用户名: 密码: 验证码:
抑制素对山羊繁殖力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑制素(Inhibin,INH)是雄性动物睾丸支持细胞(Sertoli cells)和雌性动物卵巢颗粒细胞(Granulosa cells)分泌的二聚体糖蛋白激素。活化素(Activin, ACT)又名激活素,是最早在性腺中发现的一种糖蛋白激素。在结构上,INH基因由α亚基和β亚基(pA或pB)通过二硫键连接形成INHA (α-βA)和INHB (α-βB)两种形式,ACT由pA和pB亚基相互通过二硫键连接后形成ACTA (βA-βA)、ACTB (βB-βB)和ACTAB (βA-βB)三种形式。在雌性动物中,INH和ACT分别起到抑制和促进卵泡刺激素(Follicle-stimulating hormone, FSH)的合成和分泌的作用。
     本实验旨在研究抑制素在激素水平和基因水平上对不同繁殖力山羊品种(遗传资源)的影响情况,试图揭示抑制素对山羊繁殖力影响的遗传机制。1.山羊血浆中INHB、ACTA和FSH含量比较分析
     采用酶联免疫法(ELISA)测定并分析了大足黑山羊(n=5)、南江黄羊(n=5)和萨能奶山羊(n=4)3个山羊品种(遗传资源)在一个发情周期内FSH、INHB和ACTA三种激素的分泌变化规律,得到以下结果:
     (1)大足黑山羊发情周期为(20.1±0.5)d,南江黄羊的发情周期为(20.2±1.1)d,萨能奶山羊发情周期为(25.1±0.8)d。
     (2)在整个发情周期中,3个山羊品种(遗传资源)FSH分泌曲线中高峰点出现的时间和INHB分泌曲线中较低点出现的时间基本一致,FSH与INHB在3个羊种中都呈现极显著负相关(P<0.01)。3个山羊品种(遗传资源)的ACTA分泌变化趋势与FSH分泌变化趋势也比较一致,ACTA与FSH相关系数为正值,但均未达到差异显著水平(P>0.05)
     (3)大足黑山羊FSH在发情周期中出现的第1个分泌高峰点的水平显著高于南江黄羊和萨能奶山羊(P<0.05);而大足黑山羊INHB在发情周期中出现的第1个分泌较低点的水平显著低于萨能奶山羊和南江黄羊(P<0.05)
     2.山羊INHα、INHβA和INHβB亚基基因的克隆和序列分析
     以大足黑山羊(n=3)、南江黄羊(n=3)和萨能奶山羊(n=3)为研究对象,采用RT-PCR技术克隆出INHα、INHβA和INHβB亚基基因cDNA序列,并已获得两个NCBI登录号(INHα:HQ699620和INHβA:HQ699621),与GenBank中其它物种的相同亚基相同区段的同源性均在95%以上。
     (1)山羊INHα、INHβA和INHβB亚基基因cDNA序列分别为1124 bp、1364bp和1499 bp; CDS区分别为1083 bp、1278 bp和1227 bp;CDS区分别编码360、425和408个氨基酸,分别包含18、21和20个氨基酸信号肽,341、404和380个氨基酸成熟肽。CDS区编码的氨基酸与GenBank中其它物种相同亚基的相同区段编码的氨基酸同源性达96%以上。
     (2) INHα、INHβA和INHβB多肽相对分子质量分别为94.655 KD、109.132KD和100.438 KD,等电点(pI)分别为4.95、4.92和4.94,疏水性最小值分别为-0.467、-0.633和-0.567,最大值分别为2.344、2.422和2.267。均无蛋白跨膜区;蛋白的二级结构中,α螺旋分别占17.22%、21.65%和23.04%,β转角分别占5.28%、3.53%和4.41%,延伸链分别占18.89%、19.53%和18.14%,无规卷曲分别占58.61%、55.29%和54.41%。INHβA和INHβB多肽的三级结构均与人的INHβA多肽有116个氨基酸残基相匹配。
     (3)所测山羊INHα亚基基因cDNA序列与GenBank中绵羊(Ovis aries)外显子2比较,共发现19个变异位点,其中转换17个,颠换2个,氨基酸变异位点为8个;与NCBI上公布的波尔山羊(Capra hircus)外显子1和2部分序列相比,共发现3个变异位点,其中转换2个,颠换1个,氨基酸变异位点为2个,分别为第338位(外显子2第32位)C→G的突变导致氨基酸L→V,第345位(外显子2第39位)A→G的突变导致氮基酸Q→R。
     (4)所测山羊INHβA亚基基因cDNA序列与GenBank中绵羊相同区段相比,发现有10个碱基变异位点,均为转换,无颠换、插入或后缺失,其中CDS区第198位(cDNA)序列的第211位)A→G的突变导致氨基酸R→K。
     (5)所测山羊INHβB亚基基因cDNA序列与GenBank中绵羊序列相比,出现了12个变异位点,其中有5个转换,6个颠换,1个插入。引起氨基酸变异的位点有3个,860位G→T的变异导致氨基酸R→L,第871位插入碱基G使得氨基酸序列增加了一个G,第1372位G→T的突变使得氨基酸G→V。在大足黑山羊中却没有发现这3个位点的突变。
     3.山羊INHα、INHβA和INHβB亚基基因的外显子遗传多态性分析
     采用序列测定和PCR-SSCP技术,在大足黑山羊(n=28)和南江黄羊(n=27)中分析INHα、INHβA和INHβB亚基基因的外显子遗传多态性,结果发现:
     (1) INHα亚基基因外显子1内没有多态性位点,外显子2内都存在第32位(cDNA序列第338位)C→G和第39位(cDNA序列第345位)A→G的突变;INHβA亚基基因外显子部分序列中没有发现多态性位点;INHβB亚基基因两个外显子中没有发现多态性位点。
     (2)在更大群体中测序发现山羊INHa亚基基因的外显子2的第57位(cDNA序列第363位)存在G→A的突变,并引起了氨基酸R→H。
     (3) INHa亚基基因的外显子2 PCR-SSCP分析发现,在大足黑山羊和南江黄羊中出现了三种基因型(AA、AB和BB型),大足黑山羊AA、AB和BB基因型频率分别为0.071、0.429和0.500,而南江黄羊分别为0.391、0.435和0.174;大足黑山羊B等位基因频率(0.714)高于A等位基因频率(0.286),南江黄羊A等位基因频率(0.630)高于B等位基因频率(0.370);经χ2检验发现,大足黑山羊和南江黄羊都处于Hardy-Weinberg平衡状态(P>0.05)。
     (4) INHa亚基基因的外显子2的多态性与产羔数的最小二乘分析发现,就前三胎产羔数、前二胎产羔数、前一胎产羔数和平均产羔数,大足黑山羊的BB型个体分别比AB型个体多0.595、1.01、0.703和0.769只(P<0.05);南江黄羊BB型个体比AB型个体产羔数分别多了0.787、1.375和0.754只(P<0.05),比AA型个体的产羔数分别多了0.849、1.486和1.131只(P<0.05),但AA与AB型个体之间的差异未达到显著水平(P>0.05);南江黄羊BB和AB型个体的前一胎产羔数分别比AA型个体多1.01和0.983只(P<0.05),但AB型与BB型个体之间的差异未达到显著水平(P>0.05)
     4.山羊INHa, INHβA和INHβB亚基基因定量表达分析
     以大足黑山羊(n=7)、南江黄羊(n=7)和萨能奶山羊(n=7)为研究对象,采用实时荧光定量PCR技术测定了山羊INHa, INHβA和INHβB亚基基因定量表达情况,结果发现:
     (1) INHa、INHβA和INHβB亚基基因在山羊的垂体、卵巢、心脏、肝、脾脏、肺和肾脏7种组织均有表达,卵巢组织表达水平高于垂体(P<0.05);在卵巢和垂体组织中,3个山羊品种(遗传资源)中均表现出INHa表达水平最高、INHβA居中、INHPB表达水平最低。
     (2)在3个山羊品种(遗传资源)中,大足黑山羊的INHa、INHPA和INHβB亚基基因表达水平的各个组织中最低,萨能山羊居中,南江黄羊最高(P<0.05)。
     (3)相关性分析发现,卵巢组织INHa、INHβA和INHβB亚基基因表达水平与山羊采样时前一胎的产羔数呈负相关(P<0.10)。
     5.结论
     综上所述,得到如下结论:
     (1)在一个发情周期中,3个山羊品种(遗传资源)FSH水平与1NHB水平呈负相关,FSH水平与ACTA水平呈正相关,激素变化趋势与山羊卵泡发育波的出现基本吻合。
     (2)在一个发情周期中,伴随着最后一个卵泡发育波出现的较大量FSH分泌和较低水平的INHB分泌以及抑制素基因较低的表达水平可能与山羊的高繁殖力相关。
     (3)在山羊INHa亚基基因外显子1、INHβA亚基基因外显子部分序列和INHβB亚基基因两个外显子中没有发现多态性位点,这些亚基基因外显子序列对山羊的产羔数影响可能较小。
     (4)山羊INHa外显子2的第57位存在G→A的突变,并引起了氨基酸R→H,在不同个体中出现了三种基因型(AA、AB和BB型)。INHa外显子2的B等位基因可能是山羊高繁殖力的一个优势基因,INHa外显子2有可能作为山羊多胎性标记辅助选择的候选基因片段。
     (5) INHa、INHβA和INHβB三个亚基基因在山羊卵巢组织表达水平高于垂体。在山羊卵巢和垂体组织中,INHa亚基基因表达水平最高、INHβA居中、INHβB表达水平最低。
Inhibin is one kind of dimeric glycoprotein hormone that is secreted by sertoli-like cells of testis and granulosa cells of ovaries. Activin is also a kind of glycoprotein hormone that was first found in the gonad. Inhibin and activin have intimate closely function in female. Inhibin has the capacity to suppress secretion of FSH, while activin has stimulative function on the FSH secretion. Inhibin gene is composed of one a subunit and one of twoβsubunits (PA orβB), and generates dimeric inhibin A(a-βA) and inhibin B(a-βB) by disulfide bond, while activin is composed ofβA andβB and forms activin A(PA-βA), activin B(PB-βB) and activin AB(βA-βB) by disulfide bond.
     In order to try to reveal the genetic mechanism of inhibin regulating goat's fecundity, the effects of inhibin on goat fecundity in gene level and hormone level were taken up in goat breeds of different fecundity ability in this study.
     1. Plasma concentrations of INHB, ACTA and FSH
     INHB, ACTA and FSH in an estrous cycle of goat (including 5 Dazu black goats,5 Nanjiang brown goats and 4 Saanen dairy goats) were measured and analyzed by ELISA. The resluts were as followings:
     (1) An estrous cycle length was (20.1±0.5) days in Dazu black goat,(20.2=1.1) days in Nanjiang brown goat and (25.1±0.8) days in Saanen dairy goat.
     (2) In a whole estrous cycle, the time of peak points of FSH and lower points of INHB were coincident, the relationship of FSH and INHB were significantly negative in three goat breeds(P< 0.01). In a whole estrous cycle,The secretion of ACTA and FSH were also coincident, the correlation coefficient of FSH and ACTA was positive (P>0.05).
     (3) In the first peak point of FSH secretion in an estrous cycle, FSH level of Dazu black goat was significantly high than that of Nanjiang brown goat and Saanen dairy goat(P<0.05). While in the first lower point of INHB secretion, INHB level of Dazu black goat was significantly lower than that of Nanjiang brown goat and Saanen dairy goat(P<0.05).
     2. Cloning and sequences analysis of inhibin alpha, beta A and beta B subunit genes in goat
     Cloned cDNA sequences of inhibin alpha, beta A and beta B subunit genes in goats (including 3 Dazu black goats,3 Nanjiang brown goats and 3 Saanen dairy goats) by RT-PCR were submitted and received GenBank IDs (HQ699620 for INHa and HQ699621 for INHβA).The homologies of the sequences were higher compared with the sequences of other species in GenBank.
     (1) The length of cDNA sequences of inhibin alpha, beta A and beta B subunit genes were 1124 bp,1364 bp and 1499 bp, respectively. Their CDS regions were at 1083 bp,1278 bp and 1227 bp, encoded a polypeptide of 360,425 and 408 amino acids, included 18,21 and 20 amino acids signal peptides and 341,404 and 380 amino acids mature peptides, respectively. Compared with other species in GenBank, the homology in codogenic amino acids of CDS regions was more than 96%.
     (2) The relative molecular weight of the polypeptide of inhibin alpha, beta A and beta B subunit genes in goat were 94.655 KD,109.132 KD and 100.438 KD, respectively. The isoelectric points were 4.95,4.92 and 4.94, respectively; the minimum values of hydrophobicity were -0.467,-0.633 and -0.567, the maximum were 2.344,2.422 and 2.267, respectively. They had not protein transmembrane domains and had alpha helix (17.22%,21.65% and 23.04%), beta turn (5.28%, 3.53% and 4.41%), extended strand (18.89%,19.53% and 18.14%) and random coil (58.61%, 55.29% and 54.41%) in its secondary structure.116 amino acid residues of inhibin beta A and beta B subunit genes matched human inhibin beta A subunit gene in tertiary structure.
     (3) Compared with the sequence of exon 2 for inhibin alpha subunit gene in sheep, the cDNA sequence in goat had 19 mutation sites (including 17 transitionsal sites and 2 transversional sites) and 8 amino acids mutation sites. Compared with the partial sequence of exon 1 and 2 in Boer goat in GenBank, the cDNA sequence in goat had 3 mutation sites (including two transitionsal sites and one transversional site) and two amino acids mutation sites.One of the amino acids mutation sites was 338 C→G (i.e.32 C→G of exon 2) that resulted in amino acid change (L→V). the other was 345 A→G(i.e.39 A→G of exon 2) that resulted in one amino acid change (Q→R).
     (4) Compared with inhibin beta A subunit gene in sheep, the cDNA sequenceof goat had 10 mutation sites that were both transitionsal sites. Locus 198A→G of CDS region (i.e.211 A→G of cDNA sequence) resulted in amino acid change (P→K).
     (5) Compared with inhibin beta B subunit gene in sheep, the cDNA sequence in goat had 12 mutation sites (with 5 transitionsal sites,6 transversional sites and 1 insertion site) and 3 amino acid mutation sites. Loci 860 (A→G) and 1372 (G→T) respectively resulted in amino acid change (P→K) and (G→V); inserted G in locus 871 resulted in amino acid increased.
     3. Genetic polymorphism analysis for exons of inhibin alpha, beta A and beta B subunit genes in goat
     After sequencing and PCR-SSCP in larger population including 28 Dazu black goats and 27 Nanjiang brown goats, the results were as followings:
     (1) There were not polymorphic sites in exon 1 of inhibin alpha subunit gene in goat.32C→G and 39A→G in exon 2 of inhibin alpha subunit gene were found in all experimental goats. There were no polymorphic sites in partial sequence of exon of inhibin beta A subunit gene and two exons of inhibin beta B subunit gene in all goats.
     (2) There was a mutation site 57G→A (i.e.363G→A of cDNA sequence) in exon 2 of inhibin alpha subunit gene was found by sequencing in larger population.The mutation site resulted in one amino acid change (R→H).
     (3) Three genotypes (AA, AB and BB) were detected in two goat breeds after SSCP analysis. Genotype frequencies of AA, AB and BB were 0.071,0.429 and 0.500 in Dazu black goat, respectively, while three genotype frequencies were 0.391,0.435 and 0.174 in Nanjiang brown goat, respectively; Gene frequency of B allele (0.714) was higher than that of A (0.286) in Dazu black goat, while gene frequency of A allele (0.630) was higher than that of B (0.370) in Nanjiang brown goat. Theχ2 test showed that Dazu black goat and Nanjiang brown goat were in Hardy-Weinberg equilibrium(P>0.05).
     (4) For the first three litter size, the first two litter size, the first one litter size and average litter size in Dazu black goat, the least square means (LSM) of BB genotype was 0.595,1.01,0.703 and 0.769 more than those of LSM of AB(P<0.05),respectively. For the first three litter size, the first two litter size and average litter size in Nanjiang brown goat,LSM of BB genotype was 0.787,1.375 and 0.754 than LSM of AB (P<0.05).respectively and 0.849,1.486 and 1.131 than LSM of AA (P< 0.05).respectively. but there was not significantly difference between AA and AB (P>0.05). For the first one litter size, LSM of BB and AB were 1.01 and 0.983 more than AA (P<0.05),respectively, but there was not significantly difference between the frequencies of BB and AB(P>0.05).
     4. Quantitative expression analysis of inhibin alpha, beta A and beta B subunit genes in goat
     Quantitative expression of inhibin alpha, beta A and beta B subunit genes in goats (including 7 Dazu black goats,7 Nanjiang brown goats and 7 Saanen dairy goats) were analyzed by real-time fluorescent quantitation PCR. The results were as followings:
     (1) Expression of inhibin alpha, beta A and beta B subunit genes in pituitary gland, ovary, heart, liver, spleen, lung and kidney can be detected. The expression level of ovary was higher than that of pituitary gland(P<0.05). In ovaries and pituitary gland of three goat breeds, expression level of inhibin alpha subunit gene is the highest, inhibin beta A subunit gene is middle and inhibin beta A subunit gene is the lowest.
     (2) Expression level of inhibin subunit genes in every tissue of Dazu black goat was the highest in three goat breeds. Saanen dairy goat was in middle level and Nanjiang brown goat was in the lowest level(P<0.05).
     (3) The relationships between expression level of inhibin alpha, beta A and beta B subunit genes in ovary and the first one litter size of goat were in negative correlation (P<0.10).
     5. Conclusions
     (1) There was a negative correlation between FSH and INHB level and a positive correlation between FSH and ACTA level in an estrous cycle of the three goat breeds. The hormone variation tendency was basically coincided with the follicular development wave in goat.
     (2) Higher fecundity of goat may be correlation with higher FSH level, lower INHB level and lower expression of inhibin subunit genes in the last follicular development wave.
     (3) Exon 1 of inhibin alpha subunit gene, partial sequence of exon in inhibin beta A subunit and two exons of inhibin beta B subunit gene were not polymorphic sites in all goats and these sequences may faintly affect goat's fecundity.
     (4) The mutation site (57G→A) in exon 2 of inhibin alpha subunit gene in goat resulted in amino acid change (R→H), three genotypes (AA, AB and BB) were detected in the different individual of two goat breeds. B allele of exon 2 in inhibin alpha subunit gene may be a predominant gene that controls high fecundity of goat,and inhibin alpha subunit gene may be a candidate gene.
     (5) Expression levels of inhibin alpha, beta A and beta B subunit genes in ovaries were higher than that in pituitary gland. In goat's ovaries and pituitary gland,expression level of inhibin alpha subunit gene is the highest, inhibin beta A subunit gene is middle and inhibin beta A subunit gene is the lowest.
引文
[1]Mottram J C and Cramer T V. Report On the general effects of exposures to radium on metabolism and tumor growth in the rat and the special effects on testis and pituitary [J].Q J. E xp.Physiol.1923,13:209-228.
    [2]Martins T and Rocha A. The regulation of the hypophysis by the testicular and some problems of sexual dynamics [J].Endocrinology,1931,15:421
    [3]MeCullagh G R.Dual endocrine activity of the testes [J].Science1932,76:19-20.
    [4]Robertson D M. Foulds L M, Leversha L, et al.Isolation of inhibin from bovine follicular fluid[J]. Biochem.Biophys. Res. Commun.,1985,126,220-226.
    [5]Ling N, Ying S Y, Ueno N, et al.Isolation and partial characterization of a Mw 32000 protein with inhibin activity from porcine follicular fluid[J]. Proc.Natl. Acad. Sci. USA,1985.82, 7217-7221.
    [6]Burger H G. Evidence for a negative feedback role of inhibin in follicle stimulating hormone regulation in women [J]. Hum. Reprod,1993,8 (Suppl 2):129-132.
    [7]Findlay J K.An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis [J]. Biol. Reprod,1993,48:15-23.
    [8]Mann G E, Campbell B K, McNeilly A S, et al.The role of inhibin and oestradiol in the control of FSH secretion in the sheep [J]. J. Endocrinol,1992.133:381-391.
    [9]Woodruff T K, Mather J P. Inhibin, activin and the female reproductive axis [J].Annu. Rev. Physiol,1995,57:219-244.
    [10]De Jong F H, Inhibin [J].Physiol Rev,1986.8:555-607.
    [11]Findlay J K, Drummond A E. Britt K L, et al.The roles of activins, inhibins and estrogen in early committed follicles [J].Mol Cell Endocrinol,2000,163:81-87.
    [12]Watanabe G,Nozaki M.Taya K. et al.Immunoreactive inhibin levels in peripheral blood during the breeding season in the female Japanese monkey[J].Biol Reprod.1990,43:196-201.
    [13]Meunier H. Roberts V J. Sawchenko P E,et al.Vale periovulatory changes in the expression of inhibin alpha-, beta A and beta B-subunits in hormonally induced immature female rats [J]. Mol Endocrinol,1989,3:2062-2069.
    [14]Ramaswamy S, Marshall G R, McNeilly A S, et al. Evidence that in a physiological setting Sertoli cell number is the major determinant of circulating concentrations of inhibin B in the adult male rhesus monkey (Macaca mulatta)[J]. J Androl.1999,20:430-434.
    [15]Sharpe R M, Turner K J, McKinnell C, et al. Inhibin B levels in plasma of the male rat from birth to adulthood:effect of experimental manipulation of Sertoli cell number [J]. J Androl.1999, 20:94-101.
    [16]McLachlan R I, Matsumoto A M, de Kretser D M, et al.The relative roles of follicle stimulating hormone and luteinizing hormone in the control of inhibin secretion in normal men [J]. J Clin Invest,1988,82:1-5.
    [17]Risbridger G P, Clements J. Robertson D M, et al. Immuno and bioactive inhibin and inhibin subunit expression in rat Leydig cell cultures [J]. Mol Cell Endocrinol,1989,66:119-122.
    [18]Tena-Sempere M, Kero J, Rannikko A, Yan W, et al.The pattern of inhibin/activin α-and B-subunit messenger ribonucleic acid expression in rat testis after selective leydig cell destruction by ethylene dimethane sulfonate[J]. Endocrinology,1999,140:5761-5770.
    [19]Baird D T, Smith K B, Inhibin and related peptides in the regulation of reproduction[J].Oxf Rev Reprod Biol,1993,15:191-232.
    [20]Campbell B K, Baird D T. Inhibin A is a follicle stimulating hormone responsive marker of granulosa cell differentiation, which has both autocrine and paracrine actions in sheep [J]. J Endocrinol,2001,169:333-345.
    [21]Lanuza G M, Groome N P, Baranao JL, et al. Dimeric inhibin A and B production are differentially regulated by hormones and local factors in rat granulosa cells [J]. Endocrinology, 1999,140:2549-2554.
    [22]Woodruff TK.Regulation of cellular and system function by activin [J].Biochemical Pharmacology,1998,55:953-963.
    [23]Miyamoto K, Hasegawa Y, Fukuda M. et al. Isolation of porcine follicular fluid inhibin of 32 K doltons[J].Biochemical and Biophysical Research Communication,1985,129:396.
    [24]Mason A J, Niall H D, and Seeburg P H.Structure of two human ovarian inhibins [J].Biochem Biophys Res Commun,1986,135:957-964.
    [25]Woodruff T K,Meunier H,Jones P B, et al.Rat inhibin:molecular cloning of alpha-and beta-subunit complementary deoxyribonucleic acids and expression in the ovary[J].Mol Endocrinol,1987.1:561-568.
    [26]Ethier J F, Findlay J K. Roles of activin and its signal transduction mechanisms in reproductive tissues[J].Reproduction.2001,121:667-675.
    [27]RobertsV J.SawchenkoP E,ValeW.Expression of inhibin/activin subunit messenger ribonucleic acids during rat embryogenesis[J].Endocrinology.1991.128(6):3122-3129.
    [28]Roberts V J, Barth S, el-Roeiy A, Yen S S. Expression of inhibin/activin system messenger ribonucleic acids and proteins in ovarian follicles from women with polycystic ovarian syndrome [J]. J Clin Endocrinol Metab,1994,79 (5):1434-1439.
    [29]Drummond A E, Dyson M, Mercer J E, et al. Differential responses of post-natal rat ovarian cells to FSH and activin [J].Mol Cell Endocrinol,1996,122(1):21-32.
    [30]Drummond A E,DysonM,Thean E,et al.Temporal and hormonal regulation of inhibin protein and subunit mRNA expression by post-natal and immature rat ovaries[J].J Endocrinol,2000, 166(2):339-354.
    [31]王海滨.促性腺激素、抑制素及生长因子对小鼠卵泡发育和排卵作的研究.[博士学位论文].北京:中国农业大学,2001.
    [32]Chen C C.Johnson P A.Expression of inhibin alpha and inhibin/activin beta A subunits in the granulosa layer of the large preovulatory follicles of the hen[J].Biol Reprod,1996.55 (2):450-454.
    [33]Yamanouchi K, Hirasawa K, Hondo E, et al.Expression and celluar localization of inhibin alpha-subunit mRNA in equine fetal gonads [J].J Vet Med Sci,1997,59:569-573.
    [34]Namno Y,Nagata S,Oikawa M,et al.High concentrations of immunoreactive inhibin in the plasma of mares and fetal gonads during the second half of pregnancy[J].Reprod Fertil Dev, 1996,8:1137-1145.
    [35]Engelhardt H,Harkness L M,Thomas G B,et al.Expression of inhibin α-and βA-subunit mRNA and protein in the fetal sheep ovary throughout gestation[J].Mol Cell Endocrinol,1995, 107:141-147.
    [36]Toney A H, Robertson D M, Hodgson Y M, et al. In vitro bioactive and immunoactive inhibin concentrations in bovine fetal ovaries and testes throughout gestation [J].Endocrinology,1990, 127:2938-2946.
    [37]Illingworth PJ, Groome NP, Byrd W, et al. Inhibin B:a likely candidate for the physiologically important form of inhibin in men [J]. J Clin Endocrinol Metab,1996,81:1321-1325.
    [38]Plant TM, Marshall GR.The functional significance of FSH in spermatogenesis and the control of its secretion in male primates [J].Endocr Rev 2001,22:764-786.
    [39]Buzzard JJ, Loveland KL, O'Bryan MK, et al. Changes in circulating and testicular levels of inhibin A and inhibin B and activin A during postnatal development in the rat [J]. Endocrinology, 2004,145:3532-41.
    [40]Woodruff TK, Besecke LM, Groome N,et al. Inhibin A and inhibin B are inversely correlated to follicle-stimulating hormone, yet are discordant during the follicular phase of the rat estrous cycle, and inhibin A is expressed in a sexually dimorphic manner[J]. Endocrinology.1996. 137:5463-5467.
    [41]Jin W, Arai KY, Herath CB, et al.Inhibins in the male Gottingen miniature pig:Leydig cells are the predominant source of inhibin B. J Androl,2001,22:953-960.
    [42]McNeilly AS, Souza CJ, Baird DT, et al. Production of inhibin A not B in rams:changes in plasma inhibin A during testis growth, and expression of inhibin/activin subunit mRNA and protein in adult testis [J]. Reproduction,2002,123:827-835.
    [43]Kaneko H, Noguchi J, Kikuchi K, et al. Molecular weight forms of inhibin A and inhibin B in the bovine testis change with age [J]. Biol Reprod,2003,68:1918-1925.
    [44]Buzzard JJ, Loveland KL, O'Bryan MK, et al. Changes in circulating and testicular levels of inhibin A and inhibin B and activin A during postnatal development in the rat [J]. Endocrinology, 2004,145:3532-41.
    [45]Ohnumaa K, Kaneko H, Noguchi J, et al.Production of inhibin A and inhibin B in boars: Changes in testicular and circulating levels of dimeric inhibins and characterization of inhibin forms during testis growth [J]. Domestic Animal Endocrinology,2006,10:1016-1020.
    [46]Bicsak T, Tucker E, Cappel S, et al.Hormoneal regulation of granulose cell inhibin biosynthesis [J]. Endocrinology,1989,2711-2719.
    [47]Taya K. Role of inhibin in regulation of FSH secretion and folliculogenesis in mammalians [J]. Current Trends Experim Endocrinol,1993,1:97-106.
    [48]Bicsak T A, Vale W, VaughanJ, et al.Hormonal regulation of inhibin production by cultured sertoli cells [J].Mol Cell Endocrinol,1987,49:211-7.
    [49]LefevreB A, Demoulin L, Frydman R.Absence of predictive value of follicular inhibin on the results of human in vitro fertilization [J].Fertil Steril,1986,46:325-327.
    [50]Uccella S, La Rosa S, Genasetti A, et al. Localization of inhibin/activin subunits in normal pituitary and in pituitary adenomas [J]. Pituitary,2000,3 (3):131-139.
    [51]DeJong F H. Sharpe R M. Evidence for inhibin-like activity in bovine follicular fluid [J].Nature, 1976,263:71-72.
    [52]Hertan R. Identification of high affinity binding sites for inhibin on ovine pituitary cells in culture [J]. Endocrinology,1999,140:6-12.
    [53]Childs G V, Miller B, Miller W. Differential effects of inhibin on gonadotropin stores and gonadotropin releasing hormone binding to pituitary cells from cycling female rats[J]. Endocrinology,1997,138:1577-1584.
    [54]William L M, Kretser D M. Changes in inhibin activity and progesterone, oestrogen and androstenedione concentrations in rat follicular fluid throughout the oestrous cycle[J]. Endocrinology,1985,117:907.
    [55]Wang Q F, Farnworth P G, Burger H G, et al. Acute inhibitory effect of follicle-stimulating hormone-suppressing protein on gonadotropin-releasing hormone-stimulated gonadotropin secretion in cultured rat anterior pituitary cells [J]. Mol cell Endocrinol.1990,72:33-42.
    [56]Lugaro G. Casellato MM. Manera E. et al. Effect of the inhibin-like factor from bull spermatozoa on sexual maturation of the male rat [J].Reprod Fertil Suppl 1979,26:193-196.
    [57]Rush M E.Effects of releasing hormone antagonist or lesions of the medial basal hypothalamus on periovulatory gonadotrophin release in female rats [J]. Endocrinology,1985.106:361-366.
    [58]Haisenleder D J. Dalkin A C,Ortolano G A. A pulsatile GnRH stimulus is required to increase transcription of the gonadotropin subunit genes:evidences for differential regulation of transcription by pulse frequency y in vitro [J]. Endocrinology,1991,128:509-517.
    [59]Mayo K. Inhibin and activin-molecular aspects of regulation and function [J].Trends in Endocrinol Metabolism.1993,5:407-415.
    [60]金萱,刘以训.卵泡生长、分化和闭锁的调控[J].科学通报,2003,48(14):1506-1511.
    [61]颜冰,朱恒奇,黄培堂.抗转铁蛋白受体单链抗体的可溶性表达及其对脑的靶向性研究[J].生物工程学报,2004,20,3:342-347.
    [62]Forge R G. Ring J M, Brown R W, et al.Cloning and sequencing analysis of cDNA species coding for the two subunits of inhibin from bovine follicular fluid [J]. Proc Natl Acad Sci USA, 1986,83:3091-3095.
    [63]Mason A J, Hayflick J S, Ling N, et al.Complementary DNA sequences of ovarian follicular fluid inhibin show precursor structure and homology with transforiming growth factor-beta [J]. Nature,1985,318:659-663.
    [64]Rodgers R J.Cloning of the inhibin/activin beta B subunit gene from the Booroola merino sheep [J].J Mol Endocrinol,1991,6(1):87-93.
    [65]Hiendleder S, Lewalski H, Jaeger C. et al.Genomic cloning and comparative sequence analysis of different alleles of the ovine βA-inhibin/activin gene as a potential QTL for litter size [J].Animal Genetics,1996,27(1):119.
    [66]Hiendleder S, Jaeger C, Leyhe B, et al.Mendelian inheritance of a Taq polymorphism at the ovine βA-inhibin locus [J].Journal of Animal Breeding and Genetics,1992:109-320.
    [67]Adams M H, Baker C B, McDowell K J.Molecular cloning and sequence of equine inhibin-a cDNA.Animal [J] Biotechnology,1996.7(1):1-9.
    [68]牛冬,阮晖,傅衍,等.仙居鸡抑制素/活化素βA亚基成熟区的cDNA克隆及序列分析[J].中国畜牧杂志,2002,38(3):3-4.
    [69]牛冬,阮晖,傅衍,等.仙居鸡抑制素/活化素βB亚基成熟区cDNA的克隆及序列分析[J].中国兽医学报,2002,22(5):433-435.
    [70]田锦.鸡INH各亚基成熟区cDNA的克隆、序列分析以及鸡INHa亚基在E.coli中融合表达的研究.[硕士学位论文].杭州:浙江大学,2003.
    [71]谢体三.水牛抑制素α亚基基因的克隆.[硕士学位论文],南宁:广西大学,2005.
    [72]薛琳琳.东北白鹅和籽鹅抑制素α-亚基成熟区编码序列的克隆与原核表达.[硕士学位论文].哈尔滨:黑龙江八一农垦大学,2007.
    [73]赵悦.籽鹅和东北白鹅抑制素/活化素pB亚基成熟区基因的克隆及原核表达.[硕士学位论文].哈尔滨:黑龙江八一农垦大学,2007.
    [74]张成云.新疆细毛羊INHa亚基基因的克隆、序列分析与表达.[硕士学位论文].雅安:四川农业大学,2008.
    [75]Barton D E.Yang-Feng T L.Mason A J,et al.Mapping ofgenes for inhibin subunits a, βA and βB on human and mouse chromosomes and studies of jsd mice [J].Genomics,1989,5(1):91-99.
    [76]Lafuse W P, Zwilling B S.Localization of the inhibin βB gene on mouse chromosome [J]. Mammalian Genome,19934, (7):399-400.
    [77]Neibergs H L, GallagherDS, GeorgesM, et al.Physical mapping of inhibinβA in domestic cattle [J].Mammalian Genome,1993,4(6):328-332.
    [78]Brunner R M,Goldammer T,HiendlederS,et al.Mapping of the gene encoding for inhibinβA (INHBA) to chromosome 4q26 in sheep [J].Mammalian Genome,1995,6(4):308-309.
    [79]Brunner R M, Goldammer T, HiendlederS, et al.Comparative mapping of the gene coding for inhibin-a (INHA) to chromosome 2 in sheep and cattle [J].Mammalian Genome,1995. 6(9):685-686.
    [80]GoldammerT, BrunnerRM, HiendlederS, et al.Comparative mapping of sheep inhibin subunit βb to chromosome 2 in sheep and cattle by fluorescence in situ-hybridization [J].Animal Geneties.1995.26(3):199-200.
    [81]Goldammer T, Brunner R M, HiendlederS, et al.Comparative mapping of sheep inhibin subunits a (INHA) and βB (INHBB) to chromosome 2 in goat by FISH[J]. Mammalian Genome,1995,6(9):685-686.
    [82]Hiendleder S, Leyhe B, Jaeger C, et al.Molecular charaeterization of ovine α-, βA-and βB-inhibin/activin aileles[J].Joumal of Animal Breeding and Geneties,1996,113:363-372.
    [83]Bernard D J, Chapman S C, Woodruf T K. Mechanisms of inhibin signal transduct ion [J]. Recent Prog Horm Res,2001,56:417-450.
    [84]Hiendleder S,Lewalski H Jaeger C,et al.Nucleotide sequence of ovine a inhibin (INHA) genes and evaluation of RFLP marker effects on reproductive performance [J]. Animal Genetics,2002, 33 (3):247-248.
    [85]Jaeger C, Hiendleder S.Cosmid cloning and characterization of the coding redions and regulatory elements of the ovine a, βA and βB-inhinbin genes [J].Animal Genetics,1994, 15(2):33.
    [86]Leyhe B, Hiendleder S, Jaeger C, et al.Pronounced differences in the frequency of Taq I βA-inhibin alleles between sheep breeds with different reproductive performance [J]. Animal Genetics,1994,25:91-92.
    [87]吴伟生.抑制素基因作为山羊多胎性候选基因的研究.[硕士学位论文].武汉:华中农业大学,2007.
    [88]姜庆林.抑制α亚基基因多态性及其与小尾寒羊高繁殖力关系的研究.[硕士学位论文].扬州:扬州大学,2004.
    [89]滑国华.山羊抑制素α亚基基因HaeⅡ酶切多态性及其与产羔数性状的关联分析[J].遗传,2007,29(8):972-976.
    [90]彭志兰.山羊多产性候选基因INHBA和INHBB基因的SNPs研究.[硕士学位论文].合肥:安徽农业大学,2007.
    [91]庄海滨.绵羊抑制素βA基因多态性及其与产羔数关系的研究[J].农业生物技术学报,2007,15(1):52-57.
    [92]庄海滨.绵羊高繁殖力候选基因INHBA和INHBB基因的研究.[硕士学位论文].雅安:四川农业大学,2006.
    [93]O'sheaT,C ummins L T.BindonB M.et al.In creased ovulation rate in ewes vaccinated with an inhibin enriched fraction from bovine follicular fluid [J]. Proc Aust Soc,Reprod Biol,1982,14: 85.
    [94]Forage RG. Cloning and expression of inhinbin subunit genes use as a fecundity by recombinant DNA techniques results in increase ovulation rate in sheep [J].Endocrinology,1998 114:121-124.
    [95]王杏龙,Wolfgang Holtz.抑制素免疫山羊卵巢对外源性促性腺激素的反应[J].河北畜牧兽医,2003,19(5):20-23.
    [96]Cummins L J. Increase in ovulation rate after immnization of Merino ewes with a fraction of bovine follicular fluid containtion inhibin activity [J].J Reprod Fert,1986,77:365-37.
    [97]Prince A M, Whalen R, Brotman B. Successful nucleic acid based immunization of newborn chimpanzees against hepatitis B virus [J].Vaccine,1997,15(8):916-919.
    [98]Bindon, B M.Genetics of Reproduction in sheep [A] Buterworths, odon,1985.217-235.
    [99]Morris D G,Grealy M, Sreean J M. Efect of immunization against synthetic peptide sequence of bovine inhibinosubuniton gonadotroph in secretion inheifers[J].Animal Reproduction Science, 1995,38:63-71.
    [100]Attisano L, Wrana J L, Cheifetz S, et al.Novel activin receptors:distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors [J].Cell,1992.68: 97-108.
    [101]Chapman S C,Bernard D J, Jelen J, et al. Properties of inhibin binding to betaglycan, InhBP/p120 and the activin type II receptors[J]. Mol Cell Endocrinol,2002,196:79-93.
    [102]Martens J W, de Winter J P, Timmerman M A, et al. Inhibin interferes with activin signaling at the level of the activin receptor complex in Chinese hamster ovary cells [J]. Endocrinology, 1997,138:2928-2936.
    [103]Hertan R, Farnworth P G, Fitzsimmons K L,et al. Identification of High Affinity Binding Sites for Inhibin on Ovine Pituitary Cells in Culture[J].Endocrinology,1999,140:6-12.
    [104]Lewis K A, Gray P C, Blount A L, et al. Betaglycan binds inhibin and can mediate functional antagonism of activin signaling[J]. Nature 2000,404:411-414.
    [105]Escalona R M.Stenvers K L.Farnworth P G, et al.Reduing betaglycan expression by RNA interference(RNAi) attenuate ihihin bioactivity in LβT2 gonadotropes[J].Mol Cell Endocrinol, 2009,307:149-156
    [106]Mazzarella R, Pengue G, Jones J, et al.Cloning and expression of an immunoglobulin superfamily gene (1GSF1) in Xq25 [J]. Genomics,1998.48:157-162.
    [107]Chong H S, Pangas A, Bernard D J. et al. Structure and expression of a membrane component of the inhibin receptor system[J]. Endocrinology,2000,141:2600-2607.
    [108]Daniel J, Bernard, Kathleen H, et al.Normal Reproductive Function in InhBP/p120-Deficient Mice [J]. Mol Cell Bio,2003,7:4882-4891.
    [109]Daniel J. Bernard, Stacey C. Chapman.An emerging role for co-receptors in inhibin signal transduction[J] Mol Cell Endocrinology.2001,180:55-62.
    [110]Lau A L, KumarT R, Nishimori K, et al.Activin beta C and beta E genes are not essential for mouse liver growth, differentiation and regeneration[J].Mol Cell Biol,2000,20(18):6127-6137.
    [111]Li R, Phillips D M, Mather J P et al. Activin Promotes ovarian follicle development in vitro [J].Endoerinology,1995,136.849-856.
    [112]Miro F, Hillier S G. Modulation of granulosa cell deoxyribonu—cleic acid synthesis and differentiation by activin[J].Endoerinology,1996,137,464-468.
    [113]Rabinovici J, Spencer S, Jaffe R.Recombinant human activin-A promotes proliferation of human luteinized preovulatory granulose cells in vitro [J].Clin Endocrinol Metabol,1990,71: 1396-1398.
    [114]Matzuk M M, Finegold M J, Su J J, et al. a-inhibin is a tumor-suppressor gene with gonadal specificity in mice[J].Nature.1992.360,313-319.
    [115]Nishimori K, Matzuk M M.Transgenic mice in the analysis of reproductive development and function[J].Rev Reprod.1996,1,203-212.
    [116]Hasegawa Y,Miyamoto K, Abe Y, et al.Induction of follicle stimulating hormone receptor by elytroid differentiation factor on rat granulose cells[J].Biochem Biophys Res Commun,1988, 156,668-674.
    [117]Xiao S, Robertson D M, Findlay J K.Effects of activin and follicle-stimulating hormone (FSH)-suppressing protein/follistatin on FSH receptors and differentiation of cultured rat granulosa cells [J]. Endocrinology,1992,131(3):1009-1016
    [118]Smyth C D, Gosden R G, MeNeilly A S, et al.Effeet of inhibin immunoneutralization on steroidogenesis in rat ovarian follicles in vitro [J].J Endoerinology,1994,140:437-443.
    [119]Ying S Y, Czvik J, Becker A, et al.Secretion of follicle-stimulating hormone and production of inhibin are reciprocally related[J].Proc Natl Acad Sci USA,1987,84:4631-4635.
    [120]Hillier S G, Yong E L, Illingworth P J, et al.Effect of recombinant inhibin on androgen synthesis in cultured human theca cells [J].Mol Cell Endoerinol,1991,75:41-46.
    [121]Shi F.Moehida K,Suzuki O,et al.Ovarian localization of immunoglobulin G and inhibin α-subunit in guinea pigs after passive immunization against the inhibin d-subunit [J].J Reprod Develop,2000,46:293-29.
    [122]Massague J.TGF-beta signaltransduction [J].Annu Rev Biochem,1998,67:753-791.
    [123]Mathews 1 S, Vale W W.Expression cloning of an activin receptor, a predicted transmembrane serine kinase[J].Cell,1991,65(6):973-952.
    [124]Woodruff T K, Mayo K E.Regulation of inhibin synthesis in the rat ovary [J].Annu.Rev.Physiol,1990,52:807-821.
    [125]Mathews L S and Vale W W.Molecular and functional characterization of activin receptors [J]. Receptor,1993.3:173-181.
    [126]Mathews L S and Vale W W. Expression cloning of an activin receptor, a predicted transmembrane serine kinase [J].Trends in Cell Biology.1991,1(4):83.
    [127]Vale W, Rivier J, Vaughan J, et al. Purification and characterization of an FSH releasing protein from porcine ovarian follieular fluid [J].Nature,1986:321:776-779.
    [128]Orita M.lwahana H,Knazawa H,et al.Detection of polymorphisms of human DNA by gel electrophoresis as single strand conformation polymorphisms[J].Proc Natl Aca Sci USA,1989, 86:2766.
    [129]李文娟.鸡心脏型和脂肪型脂肪酸结合蛋白基因表达厦与肌内脂肪的相关研究.[硕士学位论文].乌鲁木齐:新疆农业大学,2005.
    [130]朱燕,罗欣,徐幸莲,等.中国黄牛背最长肌中capnl mRNA表达与嫩度的关系[J].南京农业大学学报,2006,2:89-90.
    [131]周春宝,汪劲能,陆艳凤,等.猪GPR54基因在下丘脑、垂体卵巢发育性表达变化的研究[J].畜牧兽医学报,2009,40(3):333-337.
    [132]顾以韧,张凯,李明洲,等.猪背最长肌中胰岛素样生长因子(IGFs)系统基因的发育表 达模式[J].遗传,2009,31(8):837-843.
    [133]应三成,张义正.藏猪NRAMP1基因的定量表达研究[J].四川大学学报(自然科学版),2007,44(3):697-701.
    [134]赵艳红.褪黑激素受体基因在内蒙古绒山羊皮肤毛囊中的表达.[博士学位论文].呼和浩特:内蒙古农业大学,2009.
    [135]张红平,王维春,熊朝瑞等.南江黄羊的种质特性[J].中国家食家畜,2004(专辑):113-114.
    [136]王维春.南江黄羊繁殖性能的研究[J].中国畜牧杂志,1995,31(3):35-37
    [137]李利,张红平,吴登俊.南江黄羊FSHβ亚基基因内含子1序列的测定及分析[J].黑龙江畜牧兽医,2007,3:7-9.
    [138]李利,张红平,吴登俊.南江黄羊LHp基因序列测定及分析[J].畜牧兽医学报,2006,37(11):1130-1134.
    [139]李利,张红平,吴登俊.南江黄羊LHβ基因序列多态性与产羔数的相关分析[J].吉林农业大学学报,2006,28,5:567-569.
    [140]张涛.南江黄羊微卫星多态性及多胎性状的分子标记研究.[硕士学位论文].杨凌:西北农林科技大学,2005.
    [141]赵中权,张家骅,李周权,等.大足黑山羊种质特性[J].中国畜牧杂志,2008,44(15):9-10.
    [142]刘一江.应用B超监测大足黑山羊卵泡波和排卵数.[硕士学位论文].北碚:西南大学,2006.
    [143]杨孟伯,杨莉,王鲜忠,等.大足黑山羊卵泡发育波研究[J].黑龙江畜牧兽医,2009,11:34-36.
    [144]葛燕.山羊多胎候选基因的研究.[硕士学位论文].北碚:西南大学,2007.
    [145]杨国锋.大足黑山羊地方类群多胎性AFLP标记研究[J].中国畜牧杂志,2009,45(5):1-4
    [146]于姣.两个奶山羊品种CSN1S1、BMPR-IB、BMP 15和IGFBP3基因遗传变异.[硕士学位论文].杨凌:西北农林科技大学.2006.
    [147]朱广琴,王利心,孙瑞萍.6个微卫星基因座与西农萨能奶山羊产羔数相关性的研究[J].中国农业大学学报,2008,13(3):63-69.
    [148]蓝贤勇,陈宏,潘传英,等.CSN3、CSN1S2和β-1g基因多态与西农萨能奶山羊产羔数的相关性研究[J].中国农业科学,2005,38(11):2333-2338.
    [149]王娅娜,颜泉梅,韩丹,等.西农萨能奶山羊INHA基因启动子区多态性与产羔数和产奶量的相关分析[J].中国兽医学报,2010,30(4):552-555.
    [150]李广,安小鹏,李玲,等.西农萨能奶山羊多胎基因位点的遗传聚合效应分析[J].西北农林科技大学学报(自然科学版),2009,37(10):47-54.
    [151]刘一江.应用B超监测大足黑山羊卵泡波和排卵数.[硕士学位论文].北碚:西南大学,2006.
    [152]杨孟伯,杨莉,工鲜忠,等.大足黑山羊卵泡发育波研究[J].黑龙江畜牧兽医,2009,11:34-36.
    [153]Jaiswal R S, Singh J, Marshall L,et al.Repeatability of 2-wave and 3-wave patterns of ovarian follicular development during the bovine estrous cycle[J]. Theriogenology,2009, 72(1):81-90.
    [154]Findlay J K,Clarke I J.Robertson D M.Inhibin concentrations in ovarian and jugular venous plasma and the relationship of inhibin with follicle-stimulating hormone and luteinizing hormone during the ovine estrous cycle[J]. Endocrinology,1990,126(1):528-535.
    [154]Kaneko H, Kishi H, Watanabe G,et al. Changes in plasma concentrations of immunoreactive inhibin, estradiol and FSH associated with follicular waves during the estrous cycle of the cow[J]. J Rep& Dev,1995,41:311-320.
    [156]Menchaca A, Rubianes E.Relation between progesterone concentrations during the early luteal phase and follicular dynamics in goats [J].TheriogenoLogy,2002,57(5):1411-1419.
    [157]Simoes J, ALmeida J C, VaLentim R, et al.Follicular dynamics in Serrana goats [J]. Anim Reprod Sci,2006,95(1-2):16-26.
    [158]Schwarz T,Wierzcho S E. Relationship between FSH and ovarian follicular dynamics in goats during the estrous cycle [J].Theriogenology,2000,53:381.
    [159]高立坤,葛仕豪,王树迎,等.不同繁殖力山羊年周期中FSH和LH分泌规律的研究[J].畜牧兽医学报,2008,39(1):37-41.
    [160]Fukuoko Y. Variation of the CGG repeat at the fragile X site results in genetic instability: resolution of the Sherman paradox [J]. Cell,1992.67:1047-1058.
    [161]姜远良,李宁.影响PCR-SSCP的因素分析[J].农业生物技术学报,2000,8(3):245-247.
    [162]刘佳建,李奎,彭中镇.甘油浓度对PCR-SSCP分辨效果的影响[J].生物技术通讯,1998,2:160-161.
    [163]Shelling A N, Burton K A, Chand AL, et al. Inhibin:A candidate gene for premature ovarian failure[J]. Hum Reprod.2000,15(12):2644-2649.
    [164]Marozzi A, Porta C, Vegetti W, Crosignani PG.et al. Mutation analysis of the inhibin a gene in a cohort of Italian women affected by ovarian failure[J]. Hum Reprod,2002,17(7):1741-1745.
    [165]陈绚丽,杨菁,徐望明.抑制素α基因769G→A突变与卵巢功能的关系研究[J].实用医学杂志,2004,20(8):880-881.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700