用户名: 密码: 验证码:
基于曲波变换和贝叶斯理论的储层预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气需求的不断扩大和地震勘探技术的不断提高,油气勘探与开发领域越来越复杂(如复杂裂缝、裂隙型、隐蔽型和深层油气藏等),对储层预测的要求就越来越高,因此,需要更有效的预测储层的方法和技术。本论文首先应用基于曲波变换的一套方法预测裂缝发育带的强度和裂缝发育带展布方向,寻找有利的油气聚集区。然后应用基于贝叶斯理论的方法,从概率分析的角度对得到的大量属性进行优化,主要以叠后属性分析的手法预测油气储层及其范围。最后,研究了基于叠前资料进行流体识别的新方法和新技术,以区分储层内流体的性质。概括来说,本文的思路就是:有利油气聚集区的预测——油气储层及其范围的预测——储层含流体性质的识别。从储层预测的源头开始,应用层层递进的方法实现储层范围及其流体性质的预测。
     裂缝在地层中是普遍存在的,对油气运移和储集具有非常重要的作用。本文通过对储层裂缝进行深入的研究,提出了预测裂缝发育强度及其走向的边缘保存锐化算法、基于曲波变换的多尺度、多方向和多谱体曲率分析技术。首先,针对近断层/断裂处的地震反射数据比较复杂,并且含有比较强的噪音的特征,以保边去噪技术(EPS)和锐化滤波器(LUM)为基础,构建了边缘保存锐化滤波器,通过参数的调整实现噪音的衰减和微小线性特征的保存。随后,将曲波(Curvelet)变换分别和相干技术、曲率分析相结合,提出了多尺度、多方向的相干体技术和多谱体曲率分析技术,利用曲波变换的多尺度和多方向特性,实现不同尺度裂缝带及其走向的预测。多尺度、多方向的相干体方法在曲波域中给出不同的重构系数,得到突出不同频带和不同方向的地震数据体,然后再利用相干算法分别得到多尺度、多方向的相干体。多谱体曲率分析方法利用曲波变换分离不同波长的波动信息,并应用多谱导数算子实现尺度系数的微调,然后将与所考虑问题的尺度相匹配的波动信息进行重构,得到突出不同波数特征的曲率数据体。上述三种方法相结合,分别从波形和构造两个方面对裂缝发育强度和裂缝发育带的走向进行预测,提高了预测结果的可靠性。将这套方法应用到实际地震数据中,提高了数据的信噪比,保护了微小断裂信号,突出了特定频带通道的地质异常体,实现了地质目标的精细解释,为储层预测提供了一种新方法。
     地震属性优化是提高地震储层预测精度的必要步骤。本文以贝叶斯理论和主成分分析为基础,研究了利用概率模型进行核主成分分析的方法——概率核主成分分析(PKPCA)。此方法能有效克服主成分分析缺少概率模型和缺失高阶统计量信息的不足。随后研究了PKPCA的混合分析模型——混合概率核主成分分析(MPKPCA),以多种概率模型的混合对数据分布进行表征。应用期望最大(EM)估计得到最佳概率模型。实际数据的应用显示基于贝叶斯的属性概率优化方法提高了属性优化的精度,同时提高了储层预测的准确性。
     本文在储层预测的基础上开展流体识别方法的研究。推导了基于入射角的AVO近似方程和叠前AVO属性(G,Rs等)的修正公式。以Aki和Shuey方程为基础,通过Snell定律,研究了更加清晰地表示反射系数与上层入射角、岩石物性参数间内在关系的近似方程。新方程将反射系数表示为上层入射角的函数,而实际地震CRP道集在从偏移距转化为角度时恰好也是入射角的函数,这样理论公式与实际地震数据客观状况更加符合。以入射角AVO近似方程为基础研究了更准确提取AVO属性的方法,推导了叠前AVO属性(G,Rs等)的修正公式。利用角度部分叠加数据的优点,研究了预测储层的快速估计法、角度流体道集法和曲波域波场分离法,并将其与叠前AVO属性修正公式相结合,实现了提高储层预测准确性和可靠性的目的。对常用的流体因子间关系进行理论研究,发现了它们之间的内在联系,并根据它们的实质所在分别建立反射系数域和阻抗域的新流体因子公式。实际数据的应用结果显示本论文的方法不但可以准确地判定储层的位置及范围,还能更好地区分气、水储层。
With the demand growing of oil and gas and the improving of seismic exploration technology, the exploration and development field of oil and gas become complex (such as complex fractures type, concealment type and deep hydrocarbon reservoirs, etc.), so requirements for reservoir prediction is getting higher. Therefore, more effective methods and techniques are needed for reservoir prediction. First, this thesis researched set of Curvelet-based methods to predict the fracture strength and fracture zone strike to ook favorable oil and gas accumulation area. And then, methods based on Bayesian theory were used to optimize a large number of attributes from the perspective of probability analysis, and main aim is to predict hydrocarbon reservoir and its scope by the post-stack attribute analysis approach. At last, the new methods and technology based on prestack data were researched and were used to distinct the nature of the fluid in reservoir. In general, the idea of the thesis is prediction of favorable oil and gas accumulation zone-prediction of the range of oil and gas reservoirs-the identification of reservoir fluid properties. Starting from the source of reservoir prediction, apply the progressive methods to predict the reservoir range and the fluid properties.
     Fractures and cracks are common in the strata. This paper deep studies reservoir fractures and proposes edge preserving and sharpen filter, multi-scale, multi- direction coherence technology and multi-spectral body curvature analysis based on the Curvelet transform. First, since the seismic reflection data near-fault /fractures is complex, and contains relatively strong noise, an edge preserving and sharpen filter is proposed based on edge preserving smooth (EPS) techniques and the lower-upper-middle (LUM) filters. This filter preserves small linear features, while removing noise by adjusting the parameters. After that,combining Curvelet transform with coherence and curvature technology, we develop a new and effective multiscale, multidirectional coherence cube and multi-spectral volumetric curvature method of predicting different scale fracture zones and their strike. Multiscale and multidirectional coherence cube methods gives different reconstruction coefficient in Curvelet domain, gains seismic data that bursts characteristic of the different frequency bands and different directions, and then obtains multi-scale and multi-directional coherence at last. By applying Curvelet transform to separate different wavelengths wave motion information and using multi-spectral derivative operator to finely tune scale coefficients, multi-spectral volumetric curvature method reconstructs wave motion information matching with the scale of target reservoir and gains seismic data that bursts characteristic of the different wave-number. The three methods predict the fracture strength and fracture zone strike from the waveform and structure, respective and improve the reliability of prediction results. Real data were used to test the sets of methods. The results showed they can improve the signal to noise ratio (SNR) of data, protect small fracture signals and burst seismic data of the different frequency bands and different directions and better represent complex and variable geologic body details. These methods provide a new way to predict lithology.
     In reservoir prediction, seismic attribute analysis has been an important way to obtain reservoir parameters. According to analysis results, accurate reservoir information can be got. Based on Bayesian theory and principal component analysis, PKPCA method was proposed. This method use probability model constraints kernel principal component analysis and overcome the two shortcomings of principal component analysis that lack probabilistic model and higher order statistics information. Then, a mix model of PKPCA was developed-mix probabilistic principal component analysis (MPKPCA). It mixed a variety of probability models to characterize the data. At last, EM algorithm is used to get the best probability model. The application of the actual data showed the attribute probability optimization method based on Bayesian theory improves the accuracy of attribute optimization, while increasing the accuracy of reservoir prediction.
     Reservoir fluid recognition is one of the final targets of the seismic exploration, so we carried out the research in the method of fluid recognition based on the reservoir prediction. First, the focus of our research is the incidence angle AVO approximation equation, which is constructed based on aki, Shuey approximate equation and snell law, and expresses the inner relationship between the reflection coefficients and the upper incident and petrophysic parameters more clearly. The practical seismic CRP gathers transferring offset into angles is also the function of upper incident angles, so the theory formulas are more consistent with the objective conditions of actual seismic data. After that, based on the incident angle AVO approximation equations, we studied the more accurate AVO attribute extraction method, proposed the correction formulas of the prestack AVO attributes (G, Rs, etc.). Then, using the advantages of stack data in the angle part , this article proposes three effective methods and techniques of fluid recognition and reservoir prediction, and combining it with the prestack AVO attributes correction formula, realizes the purpose of improving reservoir prediction accuracy and reliability. Finally, after some theoretical researches on the common fluid factor relations were carried out, we discovered the inner relation between them, and respectively established the new fluid factor formula in the reflection coefficients domain and impedance domain according to their essence. The application results of actual data show that the methods in this the paper can not only be used to accurately determine the position and scope of reservoirs, but also better distinguish gas, water reservoirs.
引文
[1]范国章,牟永光.裂缝介质中地震波方位AVO特征分析[J].石油学报,2002,23(004):42-45.
    [2]殷八斤.AVO技术的理论与实践[M].石油工业出版社.1995.
    [3]王允诚.裂缝性致密油气储集层[M].地质出版社.1992.
    [4] Candes E.J., D.L.Donoho. Curvelets: A surprisingly effective nonadaptive representation for objects with edges[M]. TN: Van-derbilt Univ. Press. 1999.
    [5]宋文蕾,赵艳华,谢慕君.基于脊波变换的数字图像处理[J].长春大学学报,2007,2(2).
    [6]焦李成,谭山,刘芳.脊波理论:从脊波变换到Curvelet变换[J].工程数学学报,2005,22(005):761-773.
    [7] Candes E.J., D.L. Donoho. Continuous curvelet transform:: I. Resolution of the wavefront set[J]. Applied and Computational Harmonic Analysis, 2005, 19(2):162-197.
    [8]黄薇.Curvelet变换及其在图像处理中的应用研究[J].2007.
    [9] Candes E.J., D.L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities[J]. Communications on pure and applied mathematics, 2004, 57(2):219-266.
    [10] Emmanuel C., L. Demanet, D. Donoho, L. Ying. Fast Discrete Curvelet Transforms [R]. California Institute of Technology, 2005.
    [11] Douma H., M.V. De Hoop. Leading-order seismic imaging using curvelets[J]. Geophysics, 2007, 72(6):S231.
    [12] Herrmann F.J., D. Wang, G. Hennenfent, P.P. Moghaddam. Curvelet-based seismic data processing: a multiscale and nonlinear approach[J]. Geophysics, 2008, 73(1):A1.
    [13] Herrmann F.J., D. Wang, D.J.E. Verschuur. Adaptive curvelet-domain primary-multiple separation[J]. Geophysics, 2008, 73(3):A17.
    [14] Wang D., R. Saab, O. Yilmaz, F.J. Herrmann. Bayesian wavefield separation by transform-domain sparsity promotion[J]. Geophysics, 2008, 73(5):A33.
    [15]郑静静,印兴耀,张广智.基于Curvelet变换的多尺度分析技术[J].石油地球物理勘探,2009,44(5):543-547.
    [16] Zhang G., J. Zheng, X. Yin, Y. Pu, Coherence cube based on curvelet transform:78rdAnnual International Meeting, ExpandedAbstracts, SEG. 2008.
    [17] Zheng J.J., X.Y. Yin, G.Z. Zhang, G.H. Wu, Z.S. Zhang. The surface wave suppression using the second generation curvelet transform[J]. Applied Geophysics, 2010, 7(4):325-335.
    [18] Crampin S., R. Mcgonigle, D. Bamford. Estimating crack parameters from observations of P?\wave velocity anisotropy[J]. Geophysics, 1980, 45:345.
    [19] Barnford D., S. Crampin. Seismic anisotropy-the state of the art[J]. Geophysical Journal of the Royal Astronomical Society, 1977, 49(1):1-8.
    [20] Crampin S. Effective anisotropic elastic constants for wave propagation through cracked solids[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 76(1):135-145.
    [21] Crampin S. An introduction to wave propagation in anisotropic media[J]. Geophysical Journal of the Royal Astronomical Society, 1984, 76(1):17-28.
    [22] Crampin S. A review of wave motion in anisotropic and cracked elastic-media[J]. Wave motion, 1981, 3(4):343-391.
    [23] Hudson Ja. Wave speeds and attenuation of elastic waves in material containing cracks[J]. Geophysical Journal of the Royal Astronomical Society, 1981, 64(1):133-150.
    [24] Thomsen L. Weak elastic anisotropy[J]. Geophysics, 1986, 51(10):1954-1966.
    [25]滕佃波,邢春颖.基于地震横波分裂理论的火成岩裂缝检测[J].地球物理学进展,2005,20(2):513-517.
    [26] Liu E., Jh Queen, Xy Li, M. Chapman, S. Maultzsch, Hb Lynn, Em Chesnokov. Observation and analysis of frequency-dependent anisotropy from a multicomponent VSP at Bluebell-Altamont field,Utah[J]. Journal of applied geophysics, 2003, 54(3-4):319-333.
    [27] Brown R.J., R.R. Stewart, D.C. Lawton. A proposed polarity standard for multicomponent seismic data[J]. Geophysics, 2002, 67(4):1028-1037.
    [28] Yang M., M. Elkibbi, J.A. Rial. An inversion scheme to model subsurface fracture systems using shear wave splitting polarization and delay time observations simultaneously[J]. Geophysical Journal International, 2005, 160(3):939-947.
    [29] Neidell N.S., E.E. Cook, Seismic method for identifying low velocity subsurface zones, in Google Patents. 1986.
    [30] Mallick S., L.N. Frazer. Reflection/transmission coefficients and azimuthal anisotropy in marine seismic studies[J]. Geophysical Journal International, 1991, 105(1):241-252.
    [31] Mallick S., K.L. Craft, L.J. Meister, R.E. Chambers. Determination of the principal directions of azimuthal anisotropy from P-wave seismic data[J]. Geophysics, 1998, 63(2 Supplement):692.
    [32] Mallick S. Model-based inversion of amplitude-variations-with-offset data using a genetic algorithm[J]. Geophysics, 1995, 60(4):939-954.
    [33]张公社,马国光,宋玉龙,朱仕军.利用全三维纵波资料进行裂缝检测[J].石油地球物理勘探,2004,39(1):41-44.
    [34] Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media[J]. Geophysics, 1998, 63(3):935-947.
    [35] Li X.Y. Fracture detection using azimuthal variation of P-wave moveout from orthogonal seismic survey lines[J]. Geophysics, 1999, 64(4):1193-1201.
    [36] Li Y., Y. Xu, H. Leong, Azimuthal AVO inversion (AVOZI) in full elastic property determination (FEDP) of fractured resevoirs (HTI media), in Expanded Abstracts of 71th Annual Internat SEG Mtg. 2005. p. 265-268.
    [37] Beretta M.M., G. Bernasconi, G. Drufuca. AVO and AVA inversion for fractured reservoir characterization[J]. Geophysics, 2002, 67(1):300-306.
    [38] Gray D., K. Head. Fracture detection in Manderson Field: A 3-D AVAZ case history[J]. The Leading Edge, 2000, 19(11):1214-1221.
    [39] Schoenberg M.A., S. Dean, C.M. Sayers. Azimuth-dependent turning of seismic waves reflected from fractured reservoirs[J]. Geophysics, 1999, 64(4):1160.
    [40] Lynn H., W. Beckham. P-wave azimuthal variations in attenuation, amplitude, and velocity in 3D field data: Implication for mapping horizontal permeability anisotropy: 68th Ann. Internat. Mtg., Soc. Explor. Geophys [C].1998. 193-196.
    [41]阴可,杨慧珠.各向异性介质中的AVO[J].地球物理学报,1998(03):382-391.
    [42]贺振华,李亚林,张帆,黄德济.定向裂缝对地震波速度和振幅影响的比较——实验结果分析[J].物探化探计算技术,2001(01):1-5.
    [43]迟新刚,贺振华,贺锡雷,黄德济.应用双谱进行裂缝储层检测[J].石油地球物理勘探,2003(03):285-289,218-340.
    [44]曹均,贺振华,黄德济,等.裂缝储层地震波特征响应的物理模型实验研究[J].勘探地球物理进展,2003(02):88-93.
    [45]何义中.裂缝油气储层检测与预测的地球物理方法研究[D].成都理工大学博士学位论文,2002.
    [46]何建军.致密碳酸盐岩缝洞储层地震检测方法研究[D].成都理工大学博士学位论文,2008.
    [47]文晓涛.缝洞储层的地震检测及综合预测[D].成都理工大学博士学位论文:2006.
    [48]滕吉文,张中杰,王爱武,等.弹性介质各向异性研究沿革、现状与问题[J].地球物理学进展,1992(4):14-28.
    [49]刘洋,董敏煜.各向异性介质中的方位AVO[J].石油地球物理勘探,1999(03):260-267.
    [50]王永刚,李振春,刘礼农,等.利用地震信息预测储层裂缝发育带[J].石油物探,2000(04):57-63.
    [51]朱培民,王家映,於文辉,等.用纵波AVO数据反演储层裂隙密度参数[J].石油物探,2001(2):1-12.
    [52]朱成宏.裂缝预测技术在松南工区应用效果分析[J].石油物探,2001(04):62-68.
    [53]凌云研究小组.宽方位角地震勘探应用研究[J].石油地球物理勘探,2003(4):350-357.
    [54]郝守玲,赵群.裂缝介质对P波方位各向异性特征的影响——物理模型研究[J].勘探地球物理进展,2004(03):189-194.
    [55]杨勤勇,赵群,王世星,等.纵波方位各向异性及其在裂缝检测中的应用[J].石油物探,2006(02):177-181.
    [56]王延光,杜启振.泥岩裂缝性储层地震勘探方法初探[J].地球物理学进展,2006(02):494-501.
    [57]刘朋波,蒲仁海,潘仁芳,朱正平.多方位AVO技术在裂缝检测中的应用[J].石油地球物理勘探,2008(04):437-442.
    [58]梁锴.TI介质地震波传播特征与正演方法研究[D].中国石油大学(华东)博士学位论文,2009.
    [59] Bahorich Ms, Sl Farmer. 3-D seismic coherency for faults and stratigraphic features[J]. The Leading Edge, 1995, 14(10):1053-1058.
    [60] Marfurt K.J., R.L. Kirlin, S.L. Farmer, M.S. Bahorich. 3-D seismic attributes using a semblance-based coherency algorithm[J]. Geophysics, 1998, 63(4):1150-1165.
    [61] Marfurt K.J., V. Sudhaker, A. Gersztenkorn, K.D. Crawford, S.E. Nissen. Coherency calculations in the presence of structural dip[J]. Geophysics, 1999, 64(1):104-111.
    [62] Randen T., E. Mosen, C. Signer, Et Al. Three-dimensional texture attributes for seismic data analysis: 70th Ann. Internat. Mtg., Soc. Expl [C].2000. 668-671.
    [63] Bakker P. Image structure analysis for seismic interpretation[J]. Delft University of Technology, 2002:41-80.
    [64] Cohen I., R.R. Coifman. Local discontinuity measures for 3-D seismic data[J]. Geophysics, 2002, 67(6):1933-1945.
    [65]宋维琪,刘江华.地震多矢量属性相干数据体计算及应用[J].物探与化探,2003(02):128-130.
    [66] Lu W., Y. Li, S. Zhang, H. Xiao. Higher-order-statistics and supertrace-based coherence-estimation algorithm[J]. Geophysics, 2005, 70(3):13-18.
    [67]张军华,王月英,赵勇,黄国平.小波多分辨率相干数据体的提取及应用[J].石油地球物理勘探,2004(01):33-36,126-128.
    [68]王西文,杨孔庆,周立宏,王娟,刘洪,李幼铭.基于小波变换的地震相干体算法研究[J].地球物理学报,2002(6):847-852,908.
    [69]王季,陆文凯.基于局部直方图规定化的相干体增强[J].应用地球物理(英文版) SCI, 2010, 7(3):249-256.
    [70] Canny J. A computational approach to edge detection[J]. Readings in computer vision: issues, problems, principles, and paradigms, 1987, 184:87-116.
    [71] Murray Jr., G. H. Quantitative fracture study- Spanish pool, McKenzie County, North Dakota[J]. American Association of Petroleum Geologists Bulletin, 1968, 52(1):57-65.
    [72] Lisle R.J. Detection of zones of abnormal strains in structures using Gaussian curvature analysis[J]. AAPG Bulletin-American Association of Petroleum Geologists, 1994, 78(12):1811-1819.
    [73] Stewart Sa, Tj Wynn. Mapping spatial variation in rock properties in relationship to scale-dependent structure using spectral curvature[J]. Geology, 2000, 28(8):691-694.
    [74] Roberts A. Curvature attributes and their application to 3 D interpreted horizons[J]. First Break, 2001, 19(2):85-100.
    [75] Bergbauer S., T. Mukerji, P. Hennings. Improving curvature analyses of deformedhorizons using scale-dependent filtering techniques[J]. AAPG bulletin, 2003, 87(8):1255-1272.
    [76] Masaferro Jl, M. Bulnes, J. Poblet, M. Casson. Kinematic evolution and fracture prediction of the Valle Morado structure inferred from 3-D seismic data[J]. Salta Province, northwest Argentina: Bulletin of the American Association of Petroleum Geologists, 2003, 8(7):1083-1104.
    [77] Sigismondi M.E., J.C. Soldo. Curvature attributes and seismic interpretation: Case studies from Argentina basins[J]. The Leading Edge, 2003, 22(11):1122-1126.
    [78] Hart B.S., R. Pearson, G.C. Rawling. 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs[J]. The Leading Edge, 2002, 21(1):28.
    [79] Al-Dossary S., K.J. Marfurt. 3D volumetric multispectral estimates of reflector curvature and rotation[J]. Geophysics, 2006, 71(5):41-51.
    [80] Chopra S., V. Alexeev. Applications of texture attribute analysis to 3D seismic data[J]. The Leading Edge, 2006, 25(8):934-940.
    [81]何碧竹,周杰,汪功怀.利用多元地震属性预测储层信息[J].石油地球物理勘探,2003(3):258-262,216-217.
    [82] Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of educational psychology, 1933, 24(6):417-441.
    [83] Comon P. Independent component analysis, a new concept?[J]. Signal processing, 1994, 36(3):287-314.
    [84] Amari S. Fisher information under restriction of Shannon information in multi-terminal situations[J]. Annals of the Institute of Statistical Mathematics, 1989, 41(4):623-648.
    [85] Sch Lkopf B., A. Smola, K.R. Mller. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural computation, 1998, 10(5):1299-1319.
    [86] Roweis S.T., L.K. Saul. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500):2323-2326.
    [87] Zhou S.K., R. Chellappa, W. Zhao. Unconstrained face recognition[M]. Springer-Verlag New York Inc. 2006.
    [88] Tipping M.E., C.M. Bishop. Probabilistic principal component analysis[J]. Journal of theRoyal Statistical Society. Series B (Statistical Methodology), 1999, 61(3):611-622.
    [89] Tipping M.E., C.M. Bishop. Mixtures of probabilistic principal component analyzers[J]. Neural computation, 1999, 11(2):443-482.
    [90] Vladimir Vn, V. Vapnik. The nature of statistical learning theory[M]. New York: Springer-Verlag. 1995: 20-30.
    [91] Juell P., R. Marsh. A hierarchical neural network for human face detection[J]. Pattern Recognition, 1996, 29(5):781-787.
    [92] Baudat G., F. Anouar. Generalized discriminant analysis using a kernel approach[J]. Neural computation, 2000, 12(10):2385-2404.
    [93] Mika S., G. Ratsch, K.R. Muller. A mathematical programming approach to the kernel fisher algorithm[J]. Advances in neural information processing systems, 2001:591-597.
    [94] Ben-Hur A., D. Horn, H.T. Siegelmann, V. Vapnik. Support vector clustering[J]. The Journal of Machine Learning Research, 2002(2):125-137.
    [95] Camastra F., A. Verri. A novel kernel method for clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5):801-804.
    [96] Bach F.R., M.I. Jordan. Kernel independent component analysis[J]. The Journal of Machine Learning Research, 2003(3):1-48.
    [97]黄国宏,邵惠鹤.核主元分析及其在人脸识别中的应用[J].计算机工程,2004(13):13-14.
    [98]姚凯丰,陆文凯,丁文龙,等.天然气工业[J].2004,24(7):36-38
    [99]印兴耀,周静毅.地震属性优化方法综述[J].石油地球物理勘探,2005(04):482-489+493-11.
    [100]葸晓宇,刘洪,曾锐.浅水型河流相的ICA地震识别方法[J].地球物理学进展,2006,21(3):856-863.
    [101] Gao J., J. Wang, M. Yun, B. Huang, G. Zhang. Seismic attributes optimization and application in reservoir prediction[J]. Applied Geophysics, 2006, 3(4):243-247.
    [102]印兴耀,孔国英,张广智.基于核主成分分析的地震属性优化方法及应用[J].石油地球物理勘探,2008(02):179-183,124-125.
    [103]吕文彪,尹成,张白林,廖细明.基于独立分量分析的地震属性优化[J].天然气工业,2008(09):44-46,134-135.
    [104] Backus Mm, Rl Chen. FLAT SPOT EXPLORATION[J]. Geophysical prospecting,1975, 23(3):533-577.
    [105] Tatham R.H. Vp/V, and lithology[J]. Geophysics, 1982, 47(3):336-344.
    [106] Ostrander W.J. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[J]. Geophysics, 1984, 49(10):1637-1648.
    [107] Smith Gc, Pm Gidlow. Weighted Stacking for Rock Property Estimation and Detection of GAS[J]. Geophysical prospecting, 1987, 35(9):993-1014.
    [108] Fatti J.L., Pj Vail, Gc Smith, P.J. Strauss, P.R. Levitt. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994, 59(9):1362-1376.
    [109] Gidlow Pm, Gc Smith, Pj Vail. Hydrocarbon detection using fluid factor traces: A case history [C].1992. 78-89.
    [110] Goodway B., T. Chen, J. Downton. Improved AVO fluid detection and lithology discrimination using Lamépetrophysical parameters;λρ,μρ, &λ/μfluid stack, from P and S inversions [C].67th Annual International Meeting. 1997. 183-186.
    [111] Russell B.H., K. Hedlin, F.J. Hilterman, L.R. Lines. Fluid-property discrimination with AVO: A Biot-Gassmann perspective[J]. Geophysics, 2003, 68(1):29-39.
    [112] Quakenbush M., B. Shang, C. Tuttle. Poisson impedance[J]. The Leading Edge, 2006, 25(2):128-138.
    [113]王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展,2005(1):89-92.
    [114]杨培杰,穆星,印兴耀.叠前三参数同步反演方法及其应用[J].石油学报,2009,30(2):232-236.
    [115]曹丹平.多尺度地震资料正反演方法研究[D].2008.
    [116]杨培杰,印兴耀.非线性二次规划贝叶斯叠前反演[J].地球物理学报,2008,51(6):1876-1882.
    [117]陈建江,印兴耀.基于贝叶斯理论的AVO三参数波形反演[J].地球物理学报,2007,50(4):1251-1260.
    [118]王保丽,印兴耀.基于弹性波阻抗的拉梅参数反演与应用(英文)[J].Applied Geophysics,2006(3):174-178.
    [119]印兴耀,张世鑫,张繁昌,郝前勇.利用基于Russell近似的弹性波阻抗反演进行储层描述和流体识别[J].石油地球物理勘探,2010(3):373-380.
    [120]李爱山,印兴耀,陆娜,张广智.两个角度弹性阻抗反演在中深层含气储层预测中的应用[J].石油地球物理勘探,2009(1):87-92.
    [121]张繁昌,李传辉,吴国忱,王保丽.地层吸收对弹性参数的影响和叠前QAVO反演[J].物探化探计算技术,2010(3):232-240,219.
    [122]李爱山,印兴耀,张繁昌,刘志国.VTI介质中的弹性阻抗与参数提取[J].地球物理学进展,2008(6):1878-1885.
    [123]甘利灯,赵邦六,杜文辉,李凌高.弹性阻抗在岩性与流体预测中的潜力分析[J].石油物探,2005(5):504-508.
    [124]王保丽,印兴耀,张繁昌.基于Gray近似的弹性波阻抗方程及反演[J].石油地球物理勘探,2007(4):435-439.
    [125]倪逸.弹性波阻抗计算的一种新方法[J].石油地球物理勘探, 2003(2):147-150,155-220.
    [126]王保丽,印兴耀,张繁昌,李爱山.基于Fatti近似的弹性阻抗方程及反演[J].地球物理学进展,2008(1):192-197.
    [127]马劲风.地震勘探中广义弹性阻抗的正反演[J].地球物理学报,2003(01):118-124.
    [128]于建国,韩文功,刘力辉.分频反演方法及应用[J].石油地球物理勘探,2006,41(2):193-197.
    [129]王璞,张文坡,胡天跃.长偏移距P波AVO反射系数的一种近似[J].应用地球物理(英文版) 2007,4(1):29-36.
    [130]孙成禹,倪长宽,李胜军,张玉华.广角地震反射数据特征及校正方法研究[J].石油地球物理勘探,2007,42(1):24-29.
    [131]殷文,韩文功,王延光,慎国强.基于慢度法的小波变换多尺度叠前弹性波反演方法[J].中国石油大学学报(自然科学版),2010(2):43-46.
    [132] Castagna J.P., S. Sun, R.W. Siegfried. Instantaneous spectral analysis: Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003, 22(2):120.
    [133] Mitchell B.J. Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation[J]. Reviews of Geophysics, 1995, 33(4):441-462.
    [134]宋守根,何继善,芮嘉诰.地震勘探成像与小波[J].地球物理学进展,1995,10(2):54-64.
    [135]成礼智.小波的理论与应用[M].科学出版社.2004.
    [136] Vetterli M. J. Kova cevi c, Wavelets and Subband Coding[J]. Signal Processing. Prentice-Hall, Englewood Cli s, NJ, 1995:171-183.
    [137] Donoho D.L., M. Vetterli, R.A. Devore, I. Daubechies. Data compression and harmonic analysis[J]. Information Theory, IEEE Transactions on, 1998, 44(6):2435-2476.
    [138] Candes E.J., D.L. Donoho. Curvelets, multiresolution representation, and scaling laws[M]. In:Procl SPIE.San Jose,CA: SPIE Press. 2000: 1-12.
    [139]李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].ACTA OPTICA SINICA,2006,26(5).
    [140]宋英姿.第二代Curvelet变换及其在图像融合中的应用研究[D].2007.
    [141]贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探,2005(2):190-195.
    [142]陈颙,黄庭芳,岩石物理学.2001,北京:北京大学出版社.
    [143]云美厚.地震分辨率[J].勘探地球物理进展,2005,28(1):12-18.
    [144]梁锴.TI介质弹性波传播特征及qP波深度偏移方法研究[D].中国石油大学(华东)硕士学位论文,2007.
    [145] Albinhassan N.M., Y. Luo, M.N. Al-Faraj. 3D edge-preserving smoothing and applications[J]. Geophysics, 2006, 71(4):5-11.
    [146] Luo Y., M. Marhoon, S. Al Dossary, M. Alfaraj. Edge-preserving smoothing and applications[J]. The Leading Edge, 2002, 21(2):136-158.
    [147] Al-Dossary S., K.J. Marfurt. Lineament-preserving filtering[J]. Geophysics, 2007, 72(1):P1.
    [148] Lee Y., S. Kassam. Generalized median filtering and related nonlinear filtering techniques[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1985, 33(3):672-683.
    [149]于晓晶.图像滤波方法的探讨及其MATLAB实现[D].2008.
    [150] Gersztenkorn A., K.J. Marfurt. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping[J]. Geophysics, 1999, 64(5):1468-1479.
    [151]郑静静,印兴耀,张广智.基于Curvelet变换的多尺度相干体分析技术[C].中国地球物理学会第二十四届年会论文集.2008.
    [152] Bahorich M., S. Farmer. The coherence cube[J]. The Leading Edge, 1995, 14(10):1053-1058.
    [153]苑书金.地震相干体技术的研究综述[J].勘探地球物理进展,2007(01):7-15.
    [154] Roberts Andy,陈刚.曲率属性及在3D层位解释中的应用[J].勘探地球物理进展, 2002(01):67-78.
    [155] Rektorys K. Differential Geometry.In:Survey of Applicable Mathematics[M]. Cambridge, MA.: Iliffe Books Ltd, MIT Press. 1969: 9.
    [156] Gauss C.F. Disquisitiones generales circa superficies curvas[M]. Typis Dieterichianis. 1828.
    [157] Marfurt K.J. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006, 71(4):P29.
    [158]陈希孺.数理统计引论[M].科学出版社.1981.
    [159]郑骏.贝叶斯(Bayes)学派的统计思想[J].数学通报,1994(7):36-38.
    [160] Lindley D.V. introduction to probability and statistics from bayesian viewpoint. part 2 inference[M]. London: Cambridge University Press. 1965.
    [161] Everitt B.S. An introduction to latent variable models[M]. London:Chapman and Hall. 1984.
    [162] Jordan M.I., R.A. Jacobs. Hierarchical mixtures of experts and the EM algorithm[J]. Neural computation, 1994, 6(2):181-214.
    [163] Anderson Tw, H. Rubin. Statistical inference in factor analysis [C].J.Neyman,Proceeding of the Third Berkeley Symposium on Mathematical Statistic and Probability. Univ of California Press,1956, 111-150.
    [164] Roweis S. EM algorithms for PCA and SPCA[J]. Advances in neural information processing systems, 1998:626-632.
    [165] Scholkopf B., S. Mika, C.J.C. Burges, P. Knirsch, K.R. Muller, G. Ratsch, A.J. Smola. Input space versus feature space in kernel-based methods[J]. Neural Networks, IEEE Transactions on, 1999, 10(5):1000-1017.
    [166] Scholkopf B., A. Smola, K.R. Muller. Kernel Principal Component Analysis[J]. Advances in Kernel Method-SV Learning, 1999:327-352.
    [167] Sch Lkopf B., A. Smola, K.R. M¨1ller. Kernel principal component analysis[J].Artificial Neural Networks ICANN'97, 1997:583-588.
    [168]魏坤,赵永强,高仕博,等.基于混合概率核主成分二次相关红外目标检测[J].光子学报,2008,37(9):1883-1889.
    [169] Gross R., I. Matthews, S. Baker. Appearance-based face recognition and light-fields[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(4):449-465.
    [170] Dempster A.P., N.M. Laird, D.B. Rubin. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society,Series B (Methodological), 1977, 39(1):1-38.
    [171] Zoeppritz K. Erdbebenwellen VIIIB, Ueber Reflexion and Durchgang seismischer Wellen durch Unstetigkeitsflaechen[J]. Goettinger Nachrichten, 1919, 1:66-84.
    [172] Wang Y. Approximations to the Zoeppritz equations and their use in AVO analysis[J]. Geophysics, 1999, 64(6):1920-1927.
    [173] Hilterman F. Is AVO the seismic signature of lithology? A case history of Ship Shoal?\South Addition[J]. The Leading Edge, 1990, 9:15-22.
    [174] Aki K., P. G. Richards.定量地震学[M]. 1980年.
    [175]孙鹏远,孙建国,卢秀丽.P-P波AVO近似对比研究:定性分析[J].石油地球物理勘探, 2002,37(9):164-171.
    [176] Greenberg Ml, Jp Castagna. SHEAR-WAVE VELOCITY ESTIMATION IN POROUS ROCKS: THEORETICAL FORMULATION, PRELIMINARY VERIFICATION AND APPLICATIONS[J]. Geophysical prospecting, 1992, 40(2):195-209.
    [177] Martin G.S. The Marmousi2 model, elastic synthetic data, and an analysis of imaging and AVO in a structurally complex environment[D]. 2004.
    [178] Gidlow Pm, G.C. Smith. The fluid factor angle [C].EAGE,65th Coference&Exhibition. 2003. 2-5.
    [179] Shuey Rt. A simplification of the Zoeppritz equations[J]. Geophysics, 1985, 50(4):609-614.
    [180] Huber P.J. Robust statistical procedures[M]. Society for Industrial Mathematics. 1996.
    [181] Castagna Jp, Ml Batzle, R.L. Eastwood. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks[J]. Geophysics, 1985, 50(4):571-581.
    [182]王栋,贺振华,黄德济.新流体识别因子的构建与应用分析[J].石油物探,2009,48(2):141-145.
    [183] Hilterman F.J. Seismic Amplitude Interpretation: 2001 Distinguished Instructor Short Course[J]. Soc of Exploration Geophysicists, 2001, 4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700