用户名: 密码: 验证码:
分区标准化方法在遥感找矿中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用遥感技术进行矿产信息探测和定位一直是遥感地质方而应用的主要方面,矿化蚀变信息的提取则是首先且必须要解决的问题。蚀变信息指在有利于成矿作用发生的空间实体中的蚀变围岩(带)在遥感影像上反映出来的包含各种背景光谱信息在内的综合光谱信息,其背景光谱信息是指地质体/现象、土壤、植被等光谱信息。蚀变信息作为一个弱信息存在于遥感信息的背景中,虽然近矿围岩蚀变形成的蚀变围岩在矿物成分,颜色,地表状况等综合因素的影响下,使得在图像上的纹理与正常围岩有所不同。
     目前,遥感专题信息提取多采用同一研究区德单一阈值参数进行处理。事实上,不同景观区的专题信息背景特征存在一定的的差异,即具有背景空间分异性。如在不同景观区的遥感蚀变信息检测中,蚀变异常、背景与干扰因素是三个必须研究的对象。但“背景”与“干扰”复杂而且容易混淆,在实际工作中很难被完全界定清楚。因为遥感异常信息(包括异常信息提取的质量和精度)主要受控于决定地物本质特征及时空变异特征的区域性因素(区域参数)。区域参数可分为主导因子和环境因子两方面,主导因子是遥感蚀变异常的地物成因性区域参数,包括岩性、构造、岩浆热液活动的强弱(蚀变的强弱)等;环境因子是与遥感蚀变异常或地质异常相关的空间制约性区域参数,包括遥感蚀变异常或成矿岩体/岩脉所处环境空间的地形/地貌、土壤、植被、气候条件等。因此,遥感蚀变信息提取必须考虑其存在的地质、地理背景,采用相应的处理方法及量化参数对不同背景分区,以消除不同岩性(构造)、所处背景环境的影响.
     由于单数据源的局限性,利用遥感数据与化探数据融合提取异常信息已经成为找矿的主要手段。遥感与化探数据融合的目的是挖掘其中的综合找矿信息,为地质找矿提供史可靠的依据。遥感数据的不同波段从不同方面反应地物目标的成分、结构、构造等信息,遥感技术在预测找矿有利区段、优选找矿靶区等方面已取得明显成果。但因成矿条件的复杂性,遥感数据受成像时光照和大气条件、地面植被覆盖度、数据分辨率等因素的影响,对异常信息的提取仅可达到定性和半定量的程度,无法完全识别所提取出信息是否为有意义的的矿化信息。化探数据通过不同元素及其组合反应地表系统元素的运移及其富集规律。受复杂地质条件影响,化探数据所提取出的异常信息会忽略一些重要的低异常区或因某些因素影响而夸大一些异常区域,导致提取结果存在一定局限性和多解性。遥感和化探数据为地表地质体或地质现象物理特性和化学特性的表现,矿物或化学组分的特征光谱曲线是遥感对地球化学信息的响应。在机理上,二者存在一定的相关性。遥感与化探数据融合处理的目的在于实现二者的优势互补,提高异常信息提取的准确度,为地质找矿提供更为可靠的信息。
     本文选题于“中红外多/高光谱矿物填图及遥感异常信息提取技术应用研究”项目对遥感蚀变异常信息提取的原理与方法进行了深入研究,主要取得了以下成果:
     1.基于光谱理论和地质找矿理论,对现有的遥感蚀变异常信息常规提取原理与方法进行了系统研究与总结,仅从光谱数据出发所得的遥感蚀变信息对地质勘查与成矿预测难以保证其准确性,提出遥感蚀变异常受控于成因性区域参数和空间制约性区域参数的遥感制图理念。
     2.在上述理念指导下,通过大量野外工作和地质资料总结,对研究区遥感蚀变异常的成因性和空间制约性区域参数进行深入研究,确定了分区原则并提出分区标准化方法,对研究区从岩性、构造与植被覆盖度进行区域参数分区制图。
     3.对不同分区的遥感地质背景参数进行分析,实现了遥感异常信息分区、分级量化及专题制图表达。
     4.从遥感蚀变异常形成的物理机制出发,基于遥感蚀变-矿物组分关联分析,从矿物组分方面进行了遥感与地球化学数据融合研究。重点对地球化学数据和遥感数据之间的空间配准及量化对应关系研究,达到二者在空间及成因上的联系对二者进行数据融合并进行数据重建,进一步提高了遥感蚀变异常信息成因性区域参数的准确度。
     5.综合光谱蚀变异常、岩性构造分区、植被分区及与地球化学数据融合,对分区标准化方法进行系统研究并圈定出成矿远景区。
     6.主要创新点
     (1)提出遥感蚀变异常受控于地物成因性区域参数和空间制约性区域参数遥感制图的理念。
     对找矿有指导意义的蚀变信息取决于岩性、构造、岩浆热液活动等地质环境因素的同时,遥感蚀变异常或成矿岩体/岩脉所处的地形/地貌、土壤、植被、气候条件等环境空间的制约,单纯利用光谱数据进行蚀变异常提取存在一定缺陷,必须考虑异常提取的区域参数这一决定性因素。
     (2)提出遥感异常分区标准化方法并应用于遥感蚀变异常信息提取研究。
     通过岩性构造分区、植被覆盖度分区研究,对不同分区采用不同参数及方法进行遥感蚀变异常信息提取。
Using remote sensing technique to detect and locate the mineral information have been the main aspect of remote sensing geology application, mineralized alteration information extraction is the first and must solved problem. Alteration information refers to synthetical spectral information including all kinds of background spectrum reflected by integrative wallrocks in the spatial entity which is benefit to the metallization taking place in the remote sensing imagery. The background spectrum refers to some environment background such as the spectrum of soil, vegetation, and etc. Altered information as a weak information exists in remote sensing information in the background. Although near-ore wall rock alteration altered rock formation different from normal wall rocks in image texture under the influence of comprehensive factors such as mineral composition, color, the surface status.
     At present, remote sensing thematic information extraction mainly use single threshold parameter in the same area. In fact, thematic information background characteristics have certain differences in different landscapes, mean that have background space points heterosexual. Such as altered information detection in different landscape, altered abnormalities, background and interference are three must studied factors. But background and interference are complex and confusing, it is hard to be completely clear defined in practical work. For remote sensing abnormal information (including abnormal information extraction's quality and precision) mainly controlled by regional factors (area parameters) which decide feature's essential characteristics and space-time change characteristics. Regional parameters can be divided into the leading factor and environmental factor. The leading factor the feature area parameters which cause the remote sensing altered abnormal features, including lithology. structure, the intensity of magmatic hydrothermal activity (altered degree), etc. Environmental factor is the space conditionality regional parameters related to remote sensing altered abnormal or geological anomalies. Including terrain/landscape, soil, vegetation and climate conditions in remote sensing altered abnormal or metallogenic rock/dikes environment space. Therefore, remote sensing altered information extraction must consider its existing geological, geographical background. Therefore, remote sensing altered information extraction must consider its existing geological, geographical background on the different background partition, in order to eliminate various lithology (structure) and the background environmental impact.
     Due to the limitations of single data sources, using remote sensing data and geochemical data fusion to extract anomaly information has become the main means of ore prospecting. The purpose of Remote sensing and geochemical data fusion is excavate comprehensive prospecting information, provide geological prospecting more reliable basis. Remote sensing data's different bands reacts features' different aspects of composition, target structure, construction and other informations. Remote sensing technology have achieved significant results in predicting favorable ore-prospecting segment, selecting the aspects of ore prospecting target area. But because of the complexity of metallogenic conditions, remote sensing data influenced by light and atmospheric conditions, ground vegetation coverage, data resolution factors, the extraction of anomaly information can be achieved only qualitative and semi-quantitative degree, cannot completely identify whether information extracted is meaningful mineralization information. Geochemical data through different elements and their combination to react the migration and enrichment regularity of surface systems element. Influenced by complex geological condition, the anomaly information extracted from geochemical data may ignore some important low abnormality area or because of certain factors and exaggerate some anomaly area. Result in the extract results have some limitations and multi-solutions. Remote sensing and geochemical data is the performance of surface geological or geological phenomenon physical properties, chemical properties, the mineral or chemical compositions'characteristic spectral is the response to geochemistry of remote sensing. They exist certain correlation in the mechanism. The purpose of remote sensing and geochemical data fusion processing is complement each other's advantages, improve the accuracy of the anomaly information extraction, to provide geological prospecting more reliable information.
     This paper's topic is intermediate infred multiple/high spectrum mineral mapping and remote sensing anomaly information extraction technology application research, do a further research to the principle and method of remote sensing altered anomaly information extraction, mainly obtain the achievement below.
     1. Based on spectral theory and geological prospecting theory, do a systematically research and summary to remote sensing altered anomaly information conventional extraction principle and method, found the remote sensing altered information obtain only from the spectral data is hard to precisely help the geological survey and mineralize prediction. Propose the concept that remote sensing altered abnormal formation controlled by cause area parameters and space regional parameter.
     2. Under the guidance of the afore-mentioned concepts, through field work and geological data summary, do further research to cause area parameters and space regional parameter in the study area, determine the partition principle and put forward partition standardization method, from the lithology, structure and vegetation coverage area parameter did partition drawings in the study area.
     3. Analyze different division of remote sensing geology background parameters, realized remote sensing anomaly information partition, grading quantification and thematic mapping expression.
     4. Start from the physical mechanism of remote sensing altered abnormal formation, based on remote sensing altered-mineral components of correlation analysis, do remote sensing and geochemical data fusion research from the mineral components aspect. Emphasis on the registration and quantization corresponding relations between the space of geochemical data and remote sensing data. Get the contacts of space and cause to do the data fusion, then reconstruction the data. To further improve the remote sensing altered anomaly information cause regional parameters accuracy.
     5. Comprehensive spectral altered abnormal, lithology tectonic division. vegetation partition and geochemical data fusion, systematic research the partition standardization method and delineate the mineralization vision zone.
     6. Main innovate points
     (1) Propose the concept that remote sensing altered abnormal formation controlled by cause area parameters and space regional parameter.
     The guiding significance for ore-prospecting altered information depends on geological environment factors such as the lithology, structure, magmatic hydrothermal activity, at the same time, constraint by Remote sensing altered abnormal or environmental space such as terrain/landscape, soil, vegetation and climate conditions which the rock/dikes lies. Simply use spectral data to extract altered anomalies exist certain defects. In abnormal extraction, must consider the decisive factor-regional parameters.
     (2) Propose remote sensing partition standardization method and applied to remote sensing altered anomaly information extraction research.
     Through the lithologic tectonic division, vegetation coverage partition research, using different parameters and method in different partition to extract remote sensing altered anomaly information.
引文
[1]邢立新,陈圣波,潘军.遥感信息科学概论[M].吉林:吉林大学出版社,2003.
    [2]王世称,陈永良,夏立显.综合信息矿产预测理论与方法[M].北京:科学山版社,2000.
    [3]JIANG Li-jun, XING LI-xin,PAN Jun, et al. Study on the Background Parameter Quanti zation Method of Remote Sensing Data Processing[C]. Proceedings of the 2009 2nd international Congress on Image and Sigmal Processing,2009.
    [4]蒋立军.遥感异常分区标准化方法研究[D].长春:吉林大学地球探测科学与技术学院,2008.
    [5]吴德文,袁继明,张远飞,等.遥感与化探数据融合处理技术方法及应用研究[J].国士资源遥感,2005,3(65):44-48.
    [6]Rowan, L.C.,Goetz,A.F.H.and Ashley, R.P.Discrimination of hydrothermally altered and unaltered rocks in vi sible and near infrared multispectral images[J]. Geophysi cs,1977(42):522~535.
    [7]Hunt,G.R.,Sali sbury,J.w.,and Lenhoff, G.J.Visible and near~infrared spectra of mineral s and rocks:Ⅲ Oxides and hydroxides[J].Modern Geology, 1978(2):195-205.
    [8]Loughlin, W. P. Princi pal Component Analysi s for alteraton mapping[J]. Photogrammetric Engineering and Remote Sensing, 1991(57):1163-1169.
    [9]赵元洪.波段比值的主成分复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991(3):12-16.
    [10]何国金,胡德永,陈志军.从TM图像中直接提取金矿化信息[J].遥感技术与应用,1995,10(3):51~54.
    [11]王晓鹏,谢志清,伍跃中.TM图像数据中矿化蚀变信息的提取—以西昆仑塔什库尔干地区为例[J].地质与资源,2002,11(2):119~122.
    [12]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208-213.
    [13]Rutz~Armenta.J.R.and Prol~Ledesma,R.M.Techniques for enhaneing the spectral response of hydrothermal alteration mjnerals in Thematie Mapper imdges of Centra] Mexico[J]. International Journal of Remote Sensing,1998 (19) 1981-2000.
    [14]张远飞,吴健生.基于遥感图像提取矿化蚀变信息[J].有色金属矿产与勘查,1999,8(6):604~606.
    [15]刘素红,马建文,蔺启忠.通过Gram-Schmidt投影方法在高山区提取TM数据中含矿蚀变带信息[J].地质与勘探,2000,36(5):62-65.
    [16]Tangestani, m. H. and Moore, F. Comparison of three principal component analysis techniques to porphyry copper alteration mapping:A case study, Meiduk area, Kerman, lran[J]. Canadian Journal of remote Sensing,2001 (27): 176 - 181.
    [17]CROWI.EY, James K. HUBBARD, Bernard E., and MARS, John C. Hydrothermal Al teration on the cascade stratovolcanoes:A remote sensing survey[J]. Geological Society of America Abstracts with Programs,2003,35 (6):552.
    [18]甘甫平,王润生.基于光谱匹配滤波的蚀变信息提取[J].中国图形图像学报,2003,8(2):147~150.
    [19]毛晓长,刘文灿,杜建国,等.TM和ASTER数据在遥感矿化蚀变信息提取中的比较[J].现代地质,2005,19(2)::309-314.
    [20]闫柏琨,王润生,甘南平.热红外遥感岩矿信息提取研究进展[J].地球科学进展,2005,20(10):1116~1126.
    [21]邹林,杨自安,朱谷昌,等.多光谱遥感蚀变信息提取新方法研究[J].地质与勘探,2006,42(6):71~76.
    [22]王涛,刘少峰,杨金中,等.改进的光谱角制图沿照度方向分类法及其应用[J].遥感学报,2007,11(1):77~84.
    [23]薛云,戴塔根,邓会娟,等.基于蚁群算法的羟基蚀变信息的提取—以青海省同仁县阿哇地区为例[J].地质通报,2008,27(5):657-661.
    [24]杨自安.西部高寒山区遥感与化探信息综合找矿定位预测研究[D].北京:中国地质大学2005.
    [25]Towinn Taxt. Anne II. Sehistad Solberg. Information fusion in remote sensing[J]. Vistas in Astronomy,1997,11 (3):337 - 342.
    [26]Conradson K. N ilsson G.. Applicat ion of Integrated Landsat, Geochemical and Geophysical Data in Mineral Exploration[J]. Proc IntSymp on RS Environ 3rd Thematic Conf R Sfor Exporation Geology, Colorado Springs, Colorado,1984, 23-27.
    [27]Rokos D. Argialas D. Mavrantza R, et al. Structural analysis for gold mineralization using remote sensing and geochemical techniques in a GIS environment:island ofLesvos, Hellas[J]. Nat ural Resources Research,2000,9 (4):277-293.
    [28]薛重生、傅小林、王京明.遥感与地球物理数据的融合处理及地质应用[J].地质科技情报,1997,16(增刊):35-42.
    [29]方洪宾、李志忠.遥感化探信息综合分析在地质找矿中的应用研究[J].国土资源遥感,1999,(4):33~36.
    [30]朱余银.新疆恰尔隆地区化探与遥感信息综合应用和找矿预测[J].矿产与地质,2009,23(1):80-85.
    [31]郝立波,陆继龙.土壤黏土矿物含量计算方法研究[J].土壤通报,2006,37(3):456-459.
    [32]Pohic, Genderen.1L Van. Multisensor image fusion in remote sensing:concept, methods and applications[J]. international journal of Remote Sensing,1998,19 (5):823-854.
    [33]Leekie DG. S. ynergsim of SAR and visible infrared data for forestty pedi serimination [J]. Photogrammetric Engineering and Remote Sensing,1990, 56 (9):1237-1216.
    [34]杨自安,彭省临,刘悟辉,等.高寒山区遥感与化探综合找矿信息的提取[J].中南大学学报,2009,40(4):1121-1126.
    [35]Chavezpsjr, SidesSe, AndersonJA. Comparison of three different method stomerge multiresolution and multispeetral data:TM & SPOT pan[J]. Photogrammetric Engineering and Remote Sensing,1991,57 (3):295 - 303.
    [36]孙家炳.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    [37]张玉君,杨建民,陈薇TM(ETM+)蚀变遥感异常提取方法研究与应用[J].国土资源遥感,2002,4 (54):30~36.
    [38]PohlC. Genderen JI. Van. Multisensor image fusion in remote sensing:concept,methods and applications[J], Internationl Journal of Remote Sensing,1998,19 (5):823-854.
    [39]Leckie DG. S. ynergsim of SAR and visible infrared data for forestty pediscrimination[J]. Photogrammetric Engineering and Remote sensing,1990, 56 (9):1237-1246.
    [40]ChavezPSJr. SidesSC. AndersonJA, Comparison of three different method stomerge multiresolution and multispectral data:TM&SPOT pan[J]. Photogrammetric Engineering and Remote Sensing,1991,57 (3):295~303.
    [41]罗蓉,徐红兵,田涛.复杂系统多传感器数据融合技术及应用研究[J].中国测试技术2006,:32(4):17~21.
    [42]燕守勋,张兵,赵永超,等.矿物与岩石的可见—近红外光谱特性综述[J].遥感技术与应用,2003,4(18):191--199.
    [43]张满郎.金矿化信息提取中的主成分分析.遥感技术与应用,1996,11(3):1-6.
    [44]Zhou Zhenwu. Zhang Jianshu.Wang Weidong.The Probing of Remote Sensing Information in Large Scale Porphyry Copper [J]. Remote Sensing For Land &Resources,1996.
    [45]Zhang Yuanfei.Wu Jiansheng. Extraction of Mineralization And Alteration Informatio from Remote Sensing Images [J]. Geological Exoploration for Non-Ferrous Metals,1999.
    [46]荆风,陈建平.矿化蚀变信息的遥感提取方法综述[J].遥感信息,2005,2:62-57.
    [47]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [48]纪宏金,连长云,杜庆丰.地球化学数据的标准化与衬度变换[J].物探化探计算技术1993,15(1):19-25.
    [49]陈永清,纪宏金.标准化区域地球化学图的编制方法及应用效果[J].长春地质学院学报,1995,25(2):216-221.
    [50]纪宏金,林瑞庆,周水昶,等.关于若干化探数据处理的讨论[J].地质与勘探,2001,37(4):56-59.
    [51]陈毓川.矿床的成矿系列[J].地学前沿,1994,1(3、4):90-94.
    [52]李俊建,燕长海.谢汝斌,等.华北地台重要成矿区带成矿区划及其特征[J].前寒武纪研究进展,2002.25(3、4):129~135.
    [53]施炜,刘建民,王润生.内蒙古东部喀喇沁旗地区金矿围岩蚀变遥感信息提取及成矿预测[J].地球学报,2007,28(3):291-298.
    [54]杨兴科,张连昌,卢登蓉,等.秦岭宁—柞北部金银矿遥感地质预测与找矿靶区优选[J].西北地质,1998,19(2):18~24.
    [55]朱大岗,曲亚军,孟宪刚,等.辽宁阜新地区金及多金属矿构造控矿分析与资源评价[M].北京:地震出版社,2002.
    [56]赵以辛,吴大军.辽宁阜新排山楼金矿容矿岩石及其含金性研究[J].地质找矿论从,1998,13(2):56-66.
    [57]翟明国,孟庆任,刘建明.华北东部中生代构造体制转折峰期的主要地质效应和形成动力学探讨[J].地学前缘,2004,11(3):285-297.
    [58]张宏,柳小明,陈文,等.辽西北票-义县地区义县组顶部层位的年龄及其意义[J].中国地质,2005,32(4):596-603.
    [59]朱大岗,孟宪刚.辽西阜新金-多金属成矿区主要断裂带构造特征及其控矿作川[J].地球学报,2002,24(1):35-40.
    [60]高殿生,贾云伟,刘贵,等.排山楼金矿床的蚀变特征[J].辽宁地质,1992,1:46-52.
    [61]骆辉,赵运起.辽宁阜新排山楼金矿地质和成矿作用[J].前寒武纪研究进展,1997,20(4):13~24.
    [62]吴志国,岳海东,韩军.辽宁阜新盆地中新生代构造转折及其地质意义[J].四川地质学报,2007,27(4):239~244
    [63]Purevdor J T S,Tatei shi R, Ishiyama T,et al. Relationships between pereent vegetation cover and vegetation indi ces[J].International Journal of Remote Sensing,1998,19(18):3519-3535
    [64]周国林,袁正科.常用林业技术术语.长沙:湖南科学技术出版社[M],1982.
    [65]Dymond J R, Stephens P R, Newsome P F et al. Percent vegetation cover of a degrading rangeland from SPOT[J]. International Journal of Remote Sensing, 1992, 13(11):1989~2007.
    [66]Wittich K P,Hansing 0.area-averaged vegetative cover fraction estimated from s;ttelltes data[J]. International Journal of Remote Sensing,1995,38(3) 209~215.
    [67]唐世浩,朱启疆,周宇宇,等.一种简单的估算植被覆盖度和恢复背景信息的方法[J].中国图形图像学报,2003,8(11):1304-1308
    [68]梅安新,彭望,秦其明,等.遥感导论[M].北京:高等教育出版社,2001.
    [69]Gutman G. Ignatov A. The derivation of the green vegetation fraction from NOAA/ AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing,1998,19 (8):1533-1543.
    [70]赵利青,孙世华,肖成东,等.内蒙古东部二连浩特—乌兰浩特地区金矿化特征的初步研究[J].地质与资源,2004,13(4):222-227.
    [71]赵利青,孙世华,肖成东,等.内蒙古苏尼特左旗地区发现三叠纪金矿化[J].黄金地质,2003,4(9):2~8.
    [72]祝洪臣,王海坡,张炯飞.内蒙古苏尼特左旗两种不同成因类型金矿[J].吉林大学学报(地球科学版),2006,36(5):759~766.
    [73]戴昌达,姜小光.遥感图像应用处理与分析[M].北京:清华大学出版社,2004.
    [74]周正武,张建枢,工卫东.大型斑岩铜矿的遥感信息讨探[J].国土资源遥感,1996,2:10-20.
    [75]B.J.AMOS. Alteration detection using TM data[J]. remote sensing,1989,10, 515-5127.
    [76]刘志杰,韩先菊.比值—特征主成分混合分析提取金矿蚀变信息—以赣南遂川地区为例[J].黄金地质,1998,4(1):74~77.
    [77]易善桢,董晓辉,王祖洪.东坪地区TM数据预处理及金矿蚀变信息提取方法研究[J].黄金地质科技,1994,4:57~51.
    [78]张玉君,王建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,36:46-53.
    [79]邢立新,吕凤军,潘军,等.遥感蚀变信息场的确立及其信息提取[J].遥感信息,2006,12-19.
    [80]王日东,刑立新.矿床蚀变信息的遥感提取方法[J].世界地质,2000,12,19(4):397~401.
    [81]吴德文,朱谷昌,张远飞,等.多元数抓分析与遥感矿化蚀变信息提取模型[J].国土资源遥感,2006.67 (1):22-25.
    [82]马建文.利用TM数据快速提取含矿蚀变带方法研究[J].遥感学报,1997,1(3):208- 213.
    [83]吕凤军,邢立新,范继璋,等.遥感蚀变信息提取应用研究[J].新疆地质,2004,22(4):435~437.
    [84]吕凤军,邢立新,范继璋,等.基于蚀变信息场的遥感蚀变信息提取[J].地质与勘探,2006,42(2):65~68.
    [85]王涛,刘少峰,杨金中,等.改进的光谱角制图沿照度方向分类法及其应用—以ETM+数据为例[J].遥感学报,2007,11(1):77-84.
    [86]杨长保,姜琦刚,刘万崧,等.基于ASTER数据的内蒙古东乌珠穆沁北部地区遥感蚀变信息提取[J].吉林大学学报(地球科学版),2009,39(6):1163-1167.
    [87]姚佛军,杨建民,张玉君,等.光谱角制图法与谱线平行分类法若干问题的探讨_以ETM数据为例[J].遥感信息,2009,20-22.
    [88]Kruse. F. A., A. B. Letkoff. The spectral image processing system (SIPS)-Interactive visualization and analysis of imaging spectrometer data[J]. Remote sensing of environment Earth Resource Mapping Ltd,1993,44:145-163
    [89]傅文杰.基于光谱相似尺度的遥感矿化蚀变信息提取[J].地质找矿论,2008,23(2):160-164.
    [90]Baugh W M, Kruse F A. William W, et al. Quantitative Geo chemical Mapping of Ammonium M inerals in the Southern Cedar Mountains, Nevada, Using the Airborne Visible infrared Imaging Spectrometer (AVIRIS) [J]. Remote Sens. Environ,1998, 65:292-308.
    [91]Leckie DG. S. ynergsim of SAR and visible infrared data for forestty pediscrimination[J]. Photogrammetric Engineering and Remote sensing, 1990,56(9):1237-1246.
    [92]ChavezPSJr. SidesSC. AndersonJA, Comparison of three different method stomerge multiresolution and multispetral data:TM & SPOT pan[J]. Photogrammetric Engineering and Remote Sensing,1991,57 (3):295-303.
    [93]吴剑锋,赵玉芹.多传感器数据融合技术研究[J].弹箭与制导学报,2004,24(4):356-358.
    [94]纪宏金.地球化学数据的统计分忻[J].长春地质学院,1993,7:105-120.
    [95]刘成,金成洙,姚上增,等.化探散点数据的图像化及其和遥感图像的叠合[J].东北 大学学报(自然科学版),2003,24(6):597-599.
    [96]魏文薪,潘军,邢立新.遥感数据与化探数据尺度转换及融合应用研究[J].吉林大学学报(地球科学版),2006,:36:196~199.
    [97]孟斌,工劲峰.地理数据尺度转换方法研究进展[J].地理学报,2005,60(2):277-288.
    [98]潘军.多元地学空间数据融合及可视化研究[D].长春:吉林大学地球探测科学与技术学院,2005.
    [99]魏文薪.遥感数据与化探数据融合及应用研究[D].长春:吉林大学地球探测科学与技术学院,2007.
    [100]Kokos D, Argialas D, Mavrautza R, et al. Structural analysis for gold mineralization using remote sensing and geochemical techniques in a GIS environment:island of Lesvos, hellas(?). Natural Resources Research,2000, 9 (4):277~293.
    [101]Karger M, Saudomirsky S. Multidimensional statistical technique for detection of low contrast geochemical anomalies(?). Journal of Geochemical Exploration, 2001,72 (1):47~58.
    [102]赵娜乐,于雷,耿彦斌,等.基于SVM的数据层多源ITS数据融合方法初探[J].交通运输系统工程与信息,2007,7(2):32~38.
    [103]汪云亮,罗景青,岳宏伟.D-S证据理论近似算法在数据融合中的应用[J].现代雷达,2008,30(6):28~31.
    [104]周开利,康耀红.神经网络数据融合模式识别系统性能研究[J].计算机工程,2006,32(17):103~105.
    [105]高巍,迟宇,赵海,等.基于粗糙集和神经网络的数据融合方法研究[J].现代电子技术,2009,295:72~75.
    [106]Verma K, Sivashanmugam K, Sheth A, et al. METEOR-S WSD1:A Scalable P2P Infrastructure of Registries for Semantic Publication andDiscovery of Web Services[J]. Journal of Information Technol ogy and Management,2005,6(1) 17~39.
    [107]王家华.克甲金地质绘图技术—计算机的模型和算法[M].北京:石油工业出版社,1999.
    [108]Frank R. Scattered data interpolation:test of some methods[J]. Mathematical Computation,1982,38:181-200.
    [109]靳国栋,刘衍聪,牛文杰,等.距离加权反比插值法和克里金插值法的比较[J].长春工业大学学报,20033,24(3):53-57.
    [110]吕风军.遥感蚀变信息场及其应用研究[D].长春:吉林大学地球探测科学与技术学院,2006.
    [111]宋明辉.内蒙苏尼特左旗地区蚀变遥感信息提取研究[D].长春:吉林大学地球探测科学与技术学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700