用户名: 密码: 验证码:
大别造山带碰撞后花岗质岩浆作用地球化学:对去山根过程及山根结构的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大别造山带的去山根作用被推断发生于早白垩世。埃达克质岩,被解释为加厚/拆沉榴辉岩相下地壳熔体,可以对去山根作用过程及现今已再循环的山根地壳的性质和结构提供关键性制约。前人关于花岗岩类的研究主要集中于北大别,本文系统地研究了其他构造单元花岗岩类的年代学,主、微量元素和放射成因同位素地球化学。本论文研究目标是:(1)鉴于通常用于鉴别埃达克质岩石的高Sr/Y和La/Yb特征可以有多种成因,本文提供能更有效鉴别加厚地壳熔融成因的埃达克质岩石新的地球化学特征:(2)全面查明高镁埃达克质岩石与低镁埃达克质岩石的地球化学差异及造成这一差异的熔体/地幔反应机制,为识别源自拆沉加厚下地壳的熔体提供依据;(3)查明大别山低镁和高镁埃达克质岩石的时空分布特征,为去山根过程的启动机制提供制约:(4)应用埃达克质岩石和花岗岩的Sr-Nd-Pb同位素组成示踪大别山地壳结构及山根组成,为碰撞造山带地壳增厚机制提供制约。本文的主要结论如下:
     1.低镁埃达克质岩地球化学特征与识别
     大别山低镁高Sr/Y花岗岩类(HSG)除了高Sr/Y和低Y含量外,相对普通花岗岩类,还具有如下独特的地球化学特征:在Sr vs. CaO和Sr vs. SiO2图解上形成具有更高Sr含量的独立趋势,和彼此正相关耦合的高Sr/Y, (La/Yb)N, (Dy/Yb)N,和Nb/Ta(最高分别可达225,153,3.1和19.5)。这些地球化学特征只能被加厚大陆下地壳在高压下以富石榴子石,贫长石和含金红石为残留相部分熔融解释。已发表的其它成因的假埃达克岩不具有这些特征。因此,加厚下地壳熔体可以由以上综合地球化学特征识别。
     2.高镁埃达克质岩地球化学特征:熔体/地幔反应如何影响熔体组成
     大别山高镁HSG具有高Sr/Y(31~100)和(La/Yb)N(16~48),高SiO2(57.2~68.9wt%)和Mg#(44~63).它们的Sr-Nd-Pb同位素以低εNd(t)(-24.9~-14.3,),轻微富集的87Sr/86Sri(0.7057~0.7077),和低206Pb/204Pb (15.59~16.60)为特点。它们和其他沿郯庐南段分布的同类岩石同属拆沉下地壳成因的高镁埃达克质岩。高镁埃达克质岩与大别低镁埃达克质岩相比除了具有较高的MgO、Cr、Ni含量外,还具有如下特征:(1)较低的(La/Yb)N, (Dy/Yb)N, Sr/CaO和Sr/Y比值;(2)在相同SiO2时具有较低的A12O3, Na2O,和La, Sr含量;(3)在相同MgO情况下,具有比普通地幔玄武质岩浆序列更高的MgO/FeOt, Ni含量和Ni/Co。这些特征只能用高镁埃达克质岩来自拆沉下地壳部分熔融,并经历熔体/地幔反应解释。在熔体/地幔反应过程中,主要生成斜方辉石,熔体体积增加,可分别解释特征(1)和(2)。熔体/地幔反应时的固相为富集斜方辉石,无石榴石的矿物组合,它具有比地幔部分熔融时残留相以橄榄石为主的矿物组合更低的Kd (MgO, bulk)和更高的DNi (bulk)和DNi/DCo(bulk),可解释特征(3)。
     3.高镁埃达克质岩在大别造山带的时空分布及对去山根作用启动机制的启示
     年代学研究表明虽然大别造山带山根加厚下地壳的部分熔融(产生低镁埃达克质岩)发生时间在143~130Ma,但是高镁埃达克质岩年龄集中在131-130Ma,说明去山根作用直到131~130Ma时才发生。低镁埃达克质岩在大别造山带各个构造单元均有分布,说明在早白垩世以前,加厚山根下地壳在大别造山带普遍存在。但是高镁埃达克质岩似乎只分布在大别造山带的东-南缘,靠近郯庐断裂。这与低镁埃达克质岩的分布显著不同,说明郯庐断裂可能在诱发大别造山带去山根过程方面起到关键作用。Nb-Pb同位素显示大别山南侧的埃达克质岩浆可能与同时代长江断裂活动有关。
     本文指出大别山埃达克质岩和碰撞后岩浆作用主要分布在东大别山和北部的北淮阳带和北大别带的空间分布特征,依据郯庐断裂演化历史,以及本实验室先期的模拟实验,提出在早白垩世大规模左行走滑可以导致大别造山带沿三叠纪碰撞缝合线拉分引张,从而导致了造山带山根加厚下地壳的初始熔融。随后在131-130Ma左右,随着沿着断裂带区域从压扭性环境向引张性环境转变,导致大别造山带东缘沿郯庐断裂带的一些榴辉岩碎块的拆沉(delamination and foundering)。
     4. Sr-Nd-Pb同位素组成及其对山根组成和增厚机制的制约
     大别山普通花岗岩类的87Sr/86Sr (i),εNd (t)和206Pb/204Pb (i)的变化范围分别为0.7062~0.7105(除一个Rb/Sr,87Sr/86Sr(i)为0.6993的样品外),-25.5~-12.7,和15.51~16.85;低镁埃达克质岩的Sr-Nd-Pb同位素变化范围分别为0.7055~0.7087,-27.8~-13.8和15.69~17.16。除普通花岗岩类具有略高的87Sr/86Sr (i)外,普通花岗岩,低镁埃达克质岩和高镁埃达克质岩的Sr, Nd和Pb同位素组成基本类似,具有低Sr和Pb同位素初始比值和低εNd(t)。大别花岗岩类与华北HSG的同位素对比表明,华南陆块下地壳较华北陆块下地壳具有较高的Th/U,因而在相同206pb/204Pb时,具有较高的208pb/204pb。这些同位素证据表明山根加厚地壳由华南古老下地壳组成。
     北大别埃达克质岩具有异常高的Th/U(最高可达51)和贫U特征,反映它们的源区曾经历过俯冲脱水。Th/U和208pb/206pb没有相关性说明该脱水事件可能与三叠纪深俯冲有关。北大别埃达克质岩的低镁特征说明该脱水(深俯冲)基性下地壳在早白垩世并未被岩石圈地幔覆盖,因此可能已经反卷(roll-back)。该深俯冲脱水镁铁质下地壳在北大别山根底部一直保留到早白垩世。
     来自其它构造单元,包括北淮阳,的埃达克质岩的Th/U(6.0±1.8,1SD)接近平均大陆下地壳组成。这说明有部分基性华南下地壳被楔入到深部缝合线以北,插入华北下地壳当中。
     据此提出大别造山带山根因华南下地壳在俯冲板片断离后深俯冲镁铁质下地壳反卷(Roll back),并在山根底部居留(北大别),在晚三叠到侏罗纪继续俯冲的华南陆壳的缩短(南大别和宿松带)和向华北地壳楔入(北淮阳)导致山根地壳增厚的模型。
     5.花岗岩类和折返超高压岩石的Nd同位素脱藕及对造山带地壳结构的制约
     大别——苏鲁碰撞后花岗岩类的εNd(130 Ma)显著低于超高压榴辉岩和片麻岩,而Nd同位素模式年龄显著老于后者,表现出加厚镁铁质山根与折返的超高压榴辉岩和片麻岩岩片存在Nd同位素脱藕。这一观察表明折返的超高压岩石的原岩主要是先期卷入大陆深俯冲的华南陆块北缘以新元古代地壳为主的较年轻地壳,而加厚山根下地壳主要以后续俯冲的华南板块内部较古老的下地壳物质为主。这一过程导致发生陆壳深俯冲和超高压变质作用的碰撞造山带陆壳(如大别山)的缩短量远大于未发生的陆壳深俯冲和超高压变质作用的碰撞造山带(如秦岭)。
     北大别碰撞后基性岩的Sr-Nd-Pb同位素与埃达克质岩具有高度相似性和与折返超高压岩片的差异,说明它们地幔源区主要受来自于拆沉山根下地壳及其熔体交代的影响。
Mountain root removal in the Dabie orogen is inferred to have occurred in early Cretaceous. Adakitic rocks, regarded as partial melts from thickened/delaminated eclogitic crust, can provide key constraints on the mountain root removal processes and the composition and the architecture of the crustal root. Previous studies on granitoids in the Dabie orogen mainly focused on the North Dabie Zone. In this study, a systematic study on the geochronology, major and trace elemental chemistry, and radiogenic isotope composition of granitoids from other units of the Dabie orogen was conducted. The purposes of this study include:(i) as high Sr/Y and La/Yb, based on which adakitic rocks are generally identified, can be produced by multiple processes, additional criteria are presented that can identify adakitic rocks as partial melts of thickened crust; (ii) to reveal the geochemical differences between high-Mg and low-Mg adakitic rocks and the relevant mechanism during melt/mantle interaction, providing a geochemical basis to identify partial melts from delaminated lower crust; (iii) to reveal the spatial and temporal distribution of low-Mg and high-Mg adakitic rocks, providing constraints on the triggering mechanism of the mountain root removal process; and (iv) to trace the crustal architecture and constitution of the Dabie orogen and its mountain root, giving constraints on crustal thickening in collisional zones. Major conclusions are summarized as following.
     1. Geochemical characteristics and identification of low-Mg adakitic rocks
     Low-Mg high Sr/Y granites (HSG) from the Dabie orogen, relative to normal granitoids, display, besides high Sr/Y and low Y contents, the following distinct chemical features:(1) separate trends with higher Sr contents in Sr versus SiO2, and versus CaO diagrams; (2) positively correlated and significantly elevated Sr/Y, (La/Yb)N, (Dy/Yb)N and Nb/Ta (up to 225,153,3.1 and 19.5, respectively). These chemical features are best explained by deep melting of a thickened lower continental crust (LCC) with garnet-dominant, plagioclase-poor, and rutile-present residual phases. Pseudo-adakites reported in the literature do not show these features. Therefore, partial melts from thickened LCC can be identified by the chemical features found in this study.
     2. Geochemical characteristics of high-Mg adakitic rocks:how melt/mantle interaction influences the melt composition
     High-Mg HSG from the Dabie orogen have high Sr/Y (31~100) and (La/Yb)N (16~48), high SiO2 (57.2~68.9 wt.%) and Mg# (44-63). Their Sr-Nd-Pb isotope compositions are characterized by lowεNd(t) (-24.9~-14.3), slightly enriched 87Sr/86Sr(i) (0.7057~0.7077), and low 206Pb/204Pb (15.59~16.60). Similar rocks are found widespread along the southern part of the Tan-Lu fault. These rocks belong to high-Mg adakitic rocks produced by delamination and foundering of mafic lower crust. Besides high MgO, Cr and Ni contents and high Mg#, the high-Mg adakitic rocks also show, compared to low-Mg adakitic rocks, the following features:(1) relatively low (La/Yb)N, (Dy/Yb)N, Sr/CaO and Sr/Y; (2) at a given SiO2, lower Al, Na, La and Sr contents; (3) at given MgO, MgO/FeOt, Ni and Ni/Co higher than normal basaltic magmas. Thus, the high-Mg adakitic rocks can be explained by derivation from delaminated lower continental crust and interaction with the mantle. Features (1) and (2) suggest that Opx is the major resulting phase without garnet and that the mass of the metasomatic melt may increase during the melt/mantle interaction process. Feature (3) suggests that the solid phase during melt/mantle interaction is an Opx-rich assemblage which has lower Kd (MgO) (bulk) and higher DNi (bulk) and DNi/Dco (bulk) partition coefficients than an olivine-rich assemblage during partial melting of the mantle.
     3. Spatial and temporal distribution of high-Mg adakitic rocks:Implications for triggering mechanism of the mountain root removal
     U-Pb age data suggest that although partial melting of thickened crust of the mountain root (formation of low-Mg adakitic rocks) occurred during the time period of 143-130 Ma, high-Mg adakitic rocks in the Dabie orogen emplaced within the short period from 131-130 Ma, indicating removal of the mountain root after 130-131 Ma. Low-Mg adakitic rocks occur in all units of the Dabie orogen, indicating a thickened crust exists beneath the whole Dabie orogen prior to the early Cretaceous.
     High-Mg adakitic rocks seem to be restricted to the eastern margin of the orogen, close to the Tan-Lu fault, indicating the key role of the fault for mountain root removal. Nd-Pb isotopic composition indicates that adakitic rocks from the southern part of the Dabie orogen may be related to the contemporaneous activity of the Yangtze River fault.
     This study points out that adakitic rocks and post-collisional magmatism mainly distribute in the eastern Dabie region and the northern part of the orogen (North Huaiyang and North Dabie). Based on the evolution of the Tan-Lu fault and a new physical modelling experiment, it is suggested that large-scale sinistral strike-slip movements of the Tan-Lu fault during the early Cretaceous can lead to pull-apart extension, which may induce initial melting of the mountain root. The following transition from transtension to extension at c.131 Ma may trigger the foundering of some fragments of the eclogitic crust in the mountain root near the Tan-Lu fault.
     4. Sr-Nd-Pb isotopic compositions and constraints on the constitution and thickening mechanism of the mountain root
     The range of 87Sr/86Sr(i),d (t) and 206Pb/204Pb(i) for normal granitoids from the Dabie orogen are 0.7062~0.7105 (except one sample),-25.5~-12.7, and 15.51~16.85, respectively, whereas low-Mg adakitic rocks range from 0.7055~0.7087,-27.8~-13.8, and 15.69~17.16, respectively. Except normal granitoids that have slightly higher 87Sr/86Sr(i), normal granitoids, LMA and HMA show similar Sr-Nd-Pb isotopic compositions with low radiogenic Sr and Pb ratios and lowεNd (t). Comparison of Dabie granitoids with high Sr/Y granitoids from the North China Block (NCB) indicates that the lower crust of the South China Block (SCB) has higher Th/U relative to the NCB, and thus higher 208Pb/204Pb at a given 206Pb/204Pb ratio. observation indicates that the crustal mountain root is composed of ancient lower SCB crust.
     Adakitic rocks from North Dabie have unusually high Th/U (up to 51) with low U contents, indicating that their sources have experienced dehydration. No correlation between Th/U and 208Pb/206Pb suggests that the dehydration is related to the Triassic deep subduction. The low-Mg feature of adakitic rocks from North Dabie indicates that in early Cretaceous the dehydrated (deep subducted) mafic LCC is not covered by a lithospheric mantle, and may have rolled-back. The dehydrated mafic LCC has remained in the lower part of the crustal root underneath North Dabie till early Cretaceous.
     Adakitic rocks from the other three units, including North Huaiyang to the north of North Dabie, have Th/U (6.0±1.8,1SD) similar to the average composition of LCC. This suggests that parts of mafic lower SCB crust have been thrusted to the north of the deep suture and injected into the NCB crust.
     It is proposed that the crustal mountain root of the Dabie orogen has been thickened by preservation of the deep subducted mafic lower crust that rolled-back after slab break-off beneath the orogen (North Dabie), injection of the succeeding subducted SCB crust into the NCB crust (North Huaiyang), and shortening of the subducted SCB crust (South Dabie and Susong complex) during the late Triassic and Jrassic.
     5. Decoupling of Nd isotopic composition between granitoids and exhumed UHP blocks: Constraints on the crustal architecture in collisional zones
     Granitoids from the Dabie-Sulu belt haveεNd(130 Ma) significantly lower than exhumed UHP eclogites and gneisses. Thus the former have T2DM older than the latter, indicating decoupling of the Nd isotopic system between exhumed UHP rocks and thickened mafic crustal root. This suggests that the protolith of exhumed UHP rocks mainly is the Neoproterozoic crust in the northern margin of SCB that had been subducted at an early stage of continental collision, while the mountain root from the inner part of SCB was subducted at a later stage. In continental collisional zones where deep subduction or UHP metamorphism of continental crust has happened (e.g. Dabie orogen), this process results in a much larger crustal shortening than in collisional zones without UHP metamorphism (e.g. Qinling orogen).
     Post-collisional mafic rocks from North Dabie have Sr-Nd-Pb isotopic compositions similar to those of adakitic rocks, but different from those of exhumed UHP rocks. This indicates that post-collisional mafic rocks originate from an enriched mantle hybridized or metasomatised by delaminated mountain root crust. removal, constitution and thickening mechanism of the crustal mountain root
引文
Aguillon-Robles A, Caimus T, Benoit M, et al.2001. Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico:Indicators of East Pacific Rise subduction below southern Baja California? Geology,29(6):531-534.
    Andrew J, Robinson C, Wood BJ.1998. The depth of the spinel to garnet transition at the peridotite solidus. Earth and Planetary Science Letters,164:277-284.
    Asimow PD, Ghiorso MS.1998. Algorithmic Modifications Extending MELTs to Calculate Subsolidus Phase Relations. American Mineralogist,83:1127-1131.
    Atherton MP, Petford N.1993. Generation of sodium rich magmas from newly underplated basaltic crust. Nature,362:144-146.
    Ayers JC, Dunkle S, Gao S, Miller CF.2002. Constraints on timing of peak and retrograde metamorphism in the Dabie Shan Ultrahigh-Pressure Metamorphic Belt, east-central China, using U-Th-Pb dating of zircon and monazite. Chemical Geology,186(3-4):PII S0009-2541(02)00008-6.
    Bali E, Audetat A, Keppler H.2009. Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochimica et Cosmochimica Acta,73(13):A80-80.
    Beate B, Monzier M, Spikings R, et al.2001. Mio-Pliocene adakite generation related to flat subduction in Southern Ecuador:The Quimsacocha volcanic center. Earth and Planetary Science Letters,192(4):561-570.
    Bedard JH.2006. Trace element partitioning in plagioclase feldspar. Geochimica et Cosmochimica Acta,70:3717-3742.
    Bedard JH.2007. Trace element partitioning coefficients between silicate melts and orthopyroxene:Parameterizations of D variations. Chemical Geology,244:263-303.
    Bedard JH.2005. Partitioning coefficients between olivine and silicate melts. Lithos, 83(3-4):394-419.
    Bedard JH.2010. Parameterization of the Fe=Mg exchange coefficient (Kd) between clinopyroxene and silicate melts. Chemical Geology,274(3-4):169-176.
    Bindeman IN, Davis AM.2000. Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behavior. Geochimica et Cosmochimica Acta,64(16):2863-2878.
    Blundy JD. Wood BJ.1994. Prediction of crystal-melt partition coefficients from elastic moduli. Nature,372:452-453.
    Brenan JM, Shaw HF, Ryerson, FJ, et al.1995. Experimental-determination of trace element partitioning between Pargasite and a synthetic hydrous andesitic melt. Earth and Planetary Science Letters,135(1-4):1-11.
    Bryant DL, Ayers JC, Gao S, et al.2004. Geochemical, age, and isotopic constraints on the location of the Sino-Korean/Yangtze Suture and evolution of the Northern Dabie Complex, east central China. Geological Society of America Bulletin, 116(5-6):698-717.
    Calmus, Robles, Maury, et al.2003. Spatial and temporal evolution of basalts and magnesian andesites ("bajaites") from Baja California, Mexico:the role of slab melts. Lithos,66.
    Cameron KL, Cameron M.1985. Rare earth element,87Sr/86Sr, and 143Nd/144Nd compositions of Cenozoic orogenic dacites from Baja California, northwestern Mexico, and adjacent west Texas:evidence for the predominance of a subcrustal component, contributions to Mineralogy and Petrology,91:1-11.
    Castillo PR.2006. An overview of adakite petrogenesis. Chinese Science Bulletin,51(3): 257-268.
    Chappell BW, White AJR.1992. I-and S-type granites in the Lachlan Fold Belt. Transactions-Royal Society of Edinburgh:Earth Sciences,83:1-26.
    Chen B, Jahn BM, Arakawa Y, et al.2004. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang Orogen, North China Craton:elemental and Sr-Nd-Pb isotopic constraints. Contributions to Mineralogy and Petrology,148(4): 489-501.
    Chen B, Jahn BM, Wei CJ.2002. Petrogenesis of Mesozoic granitoids in the dabie UHP complex, central china:trace element and Nd-Sr isotope evidence. Lithos,60(1-2): 67-88.
    Chen B, Tian W, Jahn BM, et al.2008. Zircon SHRIMP U-Pb ages and in-situ Hf isotopic analysis for the Mesozoic intrusions in South Taihang, North China craton: Evidence for hybridization between mantle-derived magmas and crustal components. Lithos,102(1-2):118-137.
    Chen JF, Xie Z, Li HM, et al.2003. U-Pb zircon ages for a collision-related K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochemical Journal,37(1):35-46.
    Chen Y, Ye K, Liu JB, et al.2006. Multistage metamorphism of the Huangtuling granulite, Northern Dabie Orogen, eastern China:implications for the tectonometamorphic evolution of subducted lower continental crust. Journal of Metamorphic Geology, 24(7):633-654.
    Chung SL, Chu MF, Zhang YQ, et al.2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews,68(3-4):173-196.
    Compston, W, Williams, I.S., Kirschvink, J.L., Zhang, Z.C. and Ma, G.,1992. Zircon U-Pb ages for the early Cambrian time-scale. Journal of the Geological Society (London),149:171-184.
    Condie KC.2005. TTGs and adakites:Are they both slab melts? Lithos,80(1-4 SPEC. ISS.):33-44.
    Davies JH, Vonblanckenburg F.1995. Slab Breakoff-a Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters,129(1-4):85-102.
    Defant MJ, Drummond MS.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature,347(6294):662-665.
    Defant MJ, Kepezhinskas P.2001. Evidence suggests slab melting in arc magmas. EOS, Transactions, American Geophysical Union,82(6):65-80.
    Defant MJ, Kepezhinskas P., Defant MJ, et al.2002. Adakites:some variations on a theme. Acta Petrologica Sinica,18(2):UNSP 1000-0569/2002/018(02)-0129-42.
    Defant MJ, Richerson PM, De Boer JZ, et al.1991. Dacite genesis via both slab melting and differentiation:petrogenesis of La Yeguada volcanic complex, Panama. Journal of Petrology,32(6):1101-1142.
    DePaolo DJ.1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters,53:189-202.
    Dewey JF, Shackleton RM, Chang CF, et al.1988. The tectonic evolution of Tibetan Plateau:Philos. Trans., Royal Society of London. Series A, Mathematical and Physical Sciences, v.327, N.1594, p.379-413.
    Drake MJ.1976. Plagioclase--melt equilibria. Geochimica et Cosmochimica Acta,40(4): 457-465.
    England PC, Houseman GA.1988. The mechanics of the Tibetan plateau. Philosophical Transactions of the Royal Society of London Series A,326:301-319.
    Falloon TJ, Green DH.1988. Anhydrous partial melting of perdidotite from 8 to 35 kb and the petrogenesis of MORB. Journal of Petrology, Special Lithosphere Issue: 379-414.
    Fan QC, Zhang HF, Sui JL, et al.2005. Magma underplating and Hannuoba present crust-mantle transitional zone composition:Xenolith petrological and geochemical evidence. Science in China Series D-Earth Sciences,48(8):1089-1105.
    Fan WM, Guo F, Wang YJ, et al.2004. Late Mesozoic volcanism in the northern Huaiyang tectono-magmatic belt, central China:partial melts from a lithospheric mantle with subducted continental crust relicts beneath the Dabie orogen? Chemical Geology,209:27-48.
    Fitches WR, Fletcher CJN, Xu JW.1991. Geotectonic relationships between cratonic blocks in E. China and Korea. Jour. Southeast Asia Earth Sci.,6(185-199).
    Foley SF, Barth MG, Jenner GA.2000. Rutile/melt partition coefficients for trace elements and assessment of the influence of rutile on the trace element characteristics of subduction zone magmas. Geochimica et Cosmochimica Acta, 64.
    Foley SF, Tiepolo M, Vannucci R.2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature,417:837-840.
    Gao S, Ling WL, Qiu YM, et al.1999a. Contrasting geochemical and Sm-Nd isotopic compositions of Archean metasediments from the Kongling high-grade terrain of the Yangtze craton:Evidence for cratonic evolution and redistribution of REE during crustal anatexis. Geochimica Et Cosmochimica Acta,63(13-14):2071-2088.
    Gao S, Luo TC, Zhang BR, et al.1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica Et Cosmochimica Acta,62(11): 1959-1975.
    Gao S, Rudnick RL, Yuan HL, et al.2004. Recycling lower continental crust in the North China craton. Nature,432(7019):892-897.
    Gao S, Zhang BR, Jin ZM, et al.1999b. Lower crustal delamination in the Qinling-Dabie orogenic belt. Science in China Series D-Earth Sciences,42(4):423-433.
    Gao YF, Hou ZQ, Kamber BS, et al.2007. Adakite-like porphyries from the southern Tibetan continental collision zones:evidence for slab melt metasomatism. Contributions to Mineralogy and Petrology,153(1):105-120.
    Ghiorso MS, Sack RO.1995. Chemical Mass Transfer in Magmatic Processes. Ⅳ. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures.. Contributions to Mineralogy & Petrology,119: 197-212.
    Goldstein SL, O'Nions RK, Hamilton PJ.1984. A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems. Earth and Planetary Science Letters,70(2):221-236.
    Govindaraju K.1995.1995 Working values with confidence limits for twenty-six CRPG, ANRT and IWG-GIT Geostandards. Special issue, Geostandards Newsletter,19: 1-32.
    Green TH.1994. Experimental studies of trace-element partitioning applicable to igneous petrogenesis--Sedona 16 years later. Chemical Geology,117:1-36.
    Grove TL, Parman SW, Bowring SA, et al.2002. The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contributions to Mineralogy & Petrology,142: 375-396.
    Guo F, Fan WM, Li CW.2006. Geochemistry of late Mesozoic adakites from the Sulu belt, eastern China:magma genesis and implications for crustal recycling beneath continental collisional orogens. Geol. Mag.,143(1):1-13.
    Guo F, Nakamuru E, Fan WM, et al.2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. Journal of Petrology,48(4):661-692.
    Guo JH, Chen FK, Zhang XM, et al.2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China:zircon U-Pb geochronology. Acta Petrologica Sinica,21(4):1281-1301.
    Harcker BR, Ratschbacher L, Webb L, et al.1998b. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters,161(1-4):215-230.
    Hart SR.1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309:753-757.
    Hawkesworth CJ, Turner SP, McDermott F, et al.1997. U-Th isotopes in arc magmas: Implications for element transfer from the subducted crust. Science,276(5312): 551-555.
    He XX, Zhu XK, Yang C, et al.2005. High-precision analysis of Pb isotope ratios using MC-ICP-MS. Acta Geologica Sinica,26(Suppl):19-22.
    Hou ML, Jiang YH, Jiang SY, et al.2007. Contrasting origins of late Mesozoic adakitic granitoids from the northwestern Jiaodong Peninsula, east China:implications for crustal thickening to delamination. Geological Magazine,144(4):619-631.
    Hou ZH, Li SG, Chen NS, et al.2005. Sm-Nd and zircon SHRIMP U-Pb dating of Huilanshan mafic granulite in the Dabie Mountains and its zircon trace element geochemistry. Science in China Series D-Earth Sciences,48(12):2081-2091.
    Hsu KJ, Wang Q, Li J, et al.1987. Tectonic evolution of Qinling Mountains, China. Eclogae Geologicae Helvetiae,80:735-752.
    Huang F, He Y.2010. Partial melting of the dry mafic continental crust and C-type adakites. Chinese Science Bulletin,55(13):1255-1267.
    Huang F, Li SG, Dong F, et al.2008. High-Mg adakitic rocks in the Dabie orogen, central China:Implications for foundering mechanism of lower continental crust. Chemical Geology,255(1-2):1-13.
    Huang F, Li SG, Dong F, et al.2007a. Recycling of deeply subducted continental crust in the Dabie Mountains, central China. Lithos,96(1-2):151-169.
    Huang F, Li SG, Yang W.2007b. Contributions of the lower crust to Mesozoic mantle-derived mafic rocks from the North China Craton:implications for lithospheric thinning. From:Zhai, M.G, Windley, B.F., Kusky, T.M. and Meng, Q.R. (eds) Mesozoic Sub-Continental Lithospheric Thinning Under Eastern Asia. Geological Society, London, Special Publications,280,55-75.
    Huang F, Lundstrom CC, McDonough WF.2006a. Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. American Mineralogist,91:1385-1400.
    Huang H, Gao S, Hu ZC, et al.2007c. Geochemistry of the high-Mg andesites at Zhangwu, western Liaoning:Implication for delamination of newly formed lower crust. Science in China Series D-Earth Sciences,50(12):1773-1786.
    Huang J, Lundstrom CC, McDonough WF.2006b. Melting of subducted continent: Element and isotopic evidence for a genetic relationship between Neoproterozoic and Mesozoic granitoids in the Sulu orogen. Chemical Geology,229(4):227-256.
    Huang XL, Xu YG, Liu DY.2004. Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China:Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochimica Et Cosmochimica Acta, 68(1):127-149.
    Irvine TN, Baragar WR.1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences,8:523-548.
    Jahn BM.1998. Geochemical and isotopic characteristics of UHP eclogites and ultramafic rocks of the Dabie orogen:implications for continental subduction and collisional tectonics. In Hacker, B.R., Liou, J.G. (Eds.), When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Kluwer Academic Publishing, Dordrecht, pp.203-239.
    Jahn BM.1999. Sm-Nd isotope tracer study of UHP metamorphic rocks:Implications for continental subduction and collisional tectonics. International Geology Review, 41(10):859-885.
    Jahn BM, Liu XC, Yui TF, et al.2005. High-pressure/ultrahigh-pressure eclogites from the Hong'an Block, East-Central China:geochemical characterization, isotope disequilibrium and geochronological controversy. Contributions to Mineralogy and Petrology,149(5):499-526.
    Jahn BM, Wu FY, Lo CH, et al.1999. Crust-mantle interaction induced by deep subduction of the continental crust:geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie complex, central China. Chemical Geology,157:119-146.
    Jiang N, Guo J.2010. Hannuoba intermediate-mafic granulite xenoliths revisited: Assessment of a Mesozoic underplating model. Earth and Planetary Science Letters,293(3-4):277-288.
    Jiang N, Liu YS, Zhou WG, et al.2007. Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochimica Et Cosmochimica Acta, 71(10):2591-2608.
    Jull M, Kelemen PB.2001. On the conditions for lower crustal convective instability. J. Geophys. Res.,106:6423-6446.
    Kamei A, Miyake Y, Owada M, et al.2009. A pseudo adakite derived from partial melting of tonalitic to granodioritic crust, Kyushu, southwest Japan arc. Lithos,112:615-625.
    Kay RW.1978. Aleutian magnesian andesites:melts from subducted pacific ocean crust. Journal of Volcanology and Geothermal Research,4:117-132.
    Kay RW, Kay SM.1993. Delamination and Delamination Magmatism. Tectonophysics, 219(1-3):177-189.
    Kelemen PB, Hanghoj K, Greene AR.2004. One view of the Geochemistry of Subduction-related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. In:Treatise on Geochemistry. Holland, H.D. and Turekian, K.K. (Editors), Elsevire, Amsterdam,3:593-659.
    Kelemen PB, Yogodzinski GM, Scholl David W.2003. Along-strike variation in the Aleutian island arc:Genesis of high Mg# andesite and implications for continental crust. Geophysical monograph,138:223-276.
    Kimura JI, Tateno M, Osaka I.2005. Geology and geochemistry of Karasugasen lava dome, Daisen-Hiruzen Volcano Group, southwest Japan. Island Arc,14(2):115-136.
    Klein M, Stosch HG, Seck HA, et al.2000. Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta,64(1):99-115.
    Kumarapeli S, Dong HG, Henjian W, et al.1990. Tanlu fracture zone, East China:An element of an ancient transform fault? In Wiely, T.J., Howell, G.P., and Wong, F.L., Terrane analysis of China and the Pacific Rim:Houston, Circum-Pacific Council for Energy and Mineral Resource, P.355-358.
    Leech ML.2001. Arrested orogenic development:eclogitization, delamination, and tectonic collapse. Earth and Planetary Science Letters,185(1-2):149-159.
    Li C, Ripley EM, Mathez EA.2003a. The effect of S on the partitioning of Ni between olivine and silicate melts in MORB. Chemical Geology,201:295-306.
    Liu, D.Y., Jian, P., Kroener, A. and Xu, S.T.,2006c. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth and Planetary Science Letters,250:650-666.
    Li JW, Zhao XF, Zhou MF, et al.2009. Late Mesozoic magmatism from the Daye region, eastern China:U-Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology,157(3):383-409.
    Li QL, Li SG, Zheng, YF, et al.2003b. A high precision U-Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China:a new constraint on the cooling history. Chemical Geology,200(3-4):255-265.
    Li QL, Li XH, Liu Y, et al.2010a. Precise U-Pb and Th-Pb age determination of kimberlitic perovskites by secondary ion mass spectrometry. Chemical Geology, 269(3-4):396-405.
    Li RW, Wan YS, Cheng ZY, et al.2005a. Provenance of Jurassic sediments in the Hefei Basin, east-central China and the contribution of high-pressure and ultrahigh-pressure metamorphic rocks from the Dabie Shan. Earth and Planetary Science Letters,231(3-4):279-294.
    Li SG, Ge NJ, Liu DL, et al.1989. The Sm-Nd Isotopic Age of C-Type Eclogite from the Dabie Group in the Northern Dabie Mountains and Its Tectonic Implication. Chinese Science Bulletin,34(19):1625-1628.
    Li SG, Guo SS, Liu YC, et al.2010b. Injection of South China crust into North China crust during continental collision:geochemical evidences. Geology, submitted to Geology.
    Li SG, Hong JA, Li HM, et al.1999. Zircon U-Pb dating of the pyroxenites-pyroxenic plutons and its implications. Geological Journal of China Universities,5(3):351-355.
    Li SG, Hou ZH, Li QL.2005b. Isotopic systematics of ultrahigh pressure metamorphic rocks and relative dating methods. Acta Petrologica Sinica,21(4):1229-1242.
    Li SG, Huang F, Nie YH, et al.2001a. Geochemical and geochronological constraints on the suture location between the North and South China Blocks in the Dabie orogen, central China. Phys. Chem. Earth(A),26(9-10):655-672.
    Li SG, Huang F, Zhou HY, et al.2003c. U-Pb isotopic compositions of the ultrahigh pressure metamorphic (UHPM) rocks from Shuanghe and gneisses from Northern Dabie zone in the Dabie Mountains, central China:Constraint on the exhumation mechanism of UHPM rocks. Science in China (Series D),46(3):200-209.
    Li SG, Jagoutz E, Chen YZ, et al.2000. Sm-Nd and Rb-Sr isotopic chronology and cooling history of ultrahigh pressure metamorphic rocks and their country rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica Et Cosmochimica Acta,64(6):1077-1093.
    Li SG, Li QL, Hou ZH, et al.2005c. Cooling history and exhumation mechanism of the ultrahigh-pressure metamorphic rocks in the Dabie mountains, central China. Acta Petrologica Sinica,21(4):1117-1124.
    Li SG, Nie YH, Hart SR, et al.1998a. Interaction between subducted continental crust and the mantle-II. Sr and Nd isotopic geochemistry of the syncollisional mafic-ultramafic intrusions in Dabie Mountains. Science in China Series D-Earth Sciences,41(6):632-638.
    Li SG, Nie YH, Hart SR, et al.1998b. Upper mantle-deep subducted continental crust interaction:Sr and Nd isotopic contraints on the syncollisional mafic to ultramafic intrusions in northern Dabieshan. Science in China (Series D),28:18-22.
    Li SG, Sun WD, Zhang ZQ, et al.2001b. Nd isotopic disequilibrium between minerals and Rb-Sr age of the secondary phengite in eclogite from the Yangkou area, Qingdao, eastern China. Chinese Science Bulletin,46(3):252-255.
    Li SG, Xiao YL, Liou DL, et al.1993. Collision of the North China and Yangtse Blocks and Formation of Coesite-Bearing Eclogites-Timing and Processes. Chemical Geology,109(1-4):89-111.
    Li SG, Yang W.2003. Decoupling of surface and subsurface sutures in the Dabie orogen and a continent-collisional lithospheric-wedging model:Sr-Nd-Pb isotopic evidences of Mesozoic igneous rocks in eastern China. Chinese Science Bulletin, 48(8):831-838.
    Li XP, Zheng YF, Wu YB, et al.2004. Low-T eclogite in the Dabie terrane of China: petrological and isotopic constraints on fluid activity and radiometric dating. Contributions to Mineralogy and Petrology,148(4):443-470.
    Ling MX, Wang FY, Ding X, et al.2010. Different origins of adakites from the Dabie Mountains and the Lower Yangtze River Belt, eastern China:geochemical constraints. International Geology Review:1-14.
    Ling MX, Wang FY, Ding X, et al.2009. Cretaceous Ridge Subduction Along the Lower Yangtse River Belt, Eastern China. Economic Geology,104(2):303-321.
    Liu FL, Gerdes A.2007. Zoned zircon from eclogite lenses in marbles from the Dabie-Sulu UHP belt:A clear record of ultra-deep subduction and fast exhumation. Geochimica Et Cosmochimica Acta,71(15):A588-A588.
    Liu FL, Gerdes A, Liou JG, et al.2006a. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China:constraints on prograde, ultrahigh-pressure and retrograde metamorphic ages. Journal of Metamorphic Geology,24(7):569-589.
    Liu FL, Xue HM.2007. Review and prospect of SHRIMP U-Pb dating on zircons from Sulu-Dabie UHP metamorphic rocks. Acta Petrologica Sinica,23(11):2737-2756.
    Liu FL, Xue HM, Xu ZQ, et al.2006b. SHRIMP U-Pb zircon dating from eclogite lens in marble, Shuanghe area, Dabie UHP terrane:restriction on the prograde, UHP and retrograde metamorphic ages. Acta Petrologica Sinica,22(7):1761-1778.
    Liu S, Hu RZ, Gao S, et al.2008a. U-Pb zircon age, geochemical and Sr-Nd-Pb-Hf isotopic constraints on age and origin of alkaline intrusions and associated mafic dikes from Sulu orogenic belt, Eastern China. Lithos,106(3-4):365-379.
    Liu S, Hu RZ, Gao S, et al.2009. Zircon U-Pb age, geochemistry and Sr-Nd-Pb isotopic compositions of adakitic volcanic rocks from Jiaodong, Shandong Province, Eastern China:Constraints on petrogenesis and implications. Journal of Asian Earth Sciences,35(5):445-458.
    Liu SA, Li SG, He YS, et al.2010a. Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China:Implications for petrogenesis and Cu-Au mineralization. Geochimica et Cosmochimica Acta, Inpress.
    Liu SA, Zhang GW, Ritts BD, et al.2010b. Tracing exhumation of the Dabie shan ultrahigh-pressure metamorphic complex using the sedimentary record in the Hefei Basin, Chia. GSA Bulletin,122(1/2):198-218.
    Liu YS, Gao S, Jin SY, et al.2001a. Geochemistry of lower crustal xenoliths from Neogene Hannuoba basalt, North China craton:implications for petrogenesis and lower crustal composition. Geochimica et Cosmochimica Acta,65(15):2589-2604.
    Liu YC, Li SG, Gu XF, et al.2007a. Ultrahigh-pressure eclogite transformed from mafic granulite in the Dabie orogen, east-central China. Journal of Metamorphic Geology,25(9):975-989.
    Liu YC, Li SG, Xu ST.2007b. Zircon SHRIMP U-Pb dating for gneisses in northern Dabie high TIP metamorphic zone, central China:Implications for decoupling within subducted continental crust. Lithos,96(1-2):170-185.
    Liu YC, Li SG, Xu ST, et al.2005. Geochemistry and geochronology of eclogites from the northern Dabie Mountains, central China. Journal of Asian Earth Sciences, 25(3):431-443.
    Liu YC, Li SG, Xu ST, et al.2000. U-Pb zircon ages of the eclogites and tonalitic gneiss from the northern Dabie mountains, China, and multi-overgrowths of metamorphic zones. Geol. J. China Univ.,6(3):417-423.
    Liu YC, Xu ST, Li SG, et al.2001b. Distribution and metamorphic P-T condition of the eclogites from the mafic-ultramafic belt in the northern part of the Dabie Mountains. Acta Geologica Sinica,75:385-395.
    Liu YS, Gao S, Kelemen PB, et al.2008b. Recycled crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in the North China Craton. Geochimica Et Cosmochimica Acta,72(9):2349-2376.
    Liu YS, Gao S, Yuan HL, et al.2004. U-Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton:insights on evolution of lower continental crust. Chemical Geology,211(1-2):87-109.
    Liu YS, Hu ZC, Gao S, et al.2008c. In situ analysis of major and trace elements of anhydrous minerals by LA-ICPMS without applying an internal standard. Chemical Geology,257:34-43.
    Ludwig KR.2001. Users Manual for Isoplot/Ex (rev.2.4.9):A geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication, No.la: 55 pp.
    Luo HL, Wu TR, Li Y.2007. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia:evidence for the Early Permian underplating beneath the North China Craton. Acta Petrologica Sinica,23(4):755-766.
    Lustrino M.2005. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth-Science Reviews,72.
    Ma CQ, Ehlers C, Xu CH, et al.2000. The roots of the Dabieshan ultrahigh-pressure metamorphic terrane:constraints from geochemistry and Nd-Sr isotope systematics. Precambrian Research,102:279-301.
    Ma CQ, Yang KG, Ming HL, et al.2003. The age of transformation for the Mesozoic crust of the Dabie orogen from compression to extension:evidences from granites. Science in China (Series D),33(9):817-827.
    Macpherson CG, Dreher ST, Thirlwall MF. 2006. Adakites without slab melting:High pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters,243(3-4):581-593.
    Martin H.1999. Adakitic magmas:Modern analogues of Archaean granitoids. Lithos, 46(3):411-429.
    Martin H, Smithies RH, Rapp, R, et al.2005. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution. Lithos,79(1-2):1-24.
    Middlemost EAK.1985. Naming materials in the magma/igneous rock system. Earth-Science Reviews,37:215-224.
    Mo XX, Hou ZQ, Niu YL, et al.2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos,96(1-2):225-242.
    Morris PA.1995. Slab melting as an explanation of Quaternary volcanism and aseismicity in southwest Japan. Geology,23(5):395-398.
    Moyen JF.2009. High Sr/Y and La/Yb ratios:The meaning of the'adakitic signature'. Lithos,112:556-574.
    Moyen JF, Stevens G.2006. Experimental constraints on TTG petrogenesis:implications for Archean geodynamics. In:Benn, K., Mareschal, J.-C., Condie, K.C. (Eds.), Archean geodynamics and enviorments. monographs. AGU, pp.149-178.
    Munker C.1998. Nb/Ta fractionation in a Cambrian arc back arc system, New Zealand: source constraints and application of refined ICPMS techniques. Chemical Geology,144(1-2):23-45.
    Nash WP, Crecraft HR.1985. Partition coefficients for trace elements in silicic magmas. Geochimica et Cosmochimica Acta,49(2):309-322.
    Niu ML, Zhu G, Liu GS, et al.2002. Tectonic setting and deep processes of Mesozoic magmatism in the Middle-south segment of the Tan-Lu fault. Chinese Journal of Geology,37:393-404.
    Okay AI, Sengor AMC.1992. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China. Geology,20(5):411-414.
    Okay AI, Sengor AMC, Satir M.1993. Tectonics of an Ultrahigh-Pressure Metamorphic Terrane-the Dabie-Shan Tongbai-Shan Orogen, China. Tectonics,12(6):1320-1334.
    Okay AI, Xu ST, Sengor AMC.1989. Coesite from the Dabie Shan Eclogites, Central China. European Journal of Mineralogy,1(4):595-598.
    Patino Douce AE.2005. Vapor-absent melting of tonalite at 15-32 kbar. Journal of Petrology,46(2):275-290.
    Pawlig S, Gueye M, Klischies R, et al.2006. Geochemical and Sr-Nd isotopic data on the Birimian of the Kedougou-Kenieba Inlier (Eastern Senegal):Implications on the Palaeoproterozoic evolution of the West African Craton. South African Journal of Geology,109:411-427.
    Pertermann M, Hirschmann MM, Hametner K, et al.2004. Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite. Geochem. Geophys. Geosyst., 5(Q05A01):doi:10.1029/2003GC000638.
    Peucat JJ, Vidal P, Bernard-Griffiths J, et al.1989. Sr, Nd, and Pb isotopic systematics in the Archean low-to high-grade transition zone of southern India:syn-accretion vs. post-accretion granulites. Journal of Geology,97(5):537-550.
    Powell CM.1986. Continental underplating model for the Rise of the Tibetan Plateau. Earth & Planetary Science Letters,81:79-94.
    Prouteau G, Scaillet B, Pichavant M, et al.2001. Evidence for mantle mesomatism by hydrous silicic melts derived from subducted oceanic crust. Nature,410.
    Puig A, Herve M, Suarez M, et al.1984. Calc-alkaline and alkaline Miocene and calc-alkaline recent volcanism in the southernmost Patagonian Cordillera, Chile. Journal of Volcanology and Geothermal Research,20:149-163.
    Qian CC, Lu YL, Liu LL.2004. Geochemical characteristics and genesis of Yanshanian granite in the Dabie ultrahigh-pressure (UHP) metamorphic belt. Geology in China,31(2):147-154.
    Rapp R.1995. Amphibole-out phase boundary in partially melted metabasalt, its control over liquid fraction and composition, and source permeability. J. Geophys. Res., 100:15601-15610.
    Rapp R, Watson EB.1995. Dehydration melting of metabasalt at 8-32 kbar:implications for continental growth and crust-mantle recycling. Journal of Petrology,36:891-931.
    Rapp R, Watson EB, MIller CF.1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research,51.
    Rapp RP, Norman MD, Laporte D, et al.2010. Continent Formation in the Archean and Chemical Evolution of the Cratonic Lithosphere:Melt-Rock Reaction Experiments at 3-4 GPa and Petrogenesis of Archean Mg-Diorites (Sanukitoids). Journal of Petrology,51(6):1237-1266.
    Rapp RP, Shimizu N, Norman MD, et al.1999. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8 GPa. Chemical Geology,160(4):335-356.
    Reoder PL, Emslie RE 1970. Olivine-liquid equilibrium. Contributions to Mineralogy & Petrology,29:275-289.
    Richards JR, Kerrich R.2007. Special paper:Adakite-like rocks:Their diverse origins and questionable role in metallogenesis. Economic Geology,102:537-576.
    Rudnick RL.1995. Making continental crust. Nature,378.
    Rudnick RL, Fountain DM.1995. Natrue and composition of the continental crust:a lower crustal perspective. Review of Geophysics,33(3):267-309.
    Rudnick RL, Gao S.2003. Composition of the Continental Crust. In the Crust (ed. R.L. Rudnick),3 Treatise on Geochemistry (eds. H.D. Holland and K.K. Turekian), Elsevier-Pergamon, Oxford:1-64.
    Sajona FG, Bellon H, Maury RC, et al.1994. Magmatic Response to Abrupt Changes in Geodynamic Settings-Pliocene Quaternary Calc-Alkaline and Nb-Enriched Lavas from Mindanao (Philippines). Tectonophysics,237(1-2):47-72.
    Salters V, Stracke A.2004. Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems,5(5):1525-2027.
    Schuth S, Munker C, Konig S, et al.2009. Petrogenesis of Lavas along the Solomon Island Arc, SW Pacific:Coupling of Compositional Variations and Subduction Zone Geometry. Journal of Petrology,50(5):781-811.
    Sen C, Dunn T.1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa:implications for the origin of adakites. Contributions to Mineralogy & Petrology,117(4):394-409.
    Shaw DM.1970. Trace element fractionation during anatexis. Geochimica et Cosmochimica Acta,34(2):237-243.
    Shimoda G.2009. Genetic link between EMI and EMⅡ:An adakite connection. Lithos, 112(3-4):591-602.
    Smithies RH.2000. The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters,182(1): 115-125.
    Sobolev AV, Hofmann AW, Kuzmin DV, et al.2007. The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science,316:412-417.
    Stacey JS, Kramers JD.1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters,26:207-221.
    Stern CR, Kilian R.1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology,123(3):263-281.
    Sun M, Chen NS, Zhao GC, et al.2008. U-Pb zircon and Sm-Nd isotopic study of the Huangtuling granulite, Dabie-Sulu belt, China:Implication for the paleoproterozoic tectonic history of the Yangtze Craton. American Journal of Science,308(4):469-483.
    Sun SS, McDonough WF.1989. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and process. In:Saunders, A.D., Norry, M.J.(Eds.), Magmatism in the Ocean Basins,42:313-345.
    Sun W, Ding X, Hu Y, et al.2007. The golden transformation of the Cretaceous plat subduction in the West Pacific. Earth and Planetary Science Letters,262:533-542.
    Tang J, Zheng YF, Wu YB, et al.2008. Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China. Precambrian Research,161(3-4):389-418.
    Tatsumi Y, Ishizaka K.1982. Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan. Ⅰ. Petrographical and chemical characteristics. Earth and Planetary Science Letters,60(2):293-304.
    Tsai CH, Liou JG 2000. Eclogite-facies relies and inferred ultrahigh-pressure metamorphism in the North Dabie Complex, central-eastern China. American Mineralogist,85(1):1-8.
    Tsai CH, Liou JG, Ernst WG.2000. Petrological characterization and tectonic significance of retrogressed garnet peridotites, Raobazhai area, North Dabie Complex, east-central China. Journal of Metamorphic Geology,18(2):181-192.
    Wang C. Jin ZM, Gao S, et al.2010. Eclogite-melt/peridotite reaction:Experimental constrains on the destruction mechanism of the North China Craton. Science China-Earth Sciences,53(6):797-809.
    Wang JH, Deng SX.2002. Emplacement age for the mafic-ultramafic plutons in the northern Dabie Mts. (Hubei):Zircon U-Pb, Sm-Nd and 40Ar/39Ar dating. Science in China (Series D),45(1):1-12.
    Wang Q, Wyman DA, Xu JF, et al.2007a. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China:Implications for partial melting and delamination of thickened lower crust. Geochimica Et Cosmochimica Acta, 71(10):2609-2636.
    Wang Q, Wyman DA, Xu JF, et al.2006a. Petrogenesis of Cretaceous adakitic and shoshonitic igneous rocks in the Luzong area, Anhui Province (eastern China): Implications for geodynamics and Cu-Au mineralization. Lithos,89(3-4):424-446.
    Wang Q, Wyman DA, Xu JF, et al.2007b. Partial melting of thickened or delaminated lower crust in the middle of eastern China:Implications for Cu-Au mineralization. Journal of Geology,115(2):149-161.
    Wang Q, Xu JF, Jian P, et al.2006b. Petrogenesis of adakitic porphyries in an extensional tectonic setting, dexing, South China:Implications for the genesis of porphyry copper mineralization. Journal of Petrology,47(1):119-144.
    Wang X, Liou JG, Mao HJ.1989. Coesite-bearing eclogites from the Dabie Mountains in central China. Geology,17:1085-1088.
    Wang X, Zhang RY, Liou JG.1995. UHPM terrane in east central China. In Coleman, R., Wang, X. (Eds.), Ultrahigh Pressure Metamorphism. Cambridge University Press, pp.356-390.
    Wang XC, Liu YS, Liu XM.2006c. Mesozoic adakites in the Lingqiu Basin of the central North China Craton:Partial melting of underplated basaltic lower crust. Geochemical Journal,40(5):447-461.
    Wang Y.2006. The onset of the Tan-Lu fault movement in eastern China:constraints from zircon (SHRIMP) and Ar-40/Ar-39 dating. Terra Nova,18(6):423-431.
    Wang Y, Zhang Q.2001. A granitoid complex from Badaling area, North China: composition, geochemical characteristics and its implications. Acta Petrologica Sinica,17(4):533-540.
    Wang YJ, Fan WM, Peng TP, et al.2005. Nature of the Mesozoic lithospheric mantle and tectonic decoupling beneath the Dabie orogen, Central China:Evidence from 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotopic compositions of early Cretaceous mafic igneous rocks. Chemical Geology,220:165-189.
    Watson MP, Hayward AB, Parkinson DN, et al.1983. Plate tectonic history, basin development and petroleum source rock deposition onshore China. Marine and Petroleum Geology,4:205-225.
    Weaver BL, Tarney J.1984. Empirical approach to estimating the composition of the continental crust. Nature,310:575-577.
    Wiedenbeck M, All P, Corfu F, et al.1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter,19(1):1-23.
    Williams, I.S.,1998. U-Th-Pb geochronology by ion microprobe. Reviews in Economic Geology,7:1-35.
    Wilson SA.1998. Data compilation for USGS reference material GSP-2, Granodiorite, Silver Plume, Colorado, U.S. Geological Survey Open-File Report.
    Winther KT.1996. Am experimentally-based model for the origin of tonalitic and trondhjemitic melts. Chemical Geology,127.
    Wood BJ, Turner SP.2009. Origin of primitive high-Mg andesite:Constraints from natural examples and experiments. Earth and Planetary Science Letters,283(1-4): 59-66.
    Wu YB, Zheng YF, Gao S, et al.2008. Zircon U-Pb age and trace element evidence for Paleoproterozoic granulite-facies metamorphism and Archean crustal rocks in the Dabie Orogen. Lithos,101(3-4):308-322.
    Wu YB, Zheng YF, Gong B, et al.2004. Zircon U-Pb ages and oxygen isotope compositions of the Luzhenguan magmatic complex in the Beihuaiyang zone. Acta Petrologica Sinica,20(5):1007-1024.
    Wu YB, Zheng YF, Zhang SB.2007. Zircon U-Pb ages and Hf isotope compositions of migmatite from the North Dabie terrane in China:constraints on partial melting. J. metamorphic Geol.,25:991-1009.
    Xia QX, Zheng YF, Zhou LG.2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology,247(1-2):36-65.
    Xiao YL, Hoefs J, Van den Kerkhof AM, et al.2001. Geochemical constraints of the eclogite and granulite facies metamorphism as recognized in the Raobazhai complex from North Dabie Shan, China. Journal of Metamorphic Geology,19(1): 3-19.
    Xie Z, Zheng YF, Yan J, et al.2004. Source evolution relationship between A-type granites and maric rocks from Shacun in Dabieshan. Acta Petrologica Sinica, 20(5):1175-1184.
    Xie Z, Zheng YF, Zhao ZF, et al.2006. Mineral isotope evidence for the contemporaneous process of Mesozoic granite emplacement and gneiss metamorphism in the Dabie orogen. Chemical Geology,231(3):214-235.
    Xiong XL, Adam J, Green TH.2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:implications for TTG genesis. Chemical Geology,218:339-359.
    Xiong XL, Xia B, Xu JF, et al.2006. Na depletion in modem adakites via melt/rock reaction within the sub-arc mantle. Chemical Geology,229(4):273-292.
    Xu HJ, Ma CQ, Ye K.2007. Early cretaceous granitoids and their implications for the collapse of the Dabie orogen, eastern China:SHRIMP zircon U-Pb dating and geochemistry. Chemical Geology,240(3-4):238-259.
    Xu HJ, Ye K, Ma CQ.2008. Early Cretaceous granitoids in the North Dabie and their tectonic implications:Sr-Nd and zircon Hf isotopic evidences. Acta Petrologica. Sinica,24(1):87-103.
    Xu J.1993. The Tancheng-Lujiang Wrench Fault System.
    Xu J, Zhu G.1994. Tectonic models of the Tan-Lu Fault Zone, Eastern China. International Geology Review,36:771-784.
    Xu JF, Shinjo R, Defant MJ, et al.2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust? Geology,30(12):1111-1114.
    Xu ST, Liu YC, Chen G, et al.2005a. Architecture and kinematics of the Dabie orogen, central eastern China. Acta Geologica Sinica,79(356-371).
    Xu ST, Liu YC, Su W, et al.2000. Discovery of the eclogite and its petrography in the Northern Dabie Mountain. Chinese Science Bulletin,45(3):273-278.
    Xu ST, Liu YC, Sun W, et al.1994. Tetonic Regime and Evolution of Dabie Mountains. Science Press, Beijing.1755 pp. (in Chinese with English abstracts).
    Xu ST, Okay Al, Ji SY, et al.1992. Diamond from the Dabie-Shan Metamorphic Rocks and Its Implication for Tectonic Setting. Science,256(5053):80-82.
    Xu WL, Wang QH, Wang DY, et al.2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:Evidence for partial melting of delaminated lower continental crust. Journal of Asian Earth Sciences,27(2):230-240.
    Xu XJ, Zhao ZF, Zheng YF, et al.2005. Element and isotope geochemistry of Mesozoic intermediate-felsic rocks at Tianzhushan in the Dabie orogen. Acta Petrologica Sinica,21(3):607-622.
    Xue AM, Jin WJ, Yuan XC.1999. Tectonic evolution of Hefei basin, northern Dabie mountain in the Mesozoic and the Cenozoic. Geological Journal of China Universities,5(2):157-163.
    Xue F, Rowley DB, Tucker RD, et al.1997. U-Pb zircon ages of granitoid rocks in the North Dabie Complex, Eastern Dabie Shan, China. The Journal of Geology,105: 744-753.
    Yamamoto T, Hoang N.2009. Synchronous Japan Sea opening Miocene fore-arc volcanism in the Abukuma Mountains, NE Japan:An advancing hot asthenosphere flow versus Pacific slab melting. Lithos,112(3-4):575-590.
    Yan J, Chen JF, Xu XS.2008. Geochemistry of Cretaceous mafic rocks from the Lower Yangtze region, eastern China:Characteristics and evolution of the lithospheric mantle. Journal of Asian Earth Sciences,33:177-193.
    Yan J, Liu HQ, Song CZ, et al.2009. Zircon U-Pb geochronology of the volcanic rocks from Fanchang-Ningwu volcanic basins in the Lower Yangtze region and its geological implications. Chinese Science Bulletin,54(0):1-10.
    Yang DB, Xu WL, Pei FP, et al.2008. Chronology and Pb isotope compositions of Early Cretaceous adakitic rocks in Xuzhou-Huaibei area, central China:Constraints on magma sources and tectonic evolution in the eastern North China Craton. Acta Petrologica Sinica,24(8):1745-1758.
    Yang W, Li SG.2008. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning:Implications for lithospheric thinning of the North China Craton. Lithos,102(1-2):88-117.
    Yaxley GM, Green TH.1998. Reaction between eclogite and peridotite:Mantle refertilization by subducted oceanic crust. Schweizerische Mineralogische und Petrographische Mitteilungen,78:243-255.
    Yin A. Nie SY.1993. An Indentation Model for the North and South China Collision and the Development of the Tan-Lu and Honam Fault Systems, Eastern Asia. Tectonics,12(4):801-813.
    Ying JF, Zhang HF, Tang YJ.2010. Lower crustal xenoliths from Junan, Shandong province and their bearing on the nature of the lower crust beneath the North China Craton. Lithos.
    Yogodzinski GM, Kay RW, Volynets ON, et al.1995. Magnesian andesite in the western Aleutian Komandorsky region:Implications for slab melting and processes in the mantle wedge. GSA Bulletin,107(5):505-519.
    Yuan HL, Liu XM, Liu YS, et al.2006. Geochemistry and U-Pb zircon geochronology of Late-Mesozoic lavas from Xishan, Beijing. Science in China Series D-Earth Sciences,49(1):50-67.
    Yuan XC, Klemperer SL, Teng WB, et al.2003. Crustal structure and exhumation of the Dabie Shan ultrahigh-pressure orogen, eastern China, from seismic reflection profiling. Geology,31(5):435-438.
    Zeng LS, Chen J, Chen ZY, et al.2007. Emplacement depth of the Shidao granitic complex and the rapid exhumation of the Sulu ultrahigh pressure rocks:New constraints on the mechanisms for rapid exhumation. Acta Petrologica Sinica, 23(12):3171-3179.
    Zhai MG 2009. Two kinds of granulites (HT-HP and HT-UHT) in North China Craton: Their genetic relation and geotectonic implications. Acta Petrologica Sinica,25(8): 1753-1771.
    Zhang C, Ma CQ, Holtz F.2010a. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China):Implications for delamination of the lower continental crust and melt-mantle interaction. Lithos, Accepted.
    Zhang HF, Gao S, Zhang ZQ, et al.2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids:constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China. Chemical Geology,186:281-299.
    Zhang, H.F. et al.,2004. Pb and Nd isotopic composition of the Jigongshan granite: constraints on crustal structure of Tongbaishan in the middle part of the Qinling-Tongbai-Dabie orogenic belt, Central China. Lithos,73:215-227.
    Zhang J, Zhao ZF, Zheng YF, et al.2010b. Postcollisional magmatism:Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, In press.
    Zhang Q, Jian P, Liu DY, et al.2003a. Zircon SHRIMP dating for Ning-Wu volcanics and its implications. Science in China (Series D),33(4):309-314.
    Zhang Q, Jin WJ, Wang YL, et al.2006a. A model of delamination of continental lower crust. Acta Petrologica Sinica,22(2):265-276.
    Zhang SB, Zheng YF, Wu YB, et al.2006b. Zircon U-Pb age and Hf-0 isotope evidence for Paleoproterozoic metamorphic event in South China. Precambrian Research, 151:265-288.
    Zhang SB, Zheng YF, Zhao ZF, et al.2009. Origin of TTG-like rocks from anatexis of ancient lower crust:Geochemical evidence from neoproterozoic granitoids in South China. Lithos,113:347-368.
    Zhang YQ, Dong SW, Shi W.2003b. Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong Province, eastern China. Tectonophysics,363(3-4): 243-258.
    Zhang ZM, Liu JG, Coleman RC.1984. An outline of the plate tectonics of China. Geol. Soc.Amer. Bull.,95:295-321.
    Zhao WL, Morgan WJ.1985. Uplift of Tibetan Plateau. Tectonics,4:359-369.
    Zhao XF, Li JW, Ma CQ, et al.2007a. Geochronology and geochemistry of the Gubei granodiorite, north Huaiyang:Implications for Mesozoic tectonic transition of the Dabie orogen. Acta Petrologica Sinica,23(6):1392-1402.
    Zhao, Z.F., Zheng, Y.F.,2007. Crustal architecture of the Dabie orogen:Constraints from U-Pb age, Hf and O isotopes in zircon from UHP granitic gneiss. Geochimica Et Cosmochimica Acta,71(15):A1165-A1165.
    Zhao ZF, Zheng YF, Chen RX, et al.2007b. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochimica et Cosmochimica Acta,71:5244-5266.
    Zhao ZF, Zheng YF, Wei CS, et al.2008. Zircon U-Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology,253:222-242.
    Zhao ZF, Zheng YF, Wei CS, et al.2004. Zircon U-Pb age, element and oxygen isotope geochemistry of Mesozoic intermediate-felsic rocks in the Dabie Mountains. Acta Petrologica Sinica,20(5):1151-1174.
    Zhao ZF, Zheng YF, Wei CS, et al.2007c. Post-collisional granitoids from the Dabie orogen in China:Zircon U-Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos,93:248-272.
    Zhao ZF, Zheng YF, Wei CS, et al.2005. Zircon U-Pb age, element and C-0 isotope geochemistry of post-collisional mafic-ultramafic rocks from the Dabie orogen in east-central China. Lithos,83:1-28.
    Zheng JP, Griffin WL, O'Reilly SY, et al.2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochimica Et Cosmochimica Acta,71:5203-5225.
    Zheng YF, Fu B, Gong B, et al.2003. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth-Science Reviews,62(1-2):105-161.
    Zheng YF, Wu YB, Chen FK, et al.2004. Zircon U-Pb and oxygen isotope evidence for a large-scale 0-18 depletion event in igneous rocks during the neoproterozoic. Geochimica Et Cosmochimica Acta,68(20):4145-4165.
    Zheng YF, Zhang SB.2007. Formation and evolution of the Precambrian continental crust of Southern China. Chinese Science Bulletin,52(1):1-10.
    Zhu G, Wang YS, Liu GS, et al.2005. Ar-40/Ar-39 dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology,27(8):1379-1398.
    Zi F, He GY, Dai SQ, et al.2007. Liguo early Cretaceous high-Mg adakitic intrusive rocks in the Xuzhou region:petrogenesis and implications for geodynamics and mineralization. Acta Petrologica Sinica,23(11):2857-2868.
    Zi F, Wang Q, Tang GJ, et al.2008. SHRIMP U-Pb zircon geochronology and geochemistry of the Guandian pluton in central Anhui, China:Petrogenesis and geodynamic implications. Geochimica,37:462-480.
    刘晔等,2007.ICP-MS测定地质样品中37个元素的准确度和长期稳定性分析。岩石学报,23(5):1203-1210.
    夏群科,郑永飞,Deloule E.2003.大别山碰撞后火山岩的锆石U-Pb年龄和氧同位素组成.高校地质学报,9(2):163-171.
    张国辉,周新华,孙敏,等.1998.河北汉诺坝玄武岩中麻粒岩类和辉石岩类捕虏体Sr, Nd, Pb同位素特征及其地质意义.岩石学报,14(2):190-197.
    徐树桐,索书田,钟增球,等.2005.大别碰撞造山带的地质构造.国家自然科学基金研究专著:大别山超高压变质作用与碰撞造山动力学,科学出版社.p8-39.
    王岳军,范蔚茗,郭峰.2002.北淮阳晚中生代火山岩定年及火山砾石地球化学:对大别灰色片麻岩隆升和中生代地层格架的约束.科学通报,47(20):1528-1534.
    胡芳芳,范宏瑞,杨进辉,等.2007.鲁东昆嵛山宫家辉石闪长岩成因:岩石地球化学、锆石U-Pb年代学与Hf同位素制约.岩石学报,23:369-380.
    赵子福,郑永飞.2009.俯冲大陆岩石圈重熔:大别-苏鲁造山带中生代岩浆岩成因.中国科学D辑:地球科学,39(7):888-909.
    赵海杰,毛景文,向君峰,等.2010.湖北铜绿山矿床石英闪长岩的矿物学及S-Nd-Pb同位素特征.岩石学报,26(3):768-784.
    闫峻,陈江峰,谢智,等.2005.长江中下游地区蝌蚪山晚中生代玄武岩的地球化学研究:岩石圈地幔性质与演化的制约.地球化学,34(5):455-469.
    陈道公,支霞臣,李彬贤,等.1997.汉诺坝玄武岩中辉石岩类包体Nd、Sr、Pb同位素及其成因信息.地球化学,26(1):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700