growth,1998,191:243-251.
    117.Bennon W D,Incropera F P.A continuum model for momentum,heat and species transport in binary solid-liquid phase change systems-1.Model formulation[J],International Journal of Heat and Mass Transfer,1987,30(10):2161-2170.
    118.Bennon W D,Incropera F P.A continuum model for momentum,heat and species transport in binary solid-liquid phase change systems—Ⅱ.Application to solidification in a rectangular cavity[J],International Journal of Heat and Mass Transfer,1987,30(10):2171-2187.
    119.Chang S,Stefanescu D M.A model for macrosegergation and its application to Al-Cu castings[J],Metallurgical and Materials Transactions,1996,27A:2708-2721.
    120.Schneider M C,Beckermann C.A numerical study of the combined effects of microsegregation,mushy zone permeability and flow,caused by volume contraction and thermosolutal convection,on macrosegregation and eutectic formation in binary alloy solidification[J],International Journal of Heat and Mass Transfer,1995,38(18):3455-3473.
    121.Vreeman C J,Krne M J M,Incropera F P.The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys PART Ⅱ:model development[J],International Journal of Heat and Mass Transfer,2000,43:677-686.
    122.Rousset P,Rappaz M,Hannart B.Modeling of inverse segregation and porosity formation in directionally solidified aluminum alloys[J],Metallurgical and Materials Transactions,1995,26A:2349-2358.
    123.Reese J M.Characterization of the flow in the molten metal sump during direct chill aluminum casting[J],Metallurgical and Materials Transactions,1997,28B:491-499.
    124.Reddy A V,Beckermarm C.Modeling of macrosegergation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al-Cu round ingot[J],Metallurgical and Materials Transactions,1997,28B:479-489.
    125.郑贤淑,金俊泽.电磁铸造大板坯凝固过程中热裂纹萌生机理分析[J],金属学报,1995,31:511-514.
    126.孝云祯,马宏声.有色金属熔炼与铸锭.沈阳:东北大学出版社,1994,148.
    127.J.Grandfield,K.Goodall,P.Misic,X.Zhang,"Water Cooling in direct chill casting:Part2,Effect on billet heatflow and solidification",in Light Metals 1997,R.Huglen ed.,TMS Warrendale 1997,p1081.
    128.J.Sengupta,S.L.Cockcroft,D.Maijer,M.A.Wells,A.Larouche,The effect of water ejection and water incursion on the evolution of thermal field during the start-up phase of the direct chill casting process.Journal of Light Metals,2002,(2):137-148.
    129.REN Zhong-ming,DONG Hua-feng,DENG Kang,et al.Study of initial solidification in soft contact electromagnetic continuous casting with soft-contacted mould[J],Acta Metallurgical Sinica,1999,35(8):851-855.
    130.H Harada,T Ton,T Ishii,et al.Effect of Magnetic Field Conditions on the Electromagnetic Braking Efficiency[J].ISIJ International,2001,41(10):1236-1244.
    131.Akira Idogawa,Hirokazu Tozawa,Shuji Takeuchi,et al.Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Fields Imposed on Whole Width[A].International Symposium on Electromagnetic Processing of Materials[C].Nagoya,ISIJ,1994,378-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700