用户名: 密码: 验证码:
东营北带砂砾岩储层岩石物理特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以岩石物理理论为指导、岩石实验为手段、实验数据统计与分析为方法,在充分借鉴前人研究成果的基础上,对东营北带东段地区砂砾岩储层进行了岩石物理特征研究,主要包括岩石物理实验设计及测试数据分析、正演模拟、储层物性及岩石弹性变化机理分析等方面的研究。
     1、针对研究目的,进行了岩石物理实验设计。内容如下:①岩心取样。②物性参数实验,包括孔隙度、渗透率等测试。③岩石电性参数实验,主要测试岩石在含水100%时电阻率。④弹性参数实验,测试岩石在高温高压环境并且饱和不同流体状态下声波波速,并计算弹性模量。⑤岩性参数实验,包括X-衍射分析、铸体薄片分析。⑥孔隙结构参数实验,包括压汞、核磁实验。通过上述具体实验环节得到详细的实验数据,为后期岩石物理分析奠定了基础。
     2、依据实验数据,对砂砾岩储层的岩石物理特征进行了深入研究。①进行了砂砾岩储层微观特征研究,根据实验数据(物性参数、岩性参数、孔隙结构)对储层进行了分类,发现储层以低孔隙度、低渗透率类型为主;对影响储层物性的主控因素进行了研究,发现压实和胶结作用是降低孔、渗的主控因素,溶解作用是改善储层物性的最主要的控制因素。②通过实验数据(物性参数、电性参数、声波波速)拟合了地区经验公式,包括孔隙度与密度、孔隙度与渗透率、孔隙度与波速、密度与波速、电阻率和波速等参数的关系式。按不同岩性拟合密度与波速的广义Gardner关系式(ρ=CVpAVsB),指导本地区横波速度预测、岩石物理正演模拟、AVO反演等方面有重要作用。③进行了岩石物理正演模拟,预测储层地震波速研究。依据实验数据确定不同岩性的Biot系数,代入孔隙度与弹性模量的关系式模型,可以预测流体饱和后的岩石弹性模量,进而预测岩石波速,预测数据与实验结果对比后发现效果较好。④研究了成岩作用及岩石结构对岩石弹性的影响,利用实验测试结果建立了储层岩石沉积学特征(成岩作用、岩石结构等)与地震弹性属性之间的定性或者定量关系。⑤分析了压力及流体对岩石弹性的影响特征,并进行了流体饱和后的敏感性分析,建立了流体敏感性因子。通过实验制定了敏感性因子的判别标准,研究表明大部分岩石在气-液状态下(干燥、液体饱和)具有明显的可区分性,岩石饱和水-饱和油总体上看区分不明显。
Based on the previous study, using rock physics theory as a guide, rock experiment as a means, experimental data statistics and analysis as methods, rock physical properties of glutenite reservoir on the east area of Dongying north actic region was further studied, which mainly include rock physical experiment designing, data analysis, forward modeling, researching about reservoir properties and elastic change of rock mechanism.
     According to the research purposes, the rock physical experiments have been designed as follows:①Core sampling.②Physical parameters experiments, including porosity, permeability and density tests.③Rock electrical parameters experiment, mainly testing the resistivity on condition that rock is saturated 100% by water.④Elastic parameters experiments, testing acoustic wave velocity on condition that rock is imposed by high temperature and high pressure, saturated by different fluid. And next to calculate the elastic moduli.⑤Lithology parameter experiments, including X-diffraction and cast thin section analysis.⑥pore structure parameters experiments, including mercury penetration and NMR experiments. The detailed experimental data have been got through the above process, and which are foundation of rock physical analysis later.
     According to the experiment data, the rock physical characteristics of glutenite reservoir have been researched further. First, the microscopic characteristics about glutenite reservoir which is classified according to experimental data (physical parameters, lithology parameters, pore structure) have been researched. We found that low porosity and low permeability is the main feature of it. The controlling factors affecting the reservoir properties have been studied. And we found that mechanical compaction and cementation are the main control factors reducing the porosity and permeability, dissolution improving the reservoir properties, respectively. Second, the regional empirical formula have been got through experiment data (physical parameters, electrical parameters, acoustic velocity), which includes porosity vs. density, porosity vs. permeability, porosity vs. velocity, density vs. velocity, resistivity vs. velocity, and other parameters relationship. Generalized Gardner formula (ρ=CVpAVsB) fitted by density and velocity relationship of different lithology has an important role to guide the region wave velocity prediction, rock physics forward simulation, AVO inversion etc. Third, this paper has a study on the rock physics forward modeling, seismic wave prediction of the reservoir. Biot’s coefficient of different lithology getted by experimental data is put into relationship of porosity and elastic moduli to predict the rock elastic moduli after the rock saturated by fluid and also rock wave velocity. The predicted data is consistent with the experimental results. Fourth, this paper has a study on deagenesis and rock structure on rock elastic effects. The qualitative or quantitative relationship has been built using the experimental results about sedimentary characteristics of rock reservoir (diagenesis, rock structure, etc.) and seismic elastic properties. The last, the influence of pressure and fluid to rock elastic characteristics is analysed. Sensitivity after rock saturated by fluid is also analysed and the fluid sensitivity factor is established. Research shows that most of rocks have an obvious distinction in the condition of gas-fluid state (dry or liquid saturated). The distinction of the two state is not obvious in general when rock is saturated by water or oil.
引文
[1]王书宝,钟建华,王勇, et al.永北地区砂砾岩体成岩作用及次生孔隙成因[J].西南石油大学学报(自然科学版). 2008, 30(4): 19-23.
    [2]伍松柏.东营凹陷北带不同类型砂砾岩扇体“相-势”控藏作用[J].油气地质与采收率. 2008, 15(3): 39-42.
    [3]鲁国明.基于孔隙网络模型的砂砾岩微观水驱油驱替特征[J].特种油气藏. 2010, 17(1): 64-67.
    [4]孔凡仙.东营凹陷北部陡坡带砂砾岩体的勘探[J].石油地球物理勘探. 2000, 35(5): 669-676.
    [5]孙龙德.东营凹陷北部斜坡带沙三—四段砂砾岩体与油气聚集[J].沉积学报. 2003, 2(21): 278-282.
    [6]刘树根,单钮铭,刘维国, et al.地层条件下油气储集岩多参数同时测试技术[J].成都理工学院学报. 1998, 25(4): 480-486.
    [7]朱定军,单钰铭,刘维国, et al.川西坳陷深层须家河组岩石力学实验研究[J].东华理工大学学报(自然科学版). 2008, 31(4): 332-335.
    [8]牛宝童.碳酸盐岩岩石物理与油气储层识别[D].成都理工大学, 2010.
    [9]闫小兵.地壳岩石各向异性的实验研究[D].中国地震局地质研究所, 2008.
    [10]谢然红,肖立志,赵太平.核磁共振岩心实验分析的标准样品研究[J].核电子学与探测技术. 2007, 27(2): 194-198.
    [11]王洪强,付晨东,井连江, et al.核磁共振成像技术在岩石物理实验中的应用[J].测井技术. 2005, 29(2): 95-97.
    [12]杨胜来,王小强,汪德刚, et al.异常高压气藏岩石应力敏感性实验与模型研究[J].天然气工业. 2005, 25(2): 106-109.
    [13]周新鹏.岩石声电参数测量方法与实验研究[D].中国地质大学(北京), 2008.
    [14] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics. 1951, 16: 673-685.
    [15] Biot M A. Theory of propatation of elastic waves in a fluid staturated porous solid[J]. Acoust Sdc.Am. 1956, 28: 168-191.
    [16]马中高.碎屑岩地震岩石物理学特征研究——以济阳坳陷下第三系地层为例[D].成都:成都理工大学, 2008.
    [17] Marion D. Acoustical, mechanical and transport properties of sediments and granular materials[D]. Standford University, 1990.
    [18] Geertsma J, Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solids[J]. Geophys. 1961, 26: 169-181.
    [19] Nur A, Marion D, Yin H. Wave velocities in sediments // Hovem, J.M., Richardson,M.D, Stoll,R.D. Shear waves in marine sediments[J]. Dordrecht, Netherlands: Kluwer Academic Publishers. 1991: 131-140.
    [20] Nur A, Mavko G, Dvorkin J. Critical porosity: The key to relating physical properties to porosity in rocks//Proc,65th Ann Int Meeting, Soc Expl[J]. Geophys. 1995: 878.
    [21] Mavko G, Jizba D. Estimating grain-scale fluid effects on velocity dispersion in rocks[J]. Geophysics. 1991, 56(1940-1949).
    [22]史謌,黄联捷,沈联蒂.声波时差与岩石岩性参数关系的统计分析研究[J].北京大学学报(自然科学版). 1990(4): 506-512.
    [23]史謌,沈联蒂.根据波速—压力关系评价岩石岩性、物性的实验研究[J].地球物理学报. 1990(2): 212-219.
    [24]史謌,沈联蒂.灰岩含水饱和度对纵、横波速度变化影响的实验研究[J].石油地球物理勘探. 1990(4): 469-479.
    [25]史謌,沈文略,杨东全.岩石弹性波速度和饱和度、孔隙流体分布的关系[J].地球物理学报. 2003(1): 138-142.
    [26]孙建国.岩石物理学基础[M].北京:地质出版社, 2006.
    [27] Bruggeman D A G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen[J]. Annalen der Physik (Leipzig). 1935, 24: 636-679.
    [28] Voigt W. Lehrbuch der Kristallphysik:Teubner[J]. Leipzig. 1928.
    [29] Reuss A. Berechnung der fliessgrense von mischkristallen auf grund der plastizitatsbedinggung fur einkristalle[J]. Zeitschrift fur Angewandte Mathematic and Mechanic. 1929, 9(1): 49-58.
    [30] Hill R. The elastic behaviour of crystalline aggregate Proc[J]. Physical Soc. London. 1952, A65(5): 349-354.
    [31] Mindlin R D. Compliance of elastic bodies in contact[J]. Appl Mech. 1949, 16: 259-268.
    [32] Hashin Z, Shtrikman S. A variational approach to hte theory of the elastic behaviour of multiphase materials[J]. J. Mech. Phys. Solids. 1963, 11(2): 127-140.
    [33] Kuster G T, Toksoz M N. Velocity and attentation of seismic waves in two phasemedia:Part 1,Theoretical formulation[J]. Geophysics. 1974, 39(5): 587-606.
    [34] Budiansky B. On the elastic moduli of some heterogeneous materials[J]. J.Mech.Phys.Solids. 1965, 13(4): 223-227.
    [35] Hill R. A self-consistent mechanics of composite materials[J]. J.Mech.Phys.Solids. 1965, 13(4): 213-222.
    [36] Wu T T. The effect of inclusion shape on the elastic moduli of a two-phase material[J]. Internat J Solids and Struct. 1966, 2: 1-8.
    [37] Cleary M P, Chen I W, Lee S M. Self-consistent techniques for heterogeneous media[J]. Am.Soc.Civil Eng.J.Eng.Mech. 1980, 106(5): 861-887.
    [38] Norris A N, Sheng P, Callegari A J. Effective-medium theories for two-phase dielectric media[J]. J.Appl.Phys. 1985, 57(6): 1990-1996.
    [39] Zimmerman R W. Compressibility of sandstones[J]. New York: Elsevier. 1991: 173.
    [40] Xu S, White R E. Pore-elasticity of elastic rock:A unified model, 36th Annual Logging Symposium[J]. Paris, France. 1995.
    [41] Xu S, White R E. A new velocity model for clay-sand mixtures. Geophysical Prospecting[J]. Geophysical Prospecting. 1995, 43(1): 687-717.
    [42]刘巍.高温高压下几种岩石的弹性纵波速度及其动力学特征[D].中国地震局地质研究所, 2002.
    [43]李琳.基于岩石物理理论的横波速度预测方法研究[D].西北大学, 2010.
    [44]甘利灯.四维地震技术及其在水驱油藏监测中的应用[D].北京:中国地质大学, 2002.
    [45]杨松岩,俞茂宏.多相孔隙介质的本构描述[J].力学学报. 2000, 32(1): 11-23.
    [46]魏建新,狄帮让,王椿镛.岩石正交各项异性的实验观测[J].地球物理学进展. 2008, 23(2): 343-350.
    [47]袁静,袁炳存.永安镇地区永1砾岩体储层微观特征[J].石油大学学报(自然科学版). 1999, 23(1): 13-16.
    [48]徐晓晖,许建华,谢远军, et al.东营凹陷北部陡坡带西段水下扇体储集层特征[J].沉积与特提斯地质. 2003, 23(1): 84-89.
    [49]刘晖,操应长,袁静, et al.胜沱地区沙四上亚段砂砾岩类型及储层特征[J].西南石油大学学报(自然科学版). 2010, 32(5): 9-15.
    [50]曾允孚,田景春,赵志超, et al.东营凹陷北带沙河街组沙砾岩体的成因类型及其储集性研究[J].岩相古地理. 1994, 14(1): 1-10.
    [51]董经利,张晋言.东营凹陷北带砂砾岩体天然气测井评价方法[J].测井技术. 2007, 31(3): 216-220.
    [52]罗水亮,林承焰,袁学强, et al.滨南油田砂砾岩储层测井精细解释模型及其应用[J].物探化探计算技术. 2009, 32(2): 130-134.
    [53]张永旺,高霞,邓宏文.东营凹陷北带中段砂砾岩扇体高分辨率层序地层与沉积演化特征[J].铀矿地质. 2006, 22(4): 202-208.
    [54]张培东,鲁宜全.东营凹陷北带沙四段砂砾岩体储层增产潜力[J].油气地质与采收率. 2009, 16(3): 110-112.
    [55]安洁,操应长,王艳忠.东营凹陷北带沙四段近岸水下扇砂砾岩储层物性演化特征[J].石油天然气学报. 2008, 30(6): 221-224.
    [56]王伟男,童茂松,陈国华, et al.泥质砂岩的物理性质及其测井应用[M].北京:石油工业出版社, 2004.
    [57]张卫东,葛洪魁,宋丽莉, et al.岩石微结构诊断技术及其潜在应用[J].石油钻探技术. 2002, 30(5): 27-29.
    [58]李利.盐家地区深层砂砾岩体储层微观特征与含油气性评价[D].中国海洋大学, 2009.
    [59]赵澄林.储层沉积学[M].北京:石油工业出版社, 1998.
    [60]赵澄林,张善文.胜利油区沉积储层与油气[M].北京:石油工业出版社, 1999.
    [61]石玉章,杨文杰,钱峥.地质学基础[M].东营:中国石油大学出版社, 2006.
    [62]裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社, 1997.
    [63]刘忠华.储层孔隙结构的测井评价方法研究[D].北京:中国石油勘探开发研究院, 2003.
    [64]霍玉雁.储层渗流特性及模拟研究[D].东营:中国石油大学(华东), 2005.
    [65]朱筱敏.沉积岩石学[M].北京:石油工业出版社, 2008.
    [66]刘朝露.济阳坳陷中生代原型盆地恢复与油气成藏条件分析[D].广州:中国科学院, 2006.
    [67]潘元林,张善文,肖焕钦.济阳断陷盆地隐蔽油气藏勘探[M].北京:石油工业出版社, 2003.
    [68]李天降,李子丰,赵彦超, et al.核磁共振与压汞法的孔隙结构一致性研究[J].天然气工业. 2006, 26(10): 57-59.
    [69]刘昊伟,郑兴远,陈全红, et al.华庆地区长6深水沉积低渗透砂岩储层特征[J].西南石油大学学报(自然科学版). 2010, 32(1): 21-26.
    [70]邓继新,王尚旭,李生杰.储层砂岩沉积特征变化对地震弹性属性的影响[J].石油天然气学报. 2008, 30(1): 75-79.
    [71]张琴,钟大康,朱筱敏, et al.东营凹陷下第三系碎屑岩储层孔隙演化与次生孔隙成因[J].石油与天然气地质. 2003, 24(3): 281-284.
    [72] Avseth P, Mukerji T, Mavko G. Quantitative Seismic Interpretation[M]. Cambridge, 2005.
    [73] Gardner G H F, Gardner L W, Gregory A R. Formation velocity and density-The diagnostic basics for stratigraphic traps[J]. Geophysics. 1974, 39(6): 770-780.
    [74] Castagna J P, Batzle M L, Eastwood R L. Relationships between compresional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics. 1985, 50(5): 551-570.
    [75]韩文功,程远方.济阳坳陷岩芯弹性和物性参数的实验室测量及分析[J].石油物探. 1997, 36(1): 21-27.
    [76]时华星,曹建军,伍向阳, et al.济阳坳陷下第三系岩石地震波传播速度分析[J].油气地质与采收率. 2004, 11(4): 28-30.
    [77]马中高,解吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展. 2005, 20(4): 905-910.
    [78]张守伟,孙建孟,苏俊磊.东营北带砂砾岩密度与纵横波速度的规律研究[J].石油天然气学报(江汉石油学院学报). 2010, 32(4): 251-253.
    [79] Castagna J P, Batzle M L, Kan T K. Rock physics - The link between compressional - wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics, No. 8, Society of Exploration Geophysicists, 1993: 135-171. 1993.
    [80] Mavko G, Mukerji T, Dvorkin J. The rock physics handbook: Tools for seismic analysis in porous media[M]. Cambridge: Cambridge University Press, 1998.
    [81] Wyllie M R, Gregory A R, Gardner L W. Elastic wave velocities in heterogeneous and porous media[J]. Geophysics. 1956, 21(1): 41-70.
    [82] Domenico S N. Rock lithology and Porosity detemrination from shear and compressional wave velocity[J]. GeoPhysies. 1984, 48(8): 1188-1195.
    [83]杨东全.岩石物理性质和钻柱涡动机理研究[D].北京:清华大学, 1999.
    [84] Han D H, Nur A, Morgan D. Effects of porosity and clay content on wave velocities insandstones[J]. 51. 1986, 1(2093-2107).
    [85] Toasya C, Nur A. Effects of diagenesis and clays on compressional velocities in rocks[J]. Geophys Res Lett. 1982(9): 5-8.
    [86]孙耀华.地震弹性反演技术及其在泌阳凹陷油气勘探中的应用[J].石油天然气学报. 2008, 30(4): 92-95.
    [87] Smith G C, Gidlow P M. Weighted stacking for rock property estimation and detection of gas[J]. Geophysical Procspecting. 1987, 35(9): 993-1014.
    [88]李庆忠.岩石的纵,横波速度规律[J].石油地球物理勘探. 1992, 27(1): 1-12.
    [89] Gardner G H F, Gardner L W, Gregory A R. Formation velocity and density - The diagnostic basics for stratigraphic traps[J]. Geophys. 1974, 39: 770-780.
    [90] Ursenbach C. Generalized Gardner Relations[C]. 2002.
    [91]沈向存,杨江峰.声波曲线重构技术在地震反演中的应用[J].中国西部油气地质. 2006, 2(4): 436-439.
    [92]马中高. Biot系数和岩石弹性模量的实验研究[J].石油与天然气地质. 2008, 29(1): 135-140.
    [93] Eshelby J D. The determination of the elastic field of an ellopsoidal inclusion and related problems[J]. Proceedings of the Royal Society. 1957, A241: 376-396.
    [94]张杨.利用Xu-White模型估算地震波速度[J].成都理工大学学报(自然科学版). 2005, 32(2): 188-195.
    [95] Avseth P, Mukerji T, Mavko G. Quantitative Seismic Interpretation[M]. Cambridge: Cambridge University Press, 2005.
    [96]史謌,杨东全,杨慧珠.岩石的孔隙弹性研究[J].北京大学学报(自然科学版). 2000, 36(2): 214-219.
    [97] Mavko G, Mukerji T, Dvorkin J. The Rock Physics Handbook[M]. Cambridge: Cambridge University Press, 1998.
    [98]斯伦贝谢测井公司,吴庆岩译.测井解释常用岩石矿物手册[M].北京:石油工业出版社, 1998.
    [99]马中高.成岩作用和岩石结构对砂岩弹性速度的影响[J].石油学报. 2008, 29(1): 58-63.
    [100] Nur A, Mavko G, Dvorkin J. Critical porosity: A key to relating physical properties to porosity in rocks[J]. The leading Edge. 1998, 17(2): 357-362.
    [101] Geertsma J, Smit D. Some aspects of elastic wave propagation in fluid saturated poroussolids[J]. Geophysics. 1961, 16: 169-181.
    [102] Nur A. Critical porosity and the seismic velocity in rocks[J]. EOS Trans Am Geophys Union. 1992, 73(1): 43-46.
    [103] Kreif M, Garat J, Stellingwerff J. A petrophysical interpretation using the velocities of P and S waves(full waveform sonic)[J]. The Log Analyst. 1990, 31: 355-369.
    [104]葛洪魁,韩德华,陈颙.砂岩孔隙弹性特性的试验研究[J].岩石力学与工程学报. 2001, 20(3): 332-337.
    [105]伍向阳,方华.储层砂岩声波速度预测[J].地球物理学进展. 1999, 14(1): 56-63.
    [106]张守伟,孙建孟,苏俊磊, et al.砂砾岩弹性试验研究[J].中国石油大学学报(自然科学版). 2010(5): 63-68.
    [107]王炳章.地震岩石物理学及其应用研究[D].成都:成都理工大学, 2008.
    [108]孙怡.陡坡带砂砾岩体地球物理储层预测方法应用研究[D].东营:中国石油大学, 2008.
    [109]李维新,史謌,王红, et al.岩石物理弹性参数规律研究[J].地球物理学进展. 2007(5): 1380-1385.
    [110]邓继新,冯佐海.胶结物对东营凹陷储层砂岩弹性生特征的影响[J].桂林工学院学报. 2009, 29(2): 223-228.
    [111]桂志先,朱广生,雷克辉.砂岩泊松比垂向变化差异分析[J].江汉石油学院学报. 1996, 18(4): 36-38.
    [112]原宏壮.各向异性介质岩石物理模型及应用研究[D].东营:中国石油大学, 2007.
    [113]张玉华.基于岩石物理的AVO正演模拟研究[D].东营:中国石油大学, 2007.
    [114]沈联蒂,史謌.岩性、含油气性、有效覆盖压力对纵、横波速度的影响[J].地球物理学报. 1994, 37(3): 391-399.
    [115]宋丽莉,葛洪魁,王宝善.疏松砂岩弹性波速的实验研究[J].测井技术. 2004(6): 487-490.
    [116]邓继新,史謌,刘瑞珣, et al.泥岩、页岩声速各向异性及其影响因素分析[J].地球物理学报. 2004(5): 863-869.
    [117]史謌,杨东全.上覆压力变化时孔隙岩层弹性波速度的确定及其普遍意义[J].中国科学(D辑). 2001, 31(11): 896-901.
    [118]史謌,沈联蒂,王建新.岩石声波压实效应的实验研究[J].北京大学学报(自然科学版). 2004(2): 177-183.
    [119]方华,伍向阳,杨伟.岩石中裂纹对弹性波速度的影响[J].地球物理学进展. 1998, 13(4): 79-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700