用户名: 密码: 验证码:
低能氢、氘离子束在金属锂靶中引起的~6Li+d和~7Li+p反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在核天体物理中,核反应过程的研究对了解早期宇宙的形成和恒星的演化起着关键作用,所以与天体物理相关的核反应截面(σ(E))必须得到准确地测量。然而,由于反应核子之间库仑势的排斥作用,在天体物理学能区核反应截面的直接测量显得异常困难。因为当粒子动能远低于反应核子的库仑位垒时,核反应截面随能量的降低而急剧下降,所以通常的做法是将该能区的核反应截面用随能量降低而变化缓慢的天体物理学S(E)因子表示。
     在不受环境电荷的干扰时,裸核的核反应截面为σbare(E),相应的天体物理学因子为Sbare(E)。然而,在实验室条件下靶(或弹)核通常是处于一定的电荷环境中,甚至是以中性原子形式存在。因此,部分环境电荷将对反应核子之间的排斥库仑势起到屏蔽或削弱作用,使得实际测量的核反应截面有所增强(σscreened(E)),相应的S(E)因子为Sscreened(E)。与裸核核反应截面相比,实际测量截面增强了f(E,Us)倍,其中f称为核反应截面的增强因子,Us为环境电荷提供的屏蔽能。
     轻核反应的Sbare(E)因子-般采用参数化的多项式表示,其通常由拟合高能区(Us/E<<100)实验数据得到。然后,通过拟合屏蔽效应较为明显的低能区实验数据得到环境电荷的屏蔽势(Us)。近年来,有大量报道表明在金属环境中D+d和6/7Li+d/p反应的屏蔽势存在异常增强现象。与气体环境相比,在金属环境中不仅要考虑束缚电子的屏蔽作用而且还要考虑自由电子的屏蔽作用。然而,金属环境中D+d反应屏蔽势的测量结果显示,在绝大多数金属环境中Us>300 eV,这远远超出了电子屏蔽势的理论期望值(~80 eV)。金属环境中6Li(d,α)4He和7Li(p,α)4He反应的屏蔽势测量值甚至超过1000 eV,例如:在PdLix靶中,Us=1400±480 eV和3790±330 eV;在固态锂靶中,Us=1280±60 eV。
     这些异常的实验结果迫切要求对金属环境中低能核反应的屏蔽效应开展更深入的研究工作。本论文工作利用固态和液态金属锂靶进行相关实验测量,其目的主要是:1)、通过比较气态、液态和固态环境中屏蔽势的差异,观测屏蔽势是否受物相的影响;2)、通过比较不同温度的液态锂环境中屏蔽势的差异,观测屏蔽势是否受温度的影响。
     本研究工作是在日本东北大学理学部原子核研究所的低能强流加速器平台上开展的。分别利用低能(22.5~70 keV)质子束和氘束轰击纯金属锂靶,并通过改变锂靶的物相或温度观测6Li(d,α)4He和7Li(p,α)4He反应出射带电粒子产额的变化。
     通过比较固态环境和液态环境以及文献报道的气态环境中的屏蔽效应,发现:固态和液态环境中6Li(d,α)4He反应屏蔽势的差异为74±68 eV,7Li(p,α)4He反应屏蔽势的差异为98±176 eV;气态和液态环境中6Li(d,α)4He反应屏蔽势的差异为235±63 eV,7Li(p,α)4He反应屏蔽势的差异为140±82 eV。
     通过与文献报道的气态环境中6Li(d,α)4He反应屏蔽效应的比较,得到不同温度的液态锂靶中屏蔽势存在明显的差异。如,T~222℃时,ΔUsliq.-mol.=297±40 eV;T~259℃时,ΔUsliq.-mol.=260±32 eV;T~303℃时,ΔUsliq.-mol.=223±36 eV和T~327℃时,ΔUsliq.-mol.=119±35 ev;
     然而,Sbare(E)因子的不确定性使得无法得到各种条件下屏蔽势的绝对值。在实验数据分析中,通过比较厚靶条件下的修正S(E)因子(S~*(E)),得到了各种环境中的屏蔽势与Engstler等人测量的分子环境中屏蔽势的差异。本论文实验结果显示:
     1)、屏蔽势受物相影响(Uliquid>Usolid>Ugas);
     2)、屏蔽势受环境温度影响(Us(Tlow)>Us(Thigh))。
     本论文研究工作在国内外尚属首次。
Nuclear reaction plays a key role in nuclear astrophysics for understanding of the early universe and evolution of the stars. For this reason the cross section(σ(E)) of an important astrophysical reaction at the relevant thermal energy must be known accurately. However, the direct measurements of reaction cross section between charged particles at an astrophysical energy region are severely hindered by the presence of the Coulomb barrier. Since the cross section drops steeply at energy E far below the Coulomb barrier, it is advantageous to transform the cross section into the astrophysical S(E) factor.
     The cross section of nuclear reaction between two bare nuclei is called the bare cross section (σbare) and the corresponding S-factor is called the bare S-factor (Sbare(E)). However, for the reaction studied in the laboratory, the target nuclei and projectiles are usually in the form of neutral atoms, molecules or ions. Consequently, the charged particles surrounding the interacting nuclei screen the repulsive Coulomb potential between the bare nuclei. This leads to an enhanced cross section (σscreened(E)) and a screened S-factor (Sscreened(E)). Due to the screening effect, the cross section is enhanced by a factor f(E, Us), where Us is a screening energy provided by the environment, and f(E, Us) increases exponentially as the energy decreases.
     The Sbare(E) for reactions with light nuclei, is deduced experimentally by assuming a polynomial function of E, whose coefficients are usually determined at higher energy region (E/Us>>100) where the screening does not affect the cross section. Then, the values of Us are determined from lower energy data so as to explain the observed enhancement. Recently, it has been reported that there are surprisingly large screening effects for the D+d and the 6Li+d(or 7Li+p) reactions in metal environments. In metal, the screening due to the conduction electrons should be considered in addition to the bound electrons. However, observed values of Us for the D+d reaction are more than 300 eV in most of metals, which is much larger than predicted with the Thomas-Fermi model (several tens of eV). For the 6Li(d,a)4He and 7Li(p,α)4He reactions, reported values of Us are sometimes anomalously larger than 1000 eV; they are Us=1400±480 eV and 3790±330 in PdLix target, and Us=1280±60 eV in solid lithium metal target.
     These abnormal observations have promoted us to study the screening effect due to metal environments more deeply. In this work, the solid and liquid lithium targets have been developed for two purposes:The first purpose is to observe the phase-dependece of screening effect by comparing the screening energies provided by molecular (data from Engstler et al.), solid and liquid target. The other one is to measure the temperature-dependence of screening effect by comparing the screening energies provided by liquid lithium with different temperature conditions.
     This work was processed in the Department of Nuclear Science, Tohuku University, institute for low energy accelerator platform. The thick target yields of the charged particles emitted from the 6Li(d,a)4He and 7Li(p,a)4He reaction were measured, by using the low energy (22.5-70 keV) proton (or deuterium) beam bombardment on the pure lithium metal, with the changement of target condition, i.e., the target phase or the environmental temperature.
     Comparing the screening effect in different environments, i.e., solid and liquid environment as well as gas environment reported previously, we found that:Comparing the solid and liquid environments, we found that the discrepancy of screening effect of the 6Li(d,a) He reaction is 74±68 eV, for the 7Li(p,a)4He reaction the discrepancy is 98±176 eV; By comparing the gas and liquid environments, the discrepancies of screening effects were 235±63 eV and 140±82 eV for the 6Li(d,a) He and 7Li(p,a)4He reactions, respectively.
     For the measurement of the temperature dependence of screening effect, by comparing to the screening effect of the 6Li(d,a)4He reaction occurred in gas environment, we found that the screening effect would be affected by the environmental temperature obviously. For instance, when T~222℃,ΔUsliq.-mol.=297±40 eV; T~259℃,ΔUsliq.-mol.=260±32 eV; T~303℃,ΔUsliq.-=223±36 eV and T~327℃,ΔUsliq.-mol.=119±35 eV.
     However, it is impossible to deduce the absolute values of screening energies due to the uncertainty of Sbare(E) factor. By comparing the modified S(E) factor (S*(E)) obtained in various target conditions, the discrepancy of screening energies can be unambiguously deduced. The experimental results show:1). The screening energy is affected by target phase (Uliquid> Usolid> Ugas); 2). The screening energy is affected by environmental temperature (Us(Tlow)> Us(Thigh)). The present work observed these phenomenon, for the first time.
引文
[1-1]Rolfs C., W.W. Rodney:Cauldrons in the cosmos, (University of Chicago Press, Chicago, 1988).
    [1-2]Aston F. W; Isotopes, (E. Arnold, London,1922).
    [1-3]Rutherford E, Philos. Mag.,6(1911),21.
    [1-4]Fowler W. A., Rev. Mod. Phys.,56(1984),149.
    [1-5]Ichimaru S., Kitamura H., Phys. of Plasmas,6(1999),2649.
    [1-6]Kittel C., Introduction to Solid State Physics (sixth ed.), (John Wiley and Sons, Inc.1986) pp. 264.
    [1-7]Assenbaum H. J., Langanke k., Rolfs C., Z. Phys. A,327(1987),461.
    [1-8]Czerski K., Huke A., Biller A., et al., Europhys. Lett.,54(2001),449.
    [1-9]Yuki H., Kasagi J., Lipson A. G., et al., JETP Lett.,68(1998),823.
    [1-10]Raiola F., Gang L., Bonomo C., et al., Eur. Phys. J. A,19(2004),283.
    [1-11]Bracci L., Fiorentini G., Melezhik V. S., et al., Nucl. Phys. A,513(1990),316.
    [1-12]Liolios T. E., Phys. Rev. C,63(2001),045801.
    [1-13]Raiola F., Burchard B., Fulop Z., et al., J. Phys. G:Nucl. Part. Phys.31(2005),1141.
    [1-14]Kasagi J., Yuki H., Baba T., et al., J. Phys. Soc. Jpn.,73(2004),608.
    [1-15]Cruz J., Fulop Z., Gyurky G., et al., Phys. Lett. B 624(2005),181.
    [2-1]Blatt J. M., Weisskopf V. F., Theoretical Nuclear Physics (New York:Wiley,1962).
    [2-2]Gamow G. Z., Z. Phys.51(1928),204.
    [2-3]Condon E. U., Gurney R. W., Phys. Rev.,33(1929),127.
    [2-4]Bethe H. A., Rev. Mod. Phys.,9(1937),69.
    [2-5]Engstler S., Raimann G., Angulo C., et al., Z. Phys. A,342(1992),471.
    [2-6]Barker F. C., Nucl. Phys. A,707(2002),277.
    [2-7]Baur G., Phys. Lett. B,178(1986),135.
    [2-8]Musumarra A., et al., Phys. Rev. C,64(2001),068801.
    [2-9]Lattuada, M., Pizzone R. G., Typel S., et al., Ap. J.,562(2001),1076.
    [2-10]Rolfs C.. Kavanagh R. W., Nucl. Phys. A,455(1986),179.
    [2-11]Kim Y. E., Kim Y. J., Zubarev A. L, Phys. Rev. C,55(1997),801.
    [2-12]Kim Y. E. Zubarev A. L., Few-Body Syst. Suppl.,8(1995),332.
    [2-13]Lindhard J., Nielsen V., Scharff M., Mat. Fys. Medd. K. Dan. Vidensk. Selsk.,36(1968), 32.
    [2-14]Lenz W., Z. Physik.77(1932),713.
    [2-15]Jensen H., Z. Physik,77(1932),722.
    [2-16]Moliere G., Z. Naturforsch, A2(1947),133.
    [2-17]Bohr N., Kg. Dan. Vid. Selsk. Mat. Fys. Medd.,18(1948),8.
    [2-18]Bracci L., Fiorentini G., Melezhik V. S., et al., Nucl. Phys. A,513(1990),316.
    [2-19]Greife U., Corris F., Junker M., et al., Z. Phys. A,351(1995),107.
    [2-20]Angulo C., et al, Z. Phys. A,345(1993),231.
    [2-21]Czerski K., Huke A., Biller A., et al., Europhys. Lett.,54(2001),449
    [2-22]Yuki H., Kasagi J., Lipson A. G., et al., JETP Lett.,68(1998),823
    [2-23]Raiola F., Gang L., Bonomo C. Eur. Phys. J. A,19(2004),283
    [2-24]Kasagi J., Yuki H., Baba T., et al., J. Phys. Soc. Jpn.,73(2004),608
    [2-25]Cruz J., Fulop Z., Gyurky G., et al., Phys. Lett. B,624(2005),181
    [2-26]Yonemura H., Kasagi J., Honmo M., et al., AIP CP,853(2006),372
    [2-27]Kasagi J. Yonemura H., Toriyabe Y., et al., AIP CP,1016(2008),233
    [2-28]Kasagi J. and Yonemura H., AIP CP,1098(2009),2002
    [2-29]Kittel C., Introduction to Solid State Physics (sixth ed.), (John Wiley and Sons, Inc.1986) pp.264
    [2-30]Ichimaru S., Rev. Mod. Phys.,54(1982),1071
    [2-31]Bahcall J. N., Brown L. S., Gruzinov A., et al., Astron. Astrophys.,383(2002),291
    [2-32]Kasagi J., Progr. Theor. Phys. Suppl.,154(2004),365
    [2-33]Debye P., Polar Molecules, New York, Dover Publications,1929
    [2-34]Assenbaum H. J., Langanke k., Rolfs C., Z. Phys. A,327(1987),461
    [2-35]Bosch,H.S., Hale, G.M., Nucl. Fusion 32(1992),611
    [2-36]Langanke K., Shoppa T. D., Barnes C. A., et al., Phys. Lett. B,369(1996),211
    [2-37]Chulick G. S., Kim Y. E., Rice R. A., et al., Nucl. Phys. A,551(1993),255
    [2-38]Aliotta M., Raiola F., Gyurky G., Nucl. Phys. A,690(2001),790
    [2-39]Engstler S., Krauss A., Neldner K., et al., Phys. Lett. B,202(1988),179
    [2-40]Junker M, Alessandro A. D., Zavatarelli S., et al., Phys. Rev. C,57(1998),2700
    [2-41]Shoppa T. D., Koonin S. E., Langanke K., et al., Phys. Rev. C,48(1993),837
    [2-42]Shoppa T. D., Jeng M., Koonin S. E., et al., Nucl. Phys. A.605(1996),387
    [2-43]Kimura S., Takigawa N., Abe M., et al., Phys. Rev. C,67(2003),022801
    [2-44]Czerski K., Huke A., Herde P., et al., Europhys. Lett.,68(2004),363
    [2-45]Kasagi J., Sur. and Coa. Tech.,201(2007),8574
    [2-46]Raiola F., Burchard B., Fulop Z., et al., J Phys. G,31(2005) 1141
    [2-47]Czerski K., Huke A., Herde P., et al., Eur. Phys. J. A,27(2006),83
    [2-48]Huke A., Czerski K., Heide P., et al., Phys. Rev. C,78(2008),015803
    [2-49]Kasagi J., Yuki A., Baba T., et al., J. Phys. Soc. of Jpn.,71(2002),2881
    [2-50]Kasagi J. and Yonemura H., AIP CP,1098(2009),2002
    [3-1]Shimizu Y., Mizuno A., Masaki T., et al., Phys. Chem. Chem. Phys.,4(2002),4431.
    [5-1]Jeronymo J. M. F., Mani G. S., Picard F., et al., Nucl. Phys.,38(1962),11.
    [5-2]Elwyn A. J., et al., Phys. Rev. C,16(1977),1744.
    [5-3]Engstler S., Raimann G., Angulo C., et al., Z. Phys. A,342(1992),471.
    [5-4]Rolfs C., Kavanagh R. W., Nucl. Phys. A,455(1986),179.
    [5-5]Spinka H., Tombrello T., Winkler H., Nucl. Phys. A,164(1971),1.
    [5-6]Barker F. C., Nucl. Phys. A,707(2002),277.
    [5-7]Musumarra A., et al., Phys. Rev. C,64(2001),068801.
    [5-8]Kim Y. E., Kim Y. J., Zubarev A. L, Phys. Rev. C,55(1997),801.
    [5-9]Lattuada, M., Pizzone R. G., Typel S., et al., Ap. J.,562(2001),1076.
    [5-10]Bohr N., Phil. Mag.,25(1913),10.
    [5-11]Bethe H. A., Ann. Physik,5(1930),325.
    [5-12]Bloch F., Ann. Physik,16(1933),287.
    [5-13]Fermi E., Teller E., Phys. Rev.,72(1947),399.
    [5-14]Lindhard J., Scharff M., Mat. Fys. Medd. Kgl. Dan. Vid. Selsk.,27(1953), No.15.
    [5-15]Ziegler J. F., Helium Stopping Powers and Ranges in All Elements, Pergamon Press, New York (1977).
    [5-16]Andersen H. H., Ziegler J. F., Hydrogen Stopping Powers and Ranges in All Elements, Pergamon Press, New York (1977).
    [5-17]Ziegler J. F., Biersack J. P., code SRIM, http://www.srim.org.
    [5-18]Bevington P. R., Robinson D. K., Data Reduction and Error Analysis for the Physical Sciences, Third edition, McGraw-Hill (2003).
    [5-19]Cruz J., Fulop Z., Gyurky G., et al., Phys. Lett. B,624(2005),181.
    [5-20]Debye P., Polar Molecules, New York, Dover Publications,1929.
    [5-21]Kondratyev V. N., Shchepunov V. A., Radiation Measurements,25(1995),105.
    [5-22]Thwaites D. I., Nucl. Instr. and Meth. In Phys. Research B,12(1985),84.
    [5-23]Borgesen P., Chen H. M., Sorensen H., Nucl. Instr. and Meth.194(1982),71.
    [5-24]Potetyunko G. N., Sov. At. En. Rev.52(1982),137.
    [5-25]Oddershede J., Sabin J. R., Sigmund P., Phys. Rev. Lett.51(1983),1332.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700