用户名: 密码: 验证码:
男性特发性低促性腺激素性机能减退症的临床及分子遗传学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     收集男性特发性低促性腺激素性机能减退症(idiopathic hypogonadotropic hypogonadism,IHH)病例,研究其临床特点、诊断、治疗的方法及疗效,同时对其分子遗传学病因作初步的研究,探讨IHH的分子发病机制与临床表型间的关系。
     1.研究IHH病例的临床表现、性激素水平、染色体核型、甲状腺功能、肾上腺皮质功能、垂体分泌功能、糖脂代谢功能、GnRH刺激兴奋试验、磁共振嗅球部成像及嗅觉评分特征。
     2.基因定位:应用Affymetrix全基因组SNP 6.0基因芯片对一包含三个卡尔曼综合征子代患者的近亲婚配家庭进行连锁分析及基因组结构变化的分析。
     3.基因序列分析:采取直接DNA序列分析对所有患者进行KAL1.FGFR1.PROK2及PROKR2基因的突变检测,并用单链构象多态性分析(single-strand conformation polymorphism,SSCP)证实已发现的突变,同时在正常对照人群中进行检测排除是多态性的可能。
     方法
     1.临床研究
     1.1男性特发性低促性腺激素性机能减退症病例病史采集,建立随访治疗档案、分别进行阴茎长度、睾丸体积、嗅觉评分、性激素水平、染色体核型、甲状腺功能、肾上腺皮质功能、垂体分泌功能、糖脂代谢功能、GnRH刺激兴奋试验等检查。
     1.2对IHH患者及正常对照人群进行磁共振嗅球部成像检测,并测量嗅球容积。
     1.3分组分别行HCG肌注替代疗法或HCG肌注加雄激素(安特尔)口服治疗,定期随访评估治疗结果。
     2.分子遗传学研究
     2.1取患者及正常对照者外周静脉血4-8ml,采用TIANamp Blood DNA Kit血基因组DNA提取试剂盒提取基因组DNA。
     2.2应用Affymetrix全基因组SNP 6.0基因芯片对一包含三个卡尔曼综合征子代患者的近亲婚配家庭进行连锁分析及基因组结构变化的分析。
     2.3基因序列分析:采取直接DNA测序分析,对所有患者的KAL1、FGFR1、PROK2及PROKR2基因的全部外显子进行突变检测,并用SSCP证实已发现的突变,同时在正常对照人群中进行SSCP检测排除该突变是多态性的可能。
     结果
     1.临床研究
     1.1我们收治了105例男性IHH患者,其中92例患者诊治的临床及随访资料达到随访要求,纳入本次报告。92例IHH患者就诊年龄平均(21±3.2)岁,52例伴有嗅觉减退或缺失(卡尔曼综合征,KS),40例为嗅觉正常的IHH (nIHH);其中47例表现为部分青春期发育,45例无明显青春期发育,3例男性乳腺发育,15例单侧隐睾,5例双侧隐睾。92例染色体核型均为46,XY。检测血清甲状腺、肾上腺功能及糖脂代谢正常,黄体生成素(LH)、卵泡刺激素(FSH)及睾酮(T)基础值低,6例IHH患者行骨龄测定5例落后于实际年龄。
     1.2头颅磁共振成像检查显示所有KS患者均存在嗅球或嗅沟的缺失或发育不良,所有患者均无下丘脑-垂体区占位性器质性病变。部分nIHH患者存在单侧嗅球或嗅沟发育不良。在正常对照人群中未发现存在嗅球或嗅沟的缺失或发育不良。
     1.3经生殖激素替代治疗后,92例均有明显的第二性征发育,性功能改善,血清睾酮水平增高。3例结婚,性功能评价正常,一例患者的妻子生育后代。
     2.分子遗传学研究
     2.1应用Affymetrix全基因组SNP 6.0基因芯片对一包含三个卡尔曼综合征子代患者的近亲婚配家庭进行连锁分析时未发现多态性标记出现明显连锁,优势对数计分(LOD)值均小于1.0。进行基因组结构变化的分析时发现三个患者在染色体1p21.1,2q32.2,8q21.13,14q21.2和Xp22.31上存共同的染色体拷贝数变异(微缺失)。而发生于染色体Xp22.31的拷贝数变异位于KAL1基因的内含子区域,该基因已被证实可导致X-连锁的卡尔曼综合征。该微缺失还出现于一例散发病例中。100例正常对照者中均未发现该位点的微缺失。
     2.2测序发现在一例生育后代的患者中发现KAL1基因的11外显子存在双位点的错意突变(1690 G>A和1765 G>A,致密码子位置514和539均出现G>A的突变,致赖氨酸突变为谷氨酸),其中之一为该基因上新发现的突变,SSCP证实此突变与疾病表型共分离,家系中其他成员及所生育后代无此突变,100例正常人无此突变。在另一家庭的一对患病兄弟中发现存在KAL1基因外显12碱基1828G>A的错意突变,致缬氨酸突变为亮氨酸,其母亲为杂合子,俩患者一个存在单侧肾缺如,一个为单侧隐睾。家庭中无患病者及100例正常人无此突变。在本组患者中候选基因FGFR1、PROK2及PROKR2未检测出突变。
     结论
     1.根据第二性征发育异常患者合并的各种先天异常、病史、体格检查、染色体核型分析、性激素水平、头颅磁共振成像检查等可进行IHH的诊断与鉴别诊断。嗅球部磁共振成像可作为诊断KS的重要手段。HCG与雄激素替代疗法是治疗该疾病的有效方法。
     2.我们为卡尔曼综合征分子发病机制的研究提供了一个新的视野即某些相关的拷贝数变异可能参与其中;同时也为进一步研究提供了一些感兴趣的拷贝数变异候选区域。
     3. KAL1基因的突变可能参与卡尔曼综合征的发病机制:即使出现KAL1基因的突变,经过早期积极治疗仍有生育后代的可能。
Objective
     Idiopathic hypogonadotropic hypogonadism (IHH) refers to a group of patients who characterized by varying degrees of sexual development disruption, resulting in the failure to develop a mature reproductive system because of insufficient gonadotropin release for unknown reasons. In this study, we described the clinical features, genetic features, diagnosis, treatment methods and efficacy of all cases, and analyzed their genotype phenotype correlations. We also did a preliminary study for their molecular genetic pathogenesis.
     1. To clinically characterize all cases with IHH, include clinical manifestations, hormone levels, karyotype, thyroid function, adrenal, pituitary secretion, glucose and lipid metabolism, GnRH stimulation test stimulation, magnetic resonance imaging of the olfactory bulb and olfactory score features.
     2. To understand the molecular etiology of KS from a genome-wide perspective, we investigated the genome-wide profile of structural variation and linkage analysis in a consanguineous Han Chinese family using the Affymetrix Genome-Wide Human SNP Array 6.0 platform.
     3. To do direct DNA sequence analysis of the candidate gene KAL1, FGFR1, PROK2 and PROKR2 to reveal mutations in the IHH patients, and to perform single-strand conformation polymorphism (SSCP) to conform the mutations in the affected individuals and to exclude the possibility of polymorphism in a reference population.
     Methods
     1. Clinical study:
     1.1 To establish the follow-up files and disease histories of patients such as penile length, testicular volume, smell score, hormone levels, karyotype, thyroid function, adrenal cortex, pituitary secretion, glucose and lipid metabolism, GnRH stimulation test and other tests stimulation were recorded.
     1.2 For magnetic resonance imaging (MRI) of the hypothalamic and pituitary areas included olfactory bulb, olfactory tract and sulcus in patients and normal control subjects.
     1.3 To do the reproductive hormone therapy (HCG, or HCG plus Andriol therapy) in different groups and to follow-up regularly and assess the results of treatment.
     2. Molecular genetic study
     2.1 Genomic DNA:Genomic DNA was isolated from peripheral blood leukocytes of the patients and normal control subjects using TIANamp Blood DNA Kit (Tiangen Biotech, Beijin, China).
     2.2 Gene chip:To understand the molecular etiology of KS from a genome-wide perspective, we investigated the genome-wide profile of structural variation and linkage analysis in a consanguineous Han Chinese family using the Affymetrix Genome-Wide Human SNP Array 6.0 platform.
     2.3 Sequence Analysis:Direct nucleotide sequencing of the coding region of KALI, FGFR1, PROK2 and PROKR2 gene in DNA to reveal mutations in the IHH patients. PCR-SSCP was performed to reassess the DNA sequencing variation.
     Results
     1. Clinical study
     1.1 The mean age at evaluation was (21±3.2) years old and 52 patients were diagnosed as Kallmann syndrome (KS; IHH with anosmia/ hyposmia) while others were normosmic IHH (nIHH). Of them,47 cases showed some pubertal development,45 patients with no obvious puberty development,3 cases of gynecomastia,15 patients with unilateral cryptorchidism, and 5 cases of bilateral cryptorchidism. The karyotypes were 46,XY in all 92 cases. The serum thyroid gland, adrenal gland function and glucose and lipid metabolism levels were in normal and the levels of serum LH, FSH and T were low.
     1.2 Magnetic resonance imaging examination showed that all KS patients had the absence or dysplasia of olfactory bulb, olfactory tract or sulcus. They all had normal radiological imaging of the hypothalamic and pituitary areas. There were found the unilateral olfactory bulb dysplasia in some nIHH patients with. In the normal control group there was not found the absence or dysplasia of the olfactory bulb or olfactory tract or sulcus.
     1.3 The level of serum LH, FSH and T as well as the clinical parameters (development of secondary sexual characteristics, sexual function, and serum testosterone levels.) were significant improvement after reproductive hormone therapy (T, HCG, or HMG therapy). The sexual function was normal in 3 married patients, and one of them had a child.
     2. Molecular genetic study
     2.1 While we investigated the genome-wide profile of structural variation and linkage analysis in a consanguineous Han Chinese family using the Affymetrix Genome-Wide Human SNP Array 6.0 platform, there was no significant linkage were found in polymorphic markers (LOD values were less than 1.0).But the results revealed that the three affected individuals had common copy number variants (microdeletions) on chromosomes 1p21.1,2q32.2,8q21.13,14q21.2 and Xp22.31. Moreover, the copy number variants on Xp22.31 were located in the intron of KALI, which causes X-linked KS. In addition, genomic microdeletions in this region were verified in one sporadic KS, but not in 100 unrelated Han Chinese normal controls.
     2.2 The present study reports on a male patient who presented with the KS phenotype with fertility. The patient had KS as a result of two missense mutations at exon 11 of KALI gene,1690 G>A and 1765 G>A, a G/A transition in codons 514 and 539, which resulted in the replacement of lysine by glutamic acid, respectively. One of them is a novel mutation. We also report a novel missense mutation of KALI at exon 12,1828G> A, which lead to a pVal/V610Ile/I substitution in the two brothers with KS and a heterozygous state in their mother. These identified molecular defects with the disease were not found in 100 unaffected individuals or the other patients. In addition, no mutations of FGFR1, PROKR2, or PROK2 were identified in these patients.
     Conclusion
     1. According to the clinical features and laboratory results, we can do diagnosis and differential diagnosis of IHH. Reproductive hormone therapy is the choice of treatment.
     2. The results about gene chip provide a novel insight into the relative contributions of certain copy number variants to KS's molecular etiology and generate a list of interesting candidate regions for further studies.
     3. The male patient who presented with the KS phenotype with fertility and two missense mutations at exon 11 of the KALI gene implies that this genotype may be more prevalent in reproductive KS. The results provided further support for the hypothesis that patients with KS can achieve normal sexual development and fertility after HCG treatment, and imply that this genotype is more prevalent in reproductive patients with KS than in the other patients with KS and incurable infertility. The report gives evidence that the Val610Ile mutation of KALI is associated with X-linked recessive KS with unilateral cryptorchidism or unilateral renal dysgenesis, which expand the spectrum of KALI mutations causing KS.
引文
1. Kallmann FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944;48:203-36.
    2. Seminara SB, Hayes FJ, CrowleyWF Jr. Gonadotropin-releasing hormone deficiency in the human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 1998; 19:521-39.
    3. Hardelin JP. Kallmann syndrome:towards molecular pathogenesis. Mol Cell Endocrinol 2001; 179:75-81.
    4. Bhagavath B, Podolsky RH, Ozata M, et al. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism. Fertil Steril 2006;85:706-13.
    5. Phillip M, Arbelle JE, Segev Y, et al. Male hypogonadism due to a mutation in the gene for the beta subunit of follicle stimulating hormone. New Engl J Med.1998; 338:1729-32.
    6. Burris AS, Rodbard HW, Winters SJ, et al. Gonadotropin therapy in men with isolated hypogonadotropic hypogonadism:the response to human chorionic gonadotropin is predicted by initial testicular size. J Clin Endocrinol Metab.1988; 66:1144-51.
    7. Finkel DM, Phillips JL, Snyder PJ. Stimulation of spermatogenesis by gonadotropins in men with hypogonadotropic hypogonadism. N Engl J Med.1985; 313:651-5.
    8. Vicari E, Mongioi A, Calogero AE, et al. Therapy with human chorionic gonadotrophin alone induces spermatogenesis in men with isolated hypogonadotrophic hypogonadism--long-term follow-up. Int J Androl.1992; 15:320-9.
    9. De Roux N, Young J, Brailly-Tabard S, et al. The same molecular defects of the gonadotropin-releasing hormone receptor determine a variable degree of hypogonadism in affected kindred. Journal of Clinical Endocrinology and Metabolism.1999; 84:567-72.
    10. Buchter D, Behre HM, Kliesch S, et al. Pulsatile GnRH or human chorionic gonadotropin/human menopausal gonadotropin as effective treatment for men with hypogonadotropic hypogonadism:a review of 42 cases. Eur J Endocrinol.1998; 139:298-303.
    11. Liu L, Banks SM, Barnes KM, et al. Two-year comparison of testicular responses to pulsatile gonadotropin-releasing hormone and exogenous gonadotropins from the inception of therapy in men with isolated hypogonadotropic hypogonadism. J Clin Endocrinol Metab.1988; 67:1140-5.
    12. Salenave S, Chanson P, Bry H, et al. Kallmann's syndrome:a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 2008; 93:758-63.
    13. Falardeau J, Chung WC, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest 2008; 118:2822-31.
    14. J.P. Hardelin, C. Dode. The Complex Genetics of Kallmann Syndrome:KALI, FGFR1, FGF8, PROKR2, PROK2, et al. Sex Dev 2008; 2:181-93.
    15. Fechner A, Fong S, McGovern P. A review of Kallmann syndrome:genetics, pathophysiology, and clinical management. Obstet Gynecol Surv.2008; 3:189-94.
    16. Pinto G, Abadie V, Mesnage R, et al. CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab 2005; 90:5621-6.
    17. Miura K, Acierno JS Jr, Seminara SB. Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patientswith idiopathic hypogonadotropic hypogonadism (IHH). J Hum Genet 2004; 49:265-8.
    18. Dode'C, Teixeira L, Levilliers J, et al. Kallmann syndrome:mutations in the genes enconding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2006; 2:e175.
    19. Zhang F, Gu W, Hurles ME, et al. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009; 10:451-81.
    20. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature 2006; 444:444-54.
    21.Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007; 8: 639-46.
    22. Cook EH Jr, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455:919-23.
    23. Sun M, Li N, Dong W, et al. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 2009; 84:1-7.
    24. Lupski JR, Stankiewicz P. Genomic disorders:molecular mechanisms for rearrangements and conveyedphenotypes. PLoS Genet 2005; 1:e49.
    25. Sharp AJ. Emerging themes and new challenges in defining the role of structural variation in human disease. Hum Mutat 2009,30:135-44.
    26. Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007; 39:S43-7.
    27. Komura D, Shen F, Ishikawa S, et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays.Genome Res 2006; 16:1575 -84.
    28. Ribeiro RS, Vieira TC, Abucham J. Reversible Kallmann syndrome:report of the first case with a KAL1 mutation and literature review. Eur J Endocrinol 2007; 156:285-90.
    29. Bhagavath B, Layman LC.The genetics of hypogonadotropic hypogonadism. Semin Reprod Med,2007,25(4):272-86.
    1. Bin-Abbas B, Conte FA, Grumbach MM, et al. Congenital hypogonadotropic hypogonadism and micropenis:Effect of testosterone treatment on adult penile size why sex reversal is not indicated. J Pediatr.1999:134:579-583.
    2. Pitteloud N, Durrani S, Raivio T, et al. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front Horm Res.2010; 39:142-53.
    3. Shilin Zhang, Yanping Tang, Tao Wang, et al. Clinical assessment and genomic landscape of a consanguineous family with three Kallmann syndrome descendants. Asian Journal of Andrology.2010;doi:10.1038/aja.2010.83.
    4. Kallmann FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944; 48:203-36.
    5. Hu Y, Tanriverdi F, MacColl GS, et al. Kallmann's syndrome:molecular pathogenesis. Int J Biochem Cell Biol.2003,35:1157-1162.
    6. Steven MC, Kim SH, Youli Hu, et al. Molecular Pathogenesis of Kallmann's Syndrome. Horm Res.2007,67:231-242.
    7. Suzuki M, Takashima T, Kadoya M, et al. MR imaging of olfactory bulbs and tracts. Am J Neuroradiol.1989; 10:955-7.
    8. Freitas P, Carvalho S, Ribeiro F, et al. Neuroradiology of Kallmann's syndrome. Acta Med Port.2001; 14:123-6.
    9.有慧,冯逢,刘剑锋等。先天性嗅觉功能障碍的MRI表现.中华放射学杂志。2009,43(6):585-589.。
    10. William F. Crowley J, Nelly P, et al. New Genes Controlling Human Reproduction and How You Find Them. Trans Am Clin Climatol Assoc.2008; 119:29-38.
    11. Sullivan KA, Silverman A-J. The ontogeny of gonadotropin-releasing hormone neurons in the chick. Neuroendocrinology.1993; 58:597-608.
    12. Waldhauser F, Weissenbacher G, Frisch H, et al. Pulsatile secretion of gonadotropins in early infancy. European Journal of Pediatrics.1981; 137:71-74.
    13.Apter D, Cacciatore B, Alfthan H, et al. Serum luteinizing hormone concentrations increase 100-fold in females from 7 years to adulthood, as measured by time-resolved immunofluorometric assay. J Clin Endocrinol Metab.1989; 68:53-7.
    14. Boyar RM, Rosenfeld RS, Kapen S, et al. Human puberty. Simultaneous augmented secretion of luteinizing hormone and testosterone during sleep. J Clin Invest.1974; 54:609-18.
    15. Spratt DI, O'Dea LSL, Schoenfeld D, et al. Neuroendocrine-gonadal axis in men: frequent sampling of LH, FSH, and testosterone. American Journal of Physiology.1988; 254:E658-E666.
    16. Kim HG, Bhagavath B, Layman LC. Clinical Manifestations of Impaired GnRH Neuron Development and Function. Neurosignals.2008; 16:165-182.
    17. Jongmans MC, van Ravenswaaij-Arts CM, Pitteloud N, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome-the clinical overlap with CHARGE syndrome. Clin Genet.2008; 11:17.
    18. Bardin CW, Ross GT, Rifkind AB, et al. Studies of the pituitary-Leydig cell axis in young men with hypogonadotropic hypogonadism and hyposmia:comparison with normal men, prepubertal boys, and hypopituitary patients. J Clin Invest.1969; 48:2046-56.
    19. Pitteloud N, Hayes FJ, Boeppk PA, et al. The role of prior pubertal development, biochemical markers of testicular maturation, and genetics in deciding the phenotype heterogeneity of idiopathic hypogonadotrpic hypogonadism. J Clin Endocrinol Metab. 2002:87:152-160.
    20. Nachtigall LB, Boepple PA, Pralong FP, et al. Adult-onset idiopathic hypogonadotropic hypogonadism-a treatable form of male infertility. New England Journal of Medicine. 1997; 336:410-415.
    21. Bates AS, Van't Hoff W, Jones PJ, et al. The effect of hypopituitarism on life expectancy. J Clin Endocrinol Metab.1996; 81:1169-72.
    22. Arafah BM. Reversible hypopituitarism in patients with large nonfunctioning pituitary adenomas. J Clin Endocrinol Metab.1986; 62:1173-9.
    23. Dode and Jean-Pierre Hardelin. Kallmann syndrome:Catherine European Journal of Human Genetics.2008; 5:1-8.
    24. Oldereid NB, Abyholm T, Tanbo TG. Spermatogenesis and fertility outcome in male hypogonadotrophic hypogonadism. Hum Fertil (Camb).2010; 13(2):83-9.
    25. Taneli Raivio, John Falardeau, Andrew Dwyer, et al. Reversal of Idiopathic Hypogonadotropic Hypogonadism. N Engl J Med 2007,30(9):357:863-873.
    1. Seminara S, Hayes F, Crowley W. Gonadotropin-releasing hormone deficiency in human (idiopathic hypogonadotropic hypogonadism and Kallmann's syndrome): pathophysiological and genetic considerations. Endocr Rev 1998; 19:521-39.
    2. Salenave S, Chanson P, Bry H, et al. Kallmann's syndrome:a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab 2008; 93:758-63.
    3. Falardeau J, Chung W, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans/mice. J Clin Invest 2008; 118:2822-31.
    4. Pinto G, Abadie V, Mesnage R, et al. CHARGE syndrome includes hypogonadotropic hypogonadism and abnormal olfactory bulb development. J Clin Endocrinol Metab 2005; 90:5621-6.
    5. Miura K, Acierno JS Jr, Seminara SB. Characterization of the human nasal embryonic LHRHfactor gene, NELF, and a mutation screening among 65 patientswith idiopathic hypogonadotropic hypogonadism (IHH). J Hum Genet 2004; 49:265-8.
    6. Dode'C, Teixeira L, Levilliers J, et al. Kallmann syndrome:mutations in the genes enconding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2006; 2:175.
    7. Zhang F, Gu W, Hurles ME, et al. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009; 10:451-81.
    8. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature 2006; 444:444-54.
    9. Beckmann JS, Estivill X, Antonarakis SE. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nat Rev Genet 2007; 8: 639-46.
    10. Cook EH Jr, Scherer SW. Copy-number variations associated with neuropsychiatric conditions. Nature 2008; 455:919-23.
    11. Sun M, Li N, Dong W, et al. Copy-number mutations on chromosome 17q24.2-q24.3 in congenital generalized hypertrichosis terminalis with or without gingival hyperplasia. Am J Hum Genet 2009; 84:1-7.
    12. Lupski JR., Stankiewicz P. Genomic disorders:molecular mechanisms for rearrangements and conveyedphenotypes. PLoS Genet 2005; 1:e49. Sharp AJ. Emerging themes and new challenges in defining the role of structural variation in human disease. Hum Mutat 2009,30:135-44.
    13. Lupski JR. Genomic rearrangements and sporadic disease. Nat Genet 2007; 39:S43-7.
    14. Komura D, Shen F, Ishikawa S, et al. Genome-wide detection of human copy number variations using high-density DNA oligonucleotide arrays.Genome Res 2006; 16: 1575-84.
    15. Hardelin J, Levilliers J, Blanchard S, et al. Heterogeneity in the mutations responsible for X chromosome-linked Kallmann syndrome. Hum Mol Genet 1993; 2:373-377.
    16. Naoko Sato, Noriyuki K, Masayo K, et al. Clinical assessment and mutation analysis of kallmann syndrome 1 and fibroblast growth factor receptor 1 in five families and 18 sporadic patients. J Clin Endocrinol Metab.2004,89(3):1079-1088.
    17. Kallmann F, Schoenfeld W, Barrera S. The genetic aspects of primary eunuchoidism. Am J Ment Defic 1944; 48:203-36.
    18. Hardelin J. Kallmann syndrome:towards molecular pathogenesis. Mol Cell Endocrinol 2001; 179:75-81.
    19. Bhagavath B, Podolsky RH, Ozata M, et al. Clinical and molecular characterization of a large sample of patients with hypogonadotropic hypogonadism. Fertil Steril 2006; 85:706-13.
    20. Hardelin J, Levilliers J, del Castillo I, et al. X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc Natl Acad Sci USA 1992; 89: 8190-94.
    21. Dode'C, Levilliers J, Dupont J, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 2003; 33:463-5.
    22. Hardelin J, Dode'C. The complex genetics of Kallmann syndrome:KAL1, FGFR1, FGF8, PROKR2, PROK2, et al. Sex Dev 2008; 2:181-93.
    23. Ribeiro RS, Vieira TC, Abucham J. Reversible Kallmann syndrome:report of the first case with a KAL1 mutation and literature review. Eur J Endocrinol 2007; 156:285-90.
    24. Quinton R, Duke VM, Robertson A, et al. Idiopathic gonadotrophin deficiency:genetic questions addressed hrough phenotypic characterization. Clin Endocrinol (Oxf) 2001; 55:163-174.
    25. Crowley WF Jr, Pitteloud N, Seminara S. New genes controlling human reproduction and how you find them. Trans Am Clin Climatol Assoc 2008; 119:29-38.
    26. Hu Y, Tanriverdi F, MacColl GS, et al. Kallmann's syndrome:molecular pathogenesis. Int J Biochem Cell Biol 2003; 35:1157-62.
    27. Franco B, Guioli S, Pragliola A, et al. A gene deleted in Kallmann's syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 1991; 353:529-536.
    28. Legouis R, Hardelin JP, Levilliers J. The candidate gene for the X-linked Kallmann syndrome encodes a protein related to adhesion molecules. Cell 1991; 67:423-435.
    29. Bick D, Franco B, Sherins RJ, et al. Intragenic deletion of the KALIG-1 gene in Kallmann's syndrome. N Engl J Med 1992; 326:1752-1755.
    30. Rugarli El, Ghezzi C, Valsecchi V, et al. The Kallmann syndrome gene product expressed in COS cells is cleaved on the cell surface to yield a diffusible component. Hum Mol Genet 1996; 5:1109-1115.
    31. Tobet SA, Bless EP, Schwarting GA. Developmental aspect of the gonadotropin-releasing hormone system. Mol Cell Endocrinol 2001; 185:173-184.
    32. Wierman ME, Pawlowski JE, Allen MP, et al. Molecular mechanisms of gonadotropin-releasing hormone neuronal migration. Trends Endocrin Met 2004; 15: 96-102.
    33. Albuisson J, Pecheux C, Carel J, et al. Kallmann syndrome:14 novel mutations in KAL1 and FGFR1 (KAL2). Hum mutat 2005; 1:98-99.
    34. Massin N, Pecheux C, Eloit C, et al. X chromosome-linked Kallmann syndrome: clinical heterogeneity in three siblings carrying an intragenic deletion of the KAL-1 gene. J Clin Endocrinol Metab 2003; 88:2003-2008.
    35. Tang K, Wu Q, Zou T, et al. Molecular analysis of KAL1 in a series of Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism patients from Northwestern China. Asian J Androl 2009; 11:711-5.
    36. Jap TS, Chiu CY, Lirng JF, et al. Identification of Two Novel Missense Mutations in the KALI Gene in Han Chinese Subjects with Kallmann Syndrome. J Endocrinol Invest 2011 Jan; 34(1):53-9.
    37. Shilin Zhang, Yanping Tang, Tao Wang, et al. Clinical assessment and genomic landscape of a consanguineous family with three Kallmann syndrome descendants. Asian J Androl 2010;doi:10.1038/aja.2010.83.
    38. Matsuo T, Okamoto S, Izumi Y, et al. A novel mutation of the KAL1 gene in monozygotic twins with Kallmann syndrome. Eur J Endocrinol 2000; 143:783-787.
    39. Georgopoulos NA, Koika V, Galli-Tsinopoulou A, et al. Renal dysgenesis and KAL1 gene defects in patients with sporadic Kallmann syndrome. Fertil Steril 2007; 88:1311-7.
    40. Raivio T, Falardeau J, Dwyer A, et al. Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med 2007; 357:863-73.
    41. Pitteloud N, Acierno J, Meysing A, et al. Reversible Kallmann syndrome delayed puberty and isolated anosmia occurring in a single family with one mutation in the fibroblast growth factor receptor 1 gene. J Clin Endocrinol Metab 2005; 90:1317-322.
    42. SinisiAA, AsciR, Bellastella G, et al. Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia:case report. Hum Reprod 2008; 23:2380-4.
    43. Li Y, Lin H, Li Y, Cao J. Association between sociopsycho-behavioral factors and male semen quality:systematic review and meta-analyses. Fertil Steril 2011; 95:116-23.
    44. Miura K, Acierno J, Seminara S. Characterization of the human nasal embryonic LHRH factor gene NELF and one mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism. J Hum Genet 2004; 49:265-68.
    45. Zhang F, Gu W, Hurles ME, et al. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet 2009; 10:451-81.
    46. Orozco LD, Cokus SJ, Ghazalpour A, et al. Copy number variation influences gene expression and metabolic traits in mice. Hum Mol Genet 2009; 18:4118-29.
    47. Wright D, Boije H, Meadows JR, et al. Copy number variation in Intron 1 of SOX5 causes the pea-comb phenotype in chickens. PLoS Genet 2009; 5:e1000512.
    1. Crowley W, Pitteloud N, Seminara S. New genes controlling human reproduction and how you find them.Trans Am Clin Climatol Assoc.2008,119 (vl19):29-37.
    2. Kim HG, Bhagavath B, Layman LC. Clinical manifestations of impaired GnRH neuron development and function. Neurosignals.2008,16 (2-3):165-182.
    3. Dode C, Hardelin JP. Kallmann syndrome. Eur J Hum Genet.2009,17(2):139-146.
    4. Grumbach MM. A window of opportunity:the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab.2005,90(5):3122-3127.
    5. Pedersen J, Chorich L, Bick D, et al. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Hum Reprod.2008,14:367-70.
    6. Kim S, Hu Y, Cadman S, et al. Diversity in fibroblast growth factor receptor 1 regulation:learning from the investigation of Kallmann syndrome. J Neuroendocrinol. 2008,20:141-63.
    7. Jongmans M, Ravenswaaij-Arts C, Pitteloud N, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome--the clinical overlap with CHARGE syndrome. Clin Genet.2009,75:65-71.
    8. Steven M, Soo-Hyun K, Youli H, et al. Molecular pathogenesis of Kallmann's Syndrome. Bouloux Horm Res.2007,67:231-242.
    9. Kaminski BA, Palmert MR. Genetic control of pubertal timing. Curr Opin Pediatr. 2008,20(4):458-464.
    10. Clemente D, Esteban PF, Del Valle I, et al. Expression pattern of Anosmin-1 during pre-and postnatal rat brain development. Dev Dyn.2008,237(9):2518-2528.
    11. Van Vactor D, Wall DP, Johnson KG. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr Opin Neurobiol.2006,16 (1):40-51.
    12. Salenave S, Chanson P, Bry H, et al. Kallmann's syndrome:a comparison of the reproductive phenotypes in men carrying KAL1 and FGFR1/KAL2 mutations. J Clin Endocrinol Metab.2008,93 (16):758-763.
    13. Bhagavath B, Layman LC. The genetics of hypogonadotropic hypogonadism. Semin Reprod Med.2007,25(4):272-86.
    14. Smith JT, Acohido BV, Clifton DK, et al. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol.2006,18 (4):298-303.
    15. Okuhara K, Abe S, Kondo T, et al. Four Japanese patients with adrenal hypoplasia congenita and hypogonadotropic hypogonadism caused by DAX-1 gene mutations: mutant DAX-1 failed to repress steroidogenic acute regulatory protein (StAR) and luteinizing hormone beta-subunit gene promoter activity. Endocr J.2008,55(1):97-103.
    16. Benzinou M, Creemers JW, Choquet H, et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet,2008,40(8):943-945.
    17. Corneli G, Vivenza D, Prodam F, et al. Heterozygous mutation of HESX1 causing hypopituitarism and multiple anatomical malformations without features of septo-optic dysplasia. J Endocrinol Invest.2008,31(8):689-693.
    18. Tziaferi V, Kelberman D, Dattani MT. The role of SOX2 in hypogonadotropic hypogonadism. Sex Dev.2008,2(4-5):194-199.
    19. Lofrano-Porto A, Barra GB, Giacomini LA, et al. Luteinizing hormone beta mutation and hypogonadism in men and women. N Engl J Med.2007,357 (9):897-904.
    20. Jongmans M, Ravenswaaij-Arts C, Pitteloud N, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome, the clinical overlap with CHARGE syndrome. Clin Genet.2009,75:65-71.
    21. Lan F, Meliciani I, Wenzel W, et al. Mutations in CHD7, encoding the chromatin-remodeling protein, caused idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet.2008,83:511-519.
    22. Pitteloud N, Quinton R, Pearce S, et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest.2007,117: 457-463.
    23. Abreu AP, Trarbach EB, de Castro M, et al. Loss-of-function mutations in the genes encoding prokineticin-2 or prokineticin receptor-2 cause autosomal recessive Kallmann syndrome. J Clin Endocrinol Metab.2008,93(10):4113-4118.
    24. Sinisi AA, Asci R, Bellastella G, et al. Homozygous mutation in the prokineticin-receptor2 gene (Val274Asp) presenting as reversible Kallmann syndrome and persistent oligozoospermia:case report. Hum Reprod.2008,23 (10):2380-2384.
    25. Falardeau J, Chung W, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans/mice. J Clin Invest.2008,118: 2822-2831.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700