用户名: 密码: 验证码:
准噶尔盆地克夏断裂带成岩作用对断层输导性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔盆地克夏断裂带已发现的大部分油气藏均与断裂相关,随着勘探程度的深入,寻找新的潜在储量成为急需解决的问题。影响本地区油气藏分布的重要因素就是断裂的输导性能,实际上就是断层的开启和封闭问题,也即断层的封闭程度——封闭性。开展成岩作用对断层封闭性的影响研究,尤其是胶结作用对断层封闭性影响的研究在国内是一个全新的课题,对深化该地区油气藏的勘探,寻找新的断块型油气藏,拓展勘探空间,具有十分重要的理论和现实意义。
     论文通过对克夏断裂带典型断块型油气藏精细的解剖,确定了控制本区油气藏分布的主控断层。在分析各断层特征及断层封闭史的基础上,通过岩心观察结合测井、录井数据,应用定量计算结合模糊评价的方法研究压实作用、充填作用对断裂输导能力的影响。通过对取心井岩心的系统梳理,结合野外露头踏勘,在断层附近取样,采用岩石薄片、扫描电镜、流体包裹体等技术研究了胶结作用、溶蚀作用对断裂输导能力的影响。在此基础上,预测了断块油气藏的有利区带。最后分析了胶结作用的影响范围和断层流体活动期次。
     通过对克夏断裂带典型断块油气藏的精细解剖,认为克夏断裂带断块型油气藏的形成以断层-不整合复合输导为基础,上倾方向断层的封闭遮挡为关键,两侧和下倾方向岩性或沉积相限制为必要条件。并确定了克拉玛依断裂、南白碱滩断裂,百口泉断裂、百乌断裂和夏红北断裂五条一级断裂,以及426井断裂、乌29井断裂、沥青村断裂、夏10井断裂和夏21井断裂等次级断裂为影响本区油气藏分布的主控断层。这些断层横向上,直线型、S型、波浪型等多种形态并存;纵向上,分为深层断裂和浅层断裂两个断裂体系。断层封闭史研究表明,克夏断裂带在侏罗纪三工河组沉积以后,虽然埋藏较浅,但是由于当时的构造活动剧烈导致断面压应力很大,还是为油气的储集提供了良好的圈闭条件,南白碱滩断层的封闭性最好,其次是百口泉断层和夏红北断层,这些断层都有可能封堵油气,形成断层遮挡型油气藏,而克拉玛依断层当时封闭性差,主要是为油气运移提供了通道。
     克夏地区的断层主要是在强烈挤压推覆作用下形成的,由于受到强烈的挤压作用,导致研究区的断层压实作用强烈,其对断层封闭性的影响较为明显。横向上,乌夏地区(多在40MPa以上)总体压实作用强于克百地区,克夏断裂带中部的百口泉断层和百乌断层的压实作用强于其两端的断层,克拉玛依断层的压实作用相对最弱;纵向上,浅层压实作用主要受区域主应力影响,随着断层倾角的增大而增大,深层压实作用则主要受地层深度和断层倾角的双重影响,埋藏越深,倾角越小,压实作用越强,断层封闭性越好。克夏断裂带断层的充填作用一般,Rm值很少能达到0.6以上,总体上乌夏地区(Rm>0.3)断裂的充填效果好于克百地区(Rm<0.3),该特征主要受区域岩性差异的影响和控制。
     克夏断裂带内胶结作用十分发育,使断裂带的孔隙度、渗透率降低,输导能力变差。克夏断裂带胶结作用矿物的先后序列为绿泥石、沸石→方解石胶结→高岭石→伊利石→铁碳酸盐胶结。受地层水性质和断裂活动历史的影响,由南往北克拉玛依断裂-南白碱滩断裂及426井断裂-百口泉断裂-西百乌断裂-夏红北断裂,成岩胶结矿物依次为绿泥石、浊沸石相带-方解石(早期碳酸盐)相带-方解石(早期碳酸盐)、粘土矿物相带-方解石(早期碳酸盐)、铁方解石(晚期碳酸盐)相带-铁白云石(晚期碳酸盐)、菱铁矿相带,显示本区断裂由南往北胶结作用次序由早期趋向晚期的特点。克夏断裂带内常见长石的溶蚀现象,少见碳酸盐胶结物的溶解现象。溶蚀作用在克夏地区断裂带内表现不明显,对断裂带封闭性影响较小。
     通过成岩作用对断层封闭性影响的研究,预测克拉玛依断裂下盘侏罗系、百口泉断裂下盘侏罗系和夏红北断裂上盘为研究区有利勘探区带。
     克夏断裂带胶结作用对断裂带封闭性能影响范围较大,一级断裂胶结作用影响范围60m~120m,次级断裂胶结作用影响范围40m~50m。断裂带内岩石方解石脉中包裹体分析结果显示,克夏断裂带内大致经历了3期流体活动。盐水包裹体主要有两期,对应的均一温度区间为40~70℃、70~110℃,烃类包裹体有三期,对应的均一温度区间为40~70℃,70~100℃及100~130℃。可以确定第Ⅰ期流体活动的时间为早三叠纪(距今230~240Ma),第Ⅱ期流体活动的时间为晚三叠—早侏罗纪(距今200~220Ma),第Ⅲ期主要为烃类运移,时间为晚侏罗—早白垩纪(距今125~150Ma)。断裂带方解石脉在第Ⅰ、Ⅱ期流体活动时期形成,与第Ⅲ期流体活动关系较小。各断裂流体活动期次有所差别,这是导致不同断层内胶结物所处成岩作用阶段差异性的重要原因。
Most of the explored hydrocarbon reservoirs of Kexia Fracture Belt in Jungger Basin are related with fault. As explorative developing, finding potential reserve volume becomes more and more important. Fault sealing is the significant factor which affected distribution of hydrocarbon reservoirs. Study on the affection of diagenesis on fault sealing, especially the affection of cementation is a new theme. Therefore, further studies should be carried on, which is significant for the formation and occurrence of fault block hydrocarbon reservoirs
     By means of analysis on fault block hydrocarbon reservoirs of Kexia Fracture Belt, this dissertation defined master control faults which dominate distribution of hydrocarbon reservoirs. Based on feature of fault, history of sealing and well logging, studied the affection of compaction and packing action on fault sealing with quantitative assessment and ambiguous evaluation. Based on rock core and outcrop, studied the affection of cementation and denudation on fault sealing with core wafer, scanning electron microscope and fluid inclusion. Then prospects of fault block hydrocarbon reservoirs were predicted. Influenced range and stage of diagenesis were analysed at last.
     The study on formation of fault block hydrocarbon reservoirs showed that fault- unconformity compound conduction was base, updip seal of fault was key, lithology and sedimentary facies in downdip direction and lateral layer were necessary conditions. Moreover, control faults, which include 5 primary faults that are Kelamayi, Nanbaijiantan, Baikouquan, Baiwu and Xiahongbei Faults, and 5 secondary faults that are 426 Fault, wu29 Fault, Liqingcun Fault, Xia10 Fault and Xia21 Fault, were defined. These faults displayed straight mode, S mode and wave mode in plane; were divided to two rift systems which include deep rift system and shallow rift system in section. History of fault sealing demonstrates that buried depth was low, but because of strong tectonic stress, fault sealing was good for hydrocarbon reservoir in Kexia Fracture Belt after the stage of Jurassic Sangonghe group. In that time fault sealing of Nanbaijiantan Fault was best, secondly include Baikouquan Fault and Xiahongbei Fault, they could seal hydrocarbon and create fault block hydrocarbon reservoirs. Fault sealing of Kelamayi Fault was worse, which could become pathway for migration of hydrocarbon.
     Faults in Kexia Fracture Belt were formed by strong compression and overthrust. Thus compaction was intense in research area and the affection of compaction was obvious. Compaction in Wuxia area(>40MPa) was stronger than that in Kebai area in plane. Compaction of Baikouquan Fault and Baiwu Fault was strongest, which of Kelamayi Fault was worst. In section, shallow compaction was mainly affected by regional major stress, it become stronger with fault dip angle increase. Deep compaction was affected by buried depth and fault dip angle. Low depth and small angle generated strong compaction and good sealing. Packing action of fault in Kexia Fracture Belt was ordinary. Few Rm value exceed 0.6. Generally, Packing action of faults in Wuxia area(Rm>0.3)was better than that in Kebai area(Rm<0.3).This feature of Packing action was affected and controlled by regional lithologic character.
     Cementation was intense in Kexia Fracture Belt, which made porosity and permeability decreased, fault sealing became better. The mineral sequence of cementation was chlorite & zeolite- calcite- kaolinite- illite- ferrocarbonatite. Affect by formation water and history of fault development. From south to north, Kelamayi Fault-Nanbaijiantan Fault and 426 Fault-Baikouquan Fault-Xibaiwu Fault-Xiahongbei Fault, mineral of cementation successively was chlorite, zeolite- calcite- calcite, clay mineral- calcite, ferroan calcite- ferrodolomite, siderite. Those indicated the sequence of cementation from south to north incline to late period. Occurrence of feldspar corrosion was common and dissolution of carbonate cement was few. Denudation was not evident in Kexia Fracture Belt, the affection of denudation on fault sealing was faintish.
     Based on the research that affection of diagenesis on Fault Sealing in Kexia Fracture Belt, favourable regions of reservoirs were predicted: Jurassic formation in foot wall of Kelamayi Fault and Baikouquan Fault; hanging wall of Xiahongbei Fault.
     The affection coverage of cementation was wide. The coverage of primary faults was about 60-120m, that of secondary faults was about 40-50m. Analysis of inclusion in calcite showed that there are 3 stages of geofluid in Kexia Fracture Belt. Saline inclusion had 2 stages, correspondent homogenization temperature was 40~70℃、70~110℃. Hydrocarbon inclusion had 3 stages, correspondent homogenization temperature was 40~70℃、70~110℃and 100~130℃. So the time of geofluid migration could be ascertain that the first stage of geofluid migration was early Triassic period (B.P.230~240Ma), the second stage was late Triassic period to early Jurassic period(B.P.200~220Ma), the third stage was late Jurassic period to Cretaceous period(B.P.125~150Ma). Calcite in fault was formatted in the first and second stage of geofluid migration.
引文
1.刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社, 1992.
    2.郑浚茂,庞明.碎屑储集岩的成岩作用研究[M].武汉:中国地质大学出版社, 1989.
    3. SY/T5477—2003.中华人民共和国石油天然气行业标准并碎屑岩成岩阶段划分规范[S].
    4.裘亦楠,薛叔浩.油气储层评价技术[M].北京:石油工业出版社, 2001.
    5. Fawad A, et al.Porosity loss in sand by grain crushing-experimental evidence and relevance to reservoir quality[J].marine and petroleum geology,2002,19:39-53.
    6.姜在兴.沉积学[M].北京:石油工业出版社,2003.
    7. Surdam R C,Boese S W, Crossey L J.The chemistry of secondary porosity [A].In:McDonald D A,Surdam R C,eds.Clastic Diagenesis[M].Tulsa: AAPG, 1985:127-149.
    8. Barth T B.Organic acids from source rock maturation: generation potentials, transport mechanism and relevanve for mineral diagenesis [J].Applied Geochemistry, 1993,8:325-337.
    9. Kharaka Y K,Lungedard P D,Ambats G. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils[J].Applied Geochemistry,1993,8:317-324.
    10. Kachel H G、Krouse H R.Products and distinguishing criteria of bacterial and thermochemical sulfatereduction[J].Applied Geochemisty,1995,10: 373-389.
    11. Surdam R C, Crossey L J, MacGowoan.Redox reaction involving hydrocarbons and mineral oxidants: a mechanism for significant porosity enhancement in sandstones [J].AAPG Bulletin,1993,77 (9):1509-1818.
    12.梅博文译.储层地球化学译文集[M].西安:西北大学出版社,1991.
    13. Fisher J B. Distribution and occurrence of aliphatic anions in deep subsurface waters [J].Geochimetet etCosmochim Acta,1987, 51(9):2 459-2468.
    14. Willey L M,haraka Y K, Presser T S,et al.Short chain aliphatic acid anions in oil field waters and their contribution to themeasured alkalinity [J].Geochim et Cosmochim Acta, 1975,39:1707-1711.
    15. Giordano T H, Kharaka Y K.Organic ligand distribution and speciation in sedimentary basin brines, diagenetic fluids and related ore solutions [A]. In: Parnell J,eds. Geofluids:origin,migration and evolution of sedimentary basin[M].London:The Geological society,1994:175-202.
    16. Worden R H, Smalley P C,Oxtoby N H.Gas souring by thermochemical sulfate reduction at 140℃[J]. AAPG Bulletin, 1995,79(6):854-864.
    17. Sassen R.Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation and sulfate reduction in the deep Smackover Formation [J].Org Geochem,1988,12:351-361.
    18. Kirkland D W,Denison E,Rooney M A.Diagenetic alteration of Permian strata at oil fields of south central Oklahoma,USA[J].Marine Petroleum Geology,1995,12:629-644
    19.候建国,任丽华,董春梅.有机包裹体技术在油气运移与聚集中的应用研究[J].石油实验地质,2005,27 (4):409-413.
    20. Garreis R M, Christ C L. Solutions, Minerals and equilibria [M]. New York: Harperand Row, 1965.
    21. Knipe R J.Faulting processes and fault seal[A].in:Larsen R M, eds.Structural and tectonic modelling andits application to petroleumgeology[C].Norwegian Pe-troleum Society Special Publication, 1992: 325-342.
    22. Knipe R J.Juxtaposition and seal diagrams to help analyse fault seals in hydrocarbon reservoirs[J].AAPG Bulletin,1997,81(2): 187-195.
    23. AntonelliniM, Aydin A.Effect of faulting on fluid flow in porous sandstones: petrophysical properties[J].AAPG Bulletin,1994, 78(3): 355-377.
    24. Gibson R G.Fault-zone seals in siliclastic strata of the Columbus Basin,Offshore Trinidad[J].AAPG Bulletin,1994,78(9): 1372-1385.
    25. S.J.Hippler著.邹华耀摘译.张性断层附近砂岩中变形显微结构和成岩作用对油气运移和聚集的意义[J].天然气勘探开发,1994,16(1):41-48.
    26. Fisher Q J,Knipe R J.Fault Sealing Processes in Sili-clastic Sentiments, in Faulting, Fault Sealing and Fluid Flow inHydrocarbon Reservoirs[C].Geological Special Publication,London,1998,147: 117-134.
    27. Mair K,Main I,Elphick S.SequentialGrowth of De-formation Bands in the Laboratory[J].Journal of Struc-turalGeology, 2000, 22 (1): 25-42.
    28 Storti F,Salvini F.The Evolution of A Model Trap inCentral Apennines, Italy: Development of CataclasticRocks in Carbonates at the NamiAnticline[J].Journalof Petroleum Geology, 2001, 24 (2): 171-190.
    29. Pierre L, Moretti I.Diagenesis-dependence of cat aclastic thrust fault zone sealing in sand stones,example from the bolivian subandeanaone[J].Journal of Structure Geology,2001,23(11):1659-1675.
    30. Labaume P,Moretti I.Diagenesis dependence of Cata-clastic ThrustFault Zone Sealing in Sandstones, Exam-ple from the Bolivian Sub-Andean Zone[J].Journal of Structure Geology, 2001, 23 (11): 1659-1675.
    31. Yielding G,Freeman B,and Needham.Quantitative Fault seal predietion[J].AAPG Bulletin,1997,81:897-917.
    32. Downey M W.Eva1uating seals forhydrocarbon accumulations[J].AAPG Bulletin,1984,68:1752-1763.
    33. Knott S D.Fault seal analysis in the North Sea[J].AAPG Bulletin, 1993, 72(5): 778-792.
    34.张义纲.天然气的生成、运移和保存[M].南京:河海大学出版社,1991:138-148.
    35.付广,吕延防,付晓飞.断裂缝垂向封闭性评价方法及其应用[J].天然气工业,2004,24(10):20-23.
    36.李文学,高宁.断层垂向封闭形成的主控因素[J].大庆石油学院学报,2005,29(2):98-101.
    37.付广,殷勤,杜影.不同填充形式断层垂向封闭性研究方法及其应用[J].大庆石油地质与开发,2008,27(1):1-5.
    38.焦养泉,武法东,李思田.滦平盆地成岩作用过程及古热流体幕式运移事件分析[J].岩石学报,2000,16(4):15-22.
    39.蔡进功,张枝焕,朱筱敏.东营凹陷烃类充注与储集层化学成岩作用[J].石油勘探与开发,2003,30(3):79-83.
    40.胡海燕.油气充注对成岩作用的影响[J].海相油气地质,2004,9(1-2):85-90.
    41. Marchand, Smalley P C, Haseldine R S et al.Note on the importance of hydrocarbon fill for reservoir quality prediction in sandstones[J].AAPG Bulletin,2002,86(9):1561—1571.
    42. Worden R H, Morad S. Quartz cementation in oil field sandstones: a reviewof the key controversies[J]. In: Worden R H,Morad S eds.Quartzcementa-tion in sandstones. InternationalAssociation of Sedimentologists Special Publication, 2000,29:1—20.
    43. Walderhaug O. Modeling quartz cementation and porosity in Middle Jurassic Brent Group sandstones of the Kvitebjorn field, northern North Sea[J].AAPG Bulletin,2000,84(9):1325—1339.
    44.王伟庆,陈等,邹菊萍.东营凹陷成岩作用与孔隙流体活动的关系探讨[J].胜利油田职工大学学报,2005,19(3):40-42.
    45.闫建萍,刘池阳,马艳萍.成岩作用与油气侵位对松辽盆地齐家—古龙凹陷扶杨油层物性的影响[J].沉积学报,2009,27(2):212-220.
    46.于炳松,赖兴运.成岩作用中的地下水碳酸体系与方解石溶解度[J].沉积学报,2006,24(5):627-635.
    47.刘立,于均民,孙晓明.热对流成岩作用的基本特征与研究意义[J].地球科学进展,2000,15(5):583-585.
    48.李忠,费卫红,寿建峰.华北东濮凹陷异常高压与流体活动及其对储集砂岩成岩作用的制约[J].地质学报,2003,77(1):126-138.
    49.杨申谷,胡治华,李景义.异常高压对库车坳陷中生界储层成岩作用及孔隙演化的影响[J].大庆石油学院学报,2008,32(1):26-32.
    50.付志新.超压对断层垂向封闭作用的定量研究[J].大庆石油地质与开发,2008,27(2):16-20.
    51.邓俊国,刘泽容等.断块油藏中的断层封闭性模糊综合评判[J].地质论评,1993,39(增刊):.50-57
    52.曹瑞成,陈章明.早期探区断层封闭性评价方法[J].石油学报,1992,13:33-37.
    53.陈汉红,张启明等.琼东南盆地含烃热流体活动的流体包裹体证据[J].中国科学(D),1997,27(3):343-348.
    54.童亨茂.断层开启与封闭的定量分析[J].石油与天然气地质,1998,19(3):215-219.
    55.付广,李风君等.断层侧向封闭性与垂向封闭性关系分析[J].大庆石油地质与开发,1998,17(2):6-9.
    56.付广,王朋岩等.断层垂向封闭模式及研究方法[J].新疆石油地质,1998,19(1):7-10.
    57.付广,薛永超等.异常高压对油气藏形成和保存的影响[J].新疆石油地质,1999,20(5):379-382.
    58.付广,杨勉.利用地震资料判断断层封闭性的方法探讨[J].石油物探,2000,39(1):70-76.
    59.刘德汉.包裹体研究-盆地流体追踪的有力工具[J].地学前缘,1995,2(4):149-154.
    60.李明诚.地壳中的热流体活动与油气运移[J].地学前缘,1995,2(4):155-161.
    61.李亚辉,刘泽容等.断层封闭演化史研究方法及其应用[J].石油大学学报,1998,22(3):15-18.
    62.鲁兵,陈章明等.断面活动特征及对油气的封闭作用[J].石油学报,1996,17:33-37.
    63.鲁兵,丁文龙.断层封闭性研究进展[J].地质科技情报,1998,17(3):75-80.
    64.鲁兵,丁文龙.断层封闭性与异常压力之关系探讨[J].西北大学学报(自然科学版),1996,26(增刊):556-559.
    65.鲁兵,孔宪政等.断块结构与断块封闭性间的关系[J].石油勘探与开发,1999,26(6):14-17.
    66.鲁兵,刘忠等.断层折射与断层封闭性的关系[J].石油勘探与开发,1999,26(3):28-30.
    67.鲁兵译.烃类圈闭的流体动力学分类[J].地质科学译丛,1998,15(1):32-39.
    68.卢焕章等.包裹体地球化学[M].北京:地质出版社,1990.
    69.吕延防等.断层封闭性的定量研究方法[J].石油学报,1996,17:39-43.
    70.赵永祺等.复杂断块油藏断层封闭性研究[J].断块油气田,1996,3:21-25.
    71.潘长春,周中毅等.油气和含油气包裹体及其在油气地质地球化学研究中的意义[J].沉积学报,1996,14(4):15-23.
    72.邱旭明,刘玲.特立尼达海区哥伦布盆地硅屑岩地层中的断裂带封闭[J].国外油气勘探,1995,7(3),:271-332.
    73.孙宝珊,周新桂等.油田断裂封闭与通道作用研究[J].地质力学学报,1995,2(2):1-7.
    74.孙宝珊,丁原辰等.声发射法测量古今应力在油田中的应用[J].地质力学学报,1996,2(2):11-17.
    75.孙宗,张国报等.在地质断层构造中地应力状态演变研究[J].石油勘探与开发,2000,27(1):102-105.
    76.张永华等.断层封堵性的应用研究[J].石油物探,2001,40(4),83-88.
    77.刘东周,刘斌等.生长断层封闭性分析[J].石油勘探与开发,2002,29(3),37-39.
    78.王志欣,信荃麟.关于地下断层封闭性探讨(以东营凹陷为例)[J].高校地质学报,1997,3(3):294-300.
    79.吴冲龙等.阜新盆地古构造引力场研究[J].地球科学,1984,25(2):43-50.
    80.张寿庭,李忠权等.断裂多期活动及其擦痕特征研究[J].成都理工学院学报,1998,25(3):364-368.
    81.张树林.裂谷盆地的断层封闭类型[J].地球科学,1995,20:250-255.
    82.周宁丰,卫宏.断层应力分析若干问题探讨[J].山西煤炭,1997,17(2):21-23.
    83.周新桂,孙宝珊等.现今地应力与断层封闭效应[J].石油勘探与开发,2000,10:127-131.
    84.周新桂.利用排驱压力研究断裂封闭性及其在塔里木盆地北部地区的应用[J].地质力学学报,1997,3(2):47-53.
    85.刘泽容,信荃麟等.断块群油气藏形成机制和构造模式[M].北京:石油工业出版社,1998.
    86.吕延防,付广等.断层封闭性研究[M].北京:石油工业出版社,2002.
    87.刘伟,贾中等.复杂断块油气田断层封闭性综合分析方法[J].断块油气田,2002,9(1):25-28.
    88.中国石油地质志编辑委员会,中国石油地质志(卷一),北京:石油工业出版社.
    89.新疆石油地质志编辑委员会,中国石油地质志(卷十五),北京:石油工业出版社.
    90.王伟锋等.准噶尔盆地构造分区和变形样式[J].地震地质,1999,21(4):324-333.
    91.许多年,王伟锋,邱贻博等.准噶尔盆地乌夏地区构造调节带特征及成因[J].新疆石油地质,2007,28(4):410-412.
    92.刘振宇,徐怀宝,庞雷.准噶尔盆地乌夏断裂带构造迁移特征[J].新疆石油地质,2007,28(4):399-402.
    93.牛海青,陈世悦,鄢继华等.准噶尔盆地乌夏断裂带三叠系沉积相研究[J].新疆石油地质,2007,28(4):425-427.
    94.杨怀宇,陈世悦,杨俊生等.准噶尔盆地乌夏地区侏罗系层序与地层发育特征[J].新疆石油地质,2007,28(4):437-440.
    95.冯建伟,戴俊生,刘巍等.准噶尔盆地乌夏断裂带构造分区[J].新疆石油地质,2007,28(4):406-409.
    96.曲江秀,邱贻博,时振峰等.准噶尔盆地乌夏断裂带活动与油气运移[J].新疆石油地质,2007,28(4):403-405.
    97.关士聪等.中国中新生代陆相盆地发育沉积与油气[M].北京:石油工业出版社,1987.
    98.刘泽容等.断陷盆地构造岩相带与油气评价[J].北京:科学出版社,1992.
    99.吴庆福.准噶尔盆地发育阶段、构造单元划分及局部构造成因概论[J].新疆石油地质,1986,7(1):1-12.
    100.陈业全,王伟锋.准噶尔盆地构造演化与油气成藏特征[J].石油大学学报(自然科学版),2004,28(3):4-8.
    101.鲁兵,徐可强.准噶尔盆地断裂活动与油气运聚的关系[J].新疆石油地质,2003,24(6):502-504.
    102.雷振宇等.准噶尔盆地西北缘构造演化与扇体形成和分布[J].石油与天然气地质,2005,26(1):86-91.
    103.谭开俊.准噶尔盆地西北缘断裂带油气分布特征及控制因素[J].断块油气田,2004,11(6):13-18.
    104.杨文孝.准噶尔盆地大油气田形成条件和预测[J].新疆石油地质,1995,16(3):200-211.
    105.张厚福,金之钧.我国油气运移的研究现状与展望[J].石油大学学报(自然科学版),2000,24(4):1-3.
    106.王屿涛.准噶尔盆地西北缘稠油特性及蚀变作用类型[J].石油实验地质,1994,16(1):10-20.
    107.吴孔友,洪梅,聂振荣等.乌夏断裂带侏罗系油气成藏主控因素[J].新疆石油地质,2007,28(4):434-436.
    108.李振宏,贾建恒.浅析断裂活动与油气运聚的时空配置关系[J].特种油气藏,2004,11(3):9-11.
    109.谭明友,张云银,宋传春等.准噶尔盆地油气幕式成藏规律探讨[J].石油勘探开发,2004,31(1):28-31.
    110.尤兴弟.准噶尔盆地西北缘风城组沉积相探讨[J].新疆石油地质,1986,8(1):49-54.
    111.董广华,张显贵,陈金虎.准噶尔盆地西北缘资源潜力分析方法介绍[J].新疆石油地质,1986, 8 (3):49-57.
    112.陶国亮,胡文瑄,张义杰等.准噶尔盆地西北缘北西向横断裂与油气成藏[J].石油学报,2006,27(4):23-28.
    113.吴元燕,平俊彪,吕修祥等.准噶尔盆地西北缘油气藏保存及破坏定量研究[J].石油学报,2002,23(6):24-28.
    114.杨斌.准噶尔盆地西北缘石炭系中统海相地层的生油问题[J].新疆石油地质,1982,(03).
    115.王昌桂.中国中西部侏罗系油气成藏分布规律[J].新疆石油地质,2000,21(5):356-359.
    116.中国石油大学(华东),准噶尔盆地乌-夏断裂带精细勘探潜力研究,2008.
    117.中国石油勘探开发研究院,准噶尔盆地西北缘油气地质综合评价和有利预探目标选择,2005.
    118.中国石油勘探开发研究院,准噶尔盆地西北缘逆冲断裂构造与油气聚集特征,2006.
    119.中国地震局地质研究所,准噶尔盆地西北缘盆山构造耦合关系研究,2007.
    120.新疆油田勘探开发研究院勘探所,新疆1989年石油(气)储量年报,1989.
    121.新疆油田勘探开发研究院勘探所,新疆1988年石油(气)储量年报,1988.
    122.新疆油田勘探开发研究院勘探所,新疆1987年石油(气)储量年报,1987.
    123.新疆油田勘探开发研究院勘探所,新疆1986年石油(气)储量年报,1986.
    124.杨斌.克拉玛依—乌尔禾油区原油地球化学特征[J].新疆石油地质,1981,2(1):19-41.
    125.李建新,杨斌、何丽箐,等.准噶尔盆地西北缘稠油成因和早期成烃机制的探讨[J].新疆石油地质,1993,14(3):239-249
    126.宋岩,王喜双,房德权.准噶尔盆地含油气系统的形成与演化[J].石油学报,2000,21(4):20-25.
    127.颜玉贵.克乌断裂形成机制与油气聚集[J].新疆石油地质,1983,4(4):15-19.
    128.Zvi sofer.Stable Cabon isotope compositions of crude oils:Application to source depositional environments and petroleum alteration[J].AAPG,1984,68(1):31-49.
    129.Masterson W D,Dzou L I P,Holba A G,et al.Evidence for biodegradation and evaporative fractionation in West Sak,Kuparuk and Prudhoe Bay field areas,North Slope,Alaska[J].Organic Geochemistry,2001,32:411-441.
    130.Curiale J A,Bromley B W.Migration induced compositional changes in oils and condensates of a single field[J].Org.Geochem,1996,24(12):1097-1113.
    131.Carpentier B,Ungerer P,Kowalewski et al.Molecular and isotope fractionation of light hydrocarbons between oil and gas phases[J].Org.Geochem,1996 , 24(12) :1115-1139.
    132.Trindade I A,Brassell S C.Geochemical assessment of petroleum migration phenomena on a regional scale:case studies from braziliam marginal basins[J].Org.Geochem, 1992,19(1):13-27.
    133.张义杰,柳广弟.准噶尔盆地复合含油气系统特征、演化与油气勘探方向[J].石油勘探与开发,2002,29(1):36-38.
    134.何登发,陈新发,张义杰等.准噶尔盆地油气富集规律[J].石油学报,2004,25(3):1-10.
    135.张义杰.新疆准噶尔盆地断裂控油气规律研究[M].北京:中国石油大学,2002.
    136.康玉柱.中国西北地区油气地质特征及资源评价[M].北京:石油工业出版社,1997.
    137.贾承造,何登发,雷振宇等.前陆冲断带油气勘探[M].北京:石油工业出版社,2000.
    138.贾承造,魏国齐,李本亮等.中国中西部两期前陆盆地的形成及其控气作用[J].石油学报,2003,24(2):13-18.
    139.陈新,卢华复,舒良树等.准噶尔盆地构造演化分析新进展[J].高校地质学报,2002,8(3):257-267.
    140.何登发,张义杰,王绪龙等.准噶尔盆地大油气田勘探方向[J].新疆石油地质,2004,25(2):117-121.
    141.李丕龙.准噶尔盆地石油地质特征与大油气田勘探方向[J].石油学报,2005,26(6):7-9.
    142.新疆油田勘探开发研究院勘探所,中拐油田拐8井区块侏罗系三工河组、八道湾组油藏预测储量报告,1999.
    143.新疆油田勘探开发研究院勘探所,中拐油田拐201井区块侏罗系八道湾组油藏石油控制储量报告,1999.
    144.新疆油田勘探开发研究院勘探所,西北缘1983年新增储量报告,1983.
    145.新疆油田勘探开发研究院勘探所,克-乌油田1982年新增石油地质储量年报,1982.
    146.新疆油田勘探开发研究院勘探所,1994年石油(气)储量年报,1994.
    147.新疆油田勘探开发研究院勘探所,1993年石油(气)储量年报,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700