用户名: 密码: 验证码:
基于数据挖掘的大型燃煤发电机组节能诊断优化理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建立经济、高效、稳定的能源供应体系是保证国民经济和社会稳定发展的基本要求。我国的资源禀赋决定了在能源供应体系中煤炭为主要一次能源,大型燃煤发电机组在我国的能源供应体系中占有举足轻重的地位,开展大型燃煤发电机组能耗分析与节能诊断的理论与方法研究对我国工业节能与低碳经济目标的实现具有重要意义。
     大型燃煤发电机组具有鲜明的宽广工质热力学状态跨度、高流量和大热流密度、设备超大规模化等特点,系统、过程和单元设备不同层次上能量的转换和能量品质耗散的非线性尺度效应非常明显,发电过程能耗与环境、资源、负荷之间存在强烈的依变关系。针对大型燃煤发电机组上述特点,本文将数据挖掘理论和方法应用于大型燃煤发电机组的能耗分析和节能诊断中,采用数据挖掘方法处理机组实时在线监测数据和大量历史数据,并利用机组的设计参数和现场试验数据,研究了适用于复杂多变外部条件的节能诊断与优化理论方法,形成了融混杂数据预处理、复杂热力系统建模、能耗决策规则与知识提取、实际可达优化目标值确定、能耗离线分析与在线诊断应用框架于一体的,比较完整的大型燃煤发电机组节能诊断与优化的创新方法学体系。
     本文针对大型燃煤发电机组能耗数据集数据量大、数据维数高、具有复杂非线性及强耦合性、噪声污染多等特点导致的不确定性问题,引入模糊粗糙集理论建立了机组能耗特征变量选择理论方法学;采用启发式属性约简算法有效解决了机组关键能耗特征变量选择及变量重要度分析问题。
     发展了基于机组历史数据驱动的大型燃煤发电机组能耗特性建模理论与方法。以提取到的关键能耗特征变量为输入,首次提出并验证了耦合输入特征与决策变量之间依赖度的支持向量回归能耗特性模型建模方法;建立了可准确揭示机组能耗与多变的外部资源环境、设备特性以及运行控制水平之间内在联系的大型燃煤发电机组精确能耗特性模型。
     开展了基于数据挖掘方法,在可比历史边界条件下寻优确定机组实际可达优化目标值的方法研究。基于模糊粗糙集决策表约简算法,提出了大型燃煤发电机组性能优化与节能诊断知识库的构建方法,确定了具有快速、智能自适应性、高度复现性和可动态调整优化等特性的机组实际可达优化目标工况。
     系统阐释了基于数据挖掘的大型燃煤发电机组节能诊断优化理论与方法。对关键能耗特征变量进行了可控性分类解析,提取了各类实际可达优化目标值和各类可控能量损耗;建立了对应于机组当前运行边界、设备特性和运行工况的各类损失及其详细分布的诊断模型;首次提出了基于数据挖掘的同类机组对标诊断优化方法,进一步丰富和完善了基于数据挖掘的大型燃煤发电机组节能诊断优化理论,有效避免了单机历史工况性能局限导致的“目标工况优化天花板”问题的出现;提出了机组在线运行优化与节能诊断的概念模型;完成了基于数据挖掘的机组能耗特性仿真与节能诊断优化试验平台设计
It is essential to build an economic, efficient and stable energy supply system for the development of national economy. Considering the resource structure and distribution, coal is definitely the major primary energy in China and the large coal-fired power units are dominant in the whole power and energy supply system. It is of great significance to strengthen the research related to energy conservation of large coal-fired power units for the accomplishment of both industrial energy conservation and low-carbon economy.
     The large coal-fired power units characterize as wide thermodynamic scale, huge equipment, large flow and mass, which results in distinct nonlinear feature in energy transmission, conversion and dissipation for specific equipment, system and process. There's high-dimensional nonlinear correlation between the energy consumption in power generation and the external environment, resources and load demand. For this, several advanced data mining theories and methods were introduced in this research for the energy-consumption analysis and energy-saving diagnosis of large coal-fired power units. Large volume of historian and online real-time monitoring operation data were processed by data mining method to find the potential and useful patterns as well as the knowledge relevant to the energy-consumption features of power units. Based on this, the advanced energy-saving diagnosis and optimization methodology was proposed in this research, which can reflect the complicated and diverse operational conditions and constraints. It is a comparatively complete and new methodology of energy-saving diagnosis and performance optimization covering the hybrid of data processing, complex thermal power system modeling, energy-saving decision making, realizable optimal target determining, off-line energy-consumption analyzing, online energy-consumption diagnosing and optimizing etc..
     Considering the characteristics of large volume, multiple dimension, hybrid category, highly nonlinear and coupling in the operation data of large coal-fired power units, fuzzy rough sets (FRS) theory was introduced in data processing and feature selection. By means of FRS-based attribute reduction algorithm, the key energy-consumption variables and corresponding significant degree were determined, which is important for the modeling of energy-consumption characteristics of power units.
     The modeling theory and methodology for complex thermal power system was developed by means of a historian operation data-driven model. By taking account of the dependence between the input features and decision index, an improved support vector regression (SD-SVR) modeling algorithm was proposed to model the energy-consumption characteristics of large coal-fired power units. The resultant model is convenient and accurate to illustrate the correlation between the energy consumption and external operation constraints, equipment features and control conditions of power units.
     The data mining-based dynamic determination method of realization optimizing targets was proposed, which is adaptive to the similar or comparable operation conditions. For this purpose, based on the FRS decision table reduction algorithm, the knowledge base of performance optimization and energy-saving diagnosis was built for large coal-fired power units. The proposed method is fast, adaptive, recurrent and automatically adjustable for the determination of optimizing targets in different operation conditions of power units.
     The theory and methodology of data mining-based energy-saving diagnosis and optimization was presented in this work. By categorizing the key energy-consumption variables, the features of specific target values, controllable energy losses in power generation were specified. Based on this, the energy-saving diagnosis model was proposed to determine the energy losses and distribution for the given operation conditions, external constraints and equipment features. A new concept of contrastive optimization and diagnosis was proposed to improve the energy-saving diagnosis for the power units of the same kind and breakthrough the bottlenect of high-level energy consumption resulted from the improper operation of power units. The experimental and simulating platform of such data mining-based energy-saving diagnosis and performance optimization was built and the conceptual models were proposed related to online operation optimization and energy-saving diagnosis.
引文
[1]胡锦涛.在G8与五国领导人对话会上的讲话,2005
    [2]Yang Yongping, Guo Xiyan, Wang Ningling. Power generation from pulverized coal in China[J]. Energy,2010,35(11):4336-4348
    [3]2008年中国电力行业分析及投资咨询报告[R].中国能源网,2008
    [4]李青,公维平.火力发电厂节能和指标管理技术[M].北京:中国电力出版社,2006
    [5]何伟,倪维斗,等.中国节能降耗研究报告[R].北京:企业管理出版社,2006
    [6]陆延昌.21世纪初期中国电力工业展望[J].中国电力,2000,33(7):1-8
    [7]World Energy Outlook 2005[M], International Energy Agency.2005
    [8]郑体宽.热力发电厂[M].北京:水利电力出版社,2001
    [9]林万超.火电厂热系统节能理论[M].西安:西安交通大学出版社,1994
    [10]严俊杰,邢秦安,等.火电厂热力系统经济性诊断理论及应用[M].西安:西安交通大学出版社,2000
    [11]盛德仁,陈坚红,李蔚.等效焓降法理论剖析与扩展[J].浙江大学学报(工学版),2004,38(3):347-350
    [12]李勇,曹丽华,林文彬.等效热降法的改进计算方法[J].中国电机工程学报,2004(12):243-247
    [13]马芳礼.电力热力系统节能分析原理[M].水利电力出版社,1992.
    [14]张春发.现行电力系统热经济性状态方程[J].工程热物理学报,2001(11):665-667
    [15]Zhang Chunfa. A steam-water distribution matrix equation of the whole thermal system[C]. In:S. R. Pen-filed 1999 International Joint Generation Conference, U.S.A. ASME Power,1999:497-503
    [16]阎顺林,张春发,李永华,等.火电机组热力系统汽水分布通用矩阵方程[J].中国电机工程学报,2000,20(8):69-73
    [17]程懋华,王培红,高叠.汽轮发电机组回热系统通用热平衡方程及其结构模型研究[J].中国电机工程学报,2002,22(4):66-71
    [18]闫水保.电厂热力系统节能方法研究:[博士学位论文],东南大学,2002
    [19]Valero, A., et al., On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 1:the TADEUS problem[J]. Energy,2004. 29(12-15):1875-1887
    [20]Valero, A., et al., On the thermoeconomic approach to the diagnosis of energy system malfunctions:Part 2:Malfunction definitions and assessment[J]. Energy, 2004.29(12-15):1889-1907
    [21]Valero, A., et al., Structural theory and thermoeconomic diagnosis:Part II: Application to an actual power plant[J]. Energy Conversion and Management, 2002.43(9-12):1519-1535
    [22]The International Association for the Properties of Water and Steam. Release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam[R]. Erlangen,1997
    [23]杨勇平,王加璇.确定供热机组成本的热经济学法[J].热能动力工程,1995,10(2):84-89
    [24]王加璇,王清照,等.热力学分析与经济理论结合的新探讨——从热力学定律中揭示其内涵的经济理论[J].热能动力工程,2002,17(6):561-564
    [25]杨勇平,王加璇.汽轮机性能评价新准则——确定供热机组成本的热经济学法[J].热能动力工程,1995,2
    [26]Al-Bagawi. Energy and exergy analysis of Ghazlan Power Plant[D]. King Fahd University of Petroleum and Minerals.2002
    [27]M A Lozano, A Valero. Theory of the exergetic cost[J]. Energy,1993,18(9)
    [28]杨勇平,郭民臣,刘文毅,等.能量系统故障诊断的热经济学模型[J].工程热物理学报,2001,22(1):9-12
    [29]宋之平,单耗分析的理论和实施[J],中国电机工程学报,1992,12(4):15-21
    [30]Yang Yongping, Wu Yu, Wang Ningling, et al. Energy-saving analysis on thermal system in 600MW supercritical coal-fired power plants[C]. Proceedings of International Conference on Electrical and Control Engineering (ICECE 2010), June,2010.
    [31]钱学森,于景元,戴汝为.一个科学新领域——开放的复杂巨系统及其分析方法[J].自然杂志,1990,13(1).
    [32]刘兴堂,梁炳成,等.复杂系统建模理论、方法与技术[M].北京:科学出版社.2006
    [33]柳世考,刘兴堂,等.利用相似理论进行系统建模验证[J].计算机仿真,2001.19(11).
    [34]倪维斗,徐向东,李政,等.热动力系统建模与控制的若干问题[M].北京:科学出版社.1996:1-30
    [35]吕崇德,范永胜,蔡瑞忠.我国电站仿真技术进展与建模理论研究[J].中国工程科学.1999,1(1):99-103
    [36]张小桃,倪维斗,李政,等.基于主元分析与现场数据的过热汽温动态建模研究[J].中国电机工程学报.2005,25(5):131-135
    [37]崔大龙,李政.基于全工况数学模型诊断核电汽轮机热力系统故障的新思路[J].核动力工程,2004,25(1):21-26
    [38]杨波.基于运行数据火电机组热力系统建模方法及模型应用研究:[硕士学位论文].北京:清华大学,2005
    [39]曹祖庆.汽轮机变工况特性[M].北京:水利电力出版社,1991
    [40]王曙钊,刘兴堂,段锁力,等.利用灰色关联度理论对仿真模型的评估研究[J].空军工程大学学报.(自然科学版)2007,8(1):73-76
    [41]刘福国.基于统计分析的电站锅炉性能建模与优化[J].动力工程,2004,24(4):478-494.
    [42]李利平,张春发,牛玉广,等.基于概率模型的热力机组性能诊断与仿真[J].动力工程.2007,27(4):564-568
    [43]卢勇,徐向东.锅炉变工况运行优化监控系统的实现[J].动力工程,2003,23(2):2325-2328.
    [44]Wang Ningling, Yang Yongping, Yang Zhiping et al. Diagnosis of energy-saving potential and optimized measures for 600MW supercritical coal-fired power units[C]. International Conference on Electrical and Control Engineering, June, 2010.
    [45]Yang Zhiping, Wang Ningling, Yang Yongping. Energy-saving analysis for a 600MW coal-fired supercritical power plant[C]. The Proceedings of International Conference on Computational Intelligence and Software Engineering, Shanghai, 2009
    [46]杨志平.火电机组性能监测与优化研究:[硕士学位论文].北京:华北电力大学,2003.
    [47]侯子良.SIS发展到推广应用新时期面临的两大问题[J].中国电力,2005,38(1):62-64
    [48]Y. Sekine. Application of AI techniques to power system[J]. Proc. Knowledge Base APS,1998.
    [49]周克毅,邵爱菊,葛聪.国外电站性能监测与诊断概况[J].动力工程,1999,19(1):8-63.
    [50]林金星,沈炯,李益国.基于免疫原理的径向基函数网络在线学习算法及其在热工过程大范围工况建模中的应用[J].中国电机工程学报,2006,26(9):14-19.
    [51]S. Munukutla, P. Sistla. A novel approach to real-time performance monitoring of a coal-fired power plant[C]. Proc. of International Conference on Electric Utility Deregulation and Restructuring and Power Technologies,2000:273-277
    [52]G. Prasad, E. Swidenbank, B. W. Hogg. A novel performance monitoring strategy for economical thermal power plant operation[J]. IEEE Transactions on Energy Conversion,1999,14(3):802-809
    [53]B. F. Wollenberg and T. Sakaguchi, Artificial Intelligence in Power System Operation[J]. Proc. IEEE, Vol.75, No.12,1987
    [54]Y. Tamural, et al. An international survey of the present status and the perspective of expert system on power system analysis and techniques[J]. GiGre sc38,3,1998.
    [55]H. Tananka, et al. Research and development on expert system applications to power system in japan[J]. Electrical Power and Energy System, Vol.14, No.2, 1992.
    [56]杨勇平,杨昆.火电机组节能潜力诊断理论与应用[J].中国电机工程学报,1998,18(2):131-134.
    [57]任浩仁,李蔚.火电机组变工况下运行指标应达值的分析[J],中国电机工程学报,1999,19(9):50-52,56
    [58]胡洪华,黄廷辉,等.大型火电机组运行优化目标值的研究和确定[J].中国电力,2004,37(9):22-25
    [59]卢勇,徐向东,陈明.数据挖掘技术在热电厂过程控制与优化中的应用研究[J].电站系统工程,2003,19(2):48-50
    [60]赵征.基于信息融合的锅炉燃烧状态参数检测技术研究:[博士学位论文],北京:华北电力大学,2007
    [61]江浩.电厂运行优化决策支持系统设计方案[J].电力系统自动化,2004,28(5):75-79
    [62]李建强,牛成林,刘吉臻.数据挖掘技术在火电厂优化运行中的应用[J].动力工程,2006,26(6),830-835
    [63]Wang Ningling, Yang Yongping, Chen Degang, et al. Data Mining-based modeling and application in the energy-saving analysis of large coal-fired power units[C]. The Proceedings of International Conference on Machine Learning and Cybernetics, July,2010.
    [64]V. Figueiredo, F. Rodrigues, Z. Vale, et al. An electric energy consumer characterization framework based on data mining techniques[J], IEEE Transactions on Power Systems,2005(20):596-602
    [65]A. Kusiak, A. Burns. Mining temporal data:a coal-fired boiler case study[J]. Knowledge-based Intelligent Information and Engineering Systems,2005,131-136
    [66]A. Kusiak, Z. Song. Combustion efficiency optimization and virtual testing:a data mining approach[J], IEEE Transactions on Industrial Information,2006,2(3): 176-184
    [67]A. Kusiak, Z. Song. Clustering-based performance optimization of the boiler-turbine system[J]. IEEE Transactions on Energy Conversion,2008,23(2): 651-657
    [68]M. Mejia Lavalle, G.. Rodriguez Ortiz. Obtaining expert system rules using data mining tools from a power generation database[J]. Expert Systems with Applications,1998(14):37-42
    [69]胡鹏睿.定量关联规则挖掘电站凝汽器运行数据研究[J].华东电力,2007,35(10):24-26
    [70]G. Lambert-Torres. Application of rough sets in power system control center data mining[J]. IEEE Power Engineering Society,2002,627-631
    [71]X. Z. Wang. Automatic classification for mining process operational data[J]. Ind. Eng. Chem. Res.,1998,37:2215.
    [72]T. Ogilvie, E. Swidenbank, B. W. Hogg. Use of data mining techniques in the performance monitoring and optimization of a thermal power plant[J]. IEEE Colloquium on Knowledge Discovery and Data Mining,1998(7),1-4
    [73]Cheng-lin Niu, Jian-qiang Li, Ji-zhen Liu, et al. Correlation analysis of operation data and its application in operation optimization in power plant[J]. IEEE International Conference on Fuzzy Systems and Knowledge Discovery. Jinan,2008: 581-585
    [74]Jiang-qiang Li, Cheng-lin Niu, Ji-zhen Liu. Research and application of data mining in power plant process control and optimization[J]. Advances in Machine Learning and Cybernetics,2006,149-158
    [75]牛成林,刘吉臻,马永光,等.基于增量数据挖掘的氧量最优值确定[J].中国电机工程学报,2009,29(35):29-34
    [76]杨婷婷,曾德良,刘继伟,等.大型火力发电机组节能优化研究与展望[J].华东电力,2010,38(6)0898-0902
    [77]李建强.基于数据挖掘的电站运行优化理论研究与应用:[博士学位论文],北京:华北电力大学,2006
    [78]蒋军祖,胡念苏,吴俊芬,等.调峰机组能损监测参数目标值的确定[J].热力发电,2003,(2):14-16
    [79]朱红霞,沈炯,李益国.一种新的动态聚类算法以及在热力系统模糊建模中的应用[J].中国电机工程学报,2005,25(7):34-41
    [80]王子杰,李健,孙万云.基于神经网络和遗传算法的锅炉燃烧优化方法[J].华北电力大学学报,2008,21(1):14-17
    [81]E. Eryurek, B.R.Upadhyaya. Sensor validation for power plants using adaptive backpropagation neural network. IEEE Transactions on
    [82]何悦盛,叶春,杨波,等.人工神经网络在汽轮机热力参数在线仿真及故障识别中的应用[J].电网技术.2002,26(5):35-38
    [83]刘建民,陈宝林,等.火电机组状态及性能全息诊断系统技术及应用[J].电力科技与环保,2010,26(6):49-52
    [84]杨婷婷,曾德良,刘吉臻,等.基于工况划分的火电机组运行优化规则提取[J].华北电力大学学报,2009,36(6):64-68
    [85]洪军,崔彦锋,毕小龙,等.机组在线运行优化系统及实时目标工况的确定[J].电力系统自动化,2007,31(6):86-90
    [86]I. A. Azid, Z. M. Ripin, M. S. Aris, et al. Predicting combined-cycle natural gas power plant emissions by using artificial neural networks[C]. IEEE TENCON: Intelligent Systems Technologies New Millennium, Kuala Lumpur, Malaysia,2000, pp.512-517
    [87]B. W. Bequette. Process Control:Modeling, Design and Simulation[J]. Upper Saddle River, NJ:Pearson,2003.
    [88]W. L. Brogan. Modern Control Theory[J],3rd Englewood Cliffs, NJ:Prentice-Hall, 1991
    [89]A. Burns, A. Kusiak, T. Letsche. Mining transformed data sets[J]. Knowledge-based intelligent information and engineering systems, Eds. Heidelberg, Germany: Springer,2004, vol. I, LNAI 3213, pp.148-154
    [90]R. C. Booth, W. B. Roland. Neural network-based combustion optimization reduces NOx emissions while improving performance[J]. Proc. of IEEE Industry Applications Dynamic Modeling Control Applications Industry Workshop,1998, pp.1-6
    [91]D. Buche, P. Stoll, R. Dornberger, et al. Multiobjective evolutionary algorithm for the optimization of noisy combustion processes[J]. IEEE Transactions on Syst., Man, Cybern. vol.32, no.4, pp.460-473,2002
    [92]R. Cass, B. Radl. Adaptive process optimization using functionallink networks and evolutionary optimization[J]. Control Engineering Practice,1997, vol.4, no.11, pp. 1579-1584
    [93]A. Z. S. Chong, S. J. Wilcox, J. Ward. Neural network models of the combustion derivatives emanating from a chain grate stoker fired boiler plant[J]. Proc. Inst. Elect. Eng. Seminar Advanced Sensors Instrumentation Systems Combustion Processes,2002, pp.1-4
    [94]P. S. Chang, H. S. Hou. A fast neural network learning algorithm and its application[J]. Proc. IEEE of the 29th Southeastern Symp. on Systems Theory, Cookeville, TN,1997, pp.206-210
    [95]J. Z. Chu, S. S. Shieh, S. S. Jang, et al. Constrained optimization of combustion in a simulated coal-fired boiler using artificial neural network model and information analysis[J]. Fuel, vol.82, no.6, pp.693-703,2003
    [96]J. Espinosa, J. Vandewalle, V. Wertz. Fuzzy Logic, Identification and Predictive Control[J]. London, U.K.:Springer-Verlag,2005
    [97]J. H. Friedman. Stochastic gradient boosting[J]. Comput. Statist. Data Anal., vol.38, no.4, pp.367-378,2002
    [98]K. M. Hangos, R. Lakner, M. Gerzson. Intelligent Control Systems:An Introduction with Examples[J]. Amsterdam, The Netherlands:Kluwer,2001
    [99]S. A. Kalogirou. Artificial intelligence for the modeling and control of combustion processes:a review[J]. Progress Energy Combust. Sci., vol.29, no.6, pp.515-566, 2003
    [100]B. Rasmussen, J.Wesley Hinse,.Uhrig. A novel approach to process modeling for instrument surveillance and calibration verification, nuclear plant instrumentation[J]. Control and Human-Machine Interface Technologies,2003, 143(2):217-226
    [101]J. W. Hines, R. E. Uhrig, D. J. Wrest. Use of Autoassociative neural network for signal validation[J]. Journal of Intelligent and Robotic Systems,1997,143
    [102]J. B. MacQueen. Some methods for classification and analysis of multivariate observations [J]. Proc. of the 5th Berkeley Symp. On Mathematical Statistics and Probability, Berkeley, CA,1967, vol.1, pp.281-297
    [103]T. Miyayama, S. Tanaka, T. Miyatake, et al. A combustion control support expert system for a coal-fired boiler[J]. Proc. of IEEE Industrial Electronics, Control Instrumentation, Kobe, Japan,1991, pp.1513-1516
    [104]周昊,朱洪波,曾庭华,等.大型四角切圆燃烧锅炉NOx排放特性的神经网络模型[J].中国电机工程学报,2002,22(1):33-37
    [105]王春林,周昊,周樟华,等.基于支持向量机的大型电厂锅炉飞灰含碳量建模[J].中国电机工程学报,2005,25(20):72-77
    [106]荣海娜,张葛祥,金炜东.系统辨识中支持向量机核函数及其参数的研究[J].系统仿真学报.2006,18(11):3204-3226
    [107]焦嵩鸣,韩璞.模糊量子遗传算法及其在热工过程模型辨识中的应用[J].中国电机工程学报,2007,27(5):87-91
    [108]杜小东.基于支持向量机的数据挖掘方法:[硕士学位论文],山东:山东大学,2005
    [109]翟永杰,王国鹏,韩璞,等.基于支持向量机的系统辨识[J].计算机仿真,2004,21(11):39-41
    [110]邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2004
    [111]胡可云,田凤占.数据挖掘理论与应用[M].北京:清华大学出版社,北京交通大学出版社,2008
    [112]王雷,王洪跃,张瑞青,等.基于支持向量机回归的凝汽器真空应达值确定方法的研究[J].汽轮机技术,2007,49(1):43-46
    [113]Degang Chen, Qiang He, Xizhao Wang. FRSVMs:Fuzzy rough set based support vector machines[J]. Fuzzy Sets and Systems,161(4)(2010),596-607
    [114]V. N. Vapnik. The nature of statistical learning theory[M]. Springer, New York, 1995
    [115]C. F. Lin, S. D. Wang, Fuzzy support vector machine[J]. IEEE Transactions on Neural Networks,13 (2) (2002) 464-471
    [116]B. Moser. On the T-transitivity of kernels[J]. Fuzzy Sets and Systems 157 (2006) 1787-1796
    [117]D. S. Yueng, D.G. Chen, E.C.C. Tsang, et al. On the generalization of fuzzy rough sets[J]. IEEE Transactions on Fuzzy Syst.13 (2005) 343-361
    [118]H. P. Huang, Y. H. Liu. Fuzzy support vector machines for pattern recognition and data mining[J]. International Journal on Fuzzy System.4 (2002) 826-835
    [119]M. Falcitelli, S. Pasini, L. Tognotti. Modelling practical combustion systems and predicting NOx emissions with an integrated CFD based approach[J]. Computers& Chemical Engineering,26(9) (2002) 1171-1183
    [120]S. Greco, B. Matarazzo, R. Slowinski. Rough sets theory for multicrieria decision analysis[J]. European Journal of Operational Research,129(2001)1-4
    [121]R. Slowinski, D. Vanderpooten. A generalized definition of rough approximations based on similarity[J]. IEEE Transactions on Data Knowledge Engineering,2(2000) 331-336
    [122]Yee Leung, Deyu Li. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences,153(2003) 85-106
    [123]S. Greco, B. Matarazzo, R. Slowinski. Rough sets methodology for sorting problems in presence of multiple attributes and criteria[J]. European Journal of Operational Research,138(2002) 247-259
    [124]E. C. C. Tsang, Degang Chen, J. W. Lee, et al. On the upper approximations of covering generalized rough sets[C]. Proceedings of 2004 International Conference on Machine Learning and Cybernetics,2004, Vol.7,4200-4203
    [125]Weihua Xu, Wenxiu Zhang. Measuring roughness of generalized rough sets induced by a covering[J]. Fuzzy Sets and Systems,158(22) (2007) 2443-2455
    [126]William Zhu, Feiyue Wang. On three types of covering-based rough sets[J]. IEEE Transactions on Knowledge and Data Engineering,19(8)(2007) 1131-1144
    [127]D. G. Chen, E. C. C. Tsang, S. Y. Zhao, Attribute reduction with TL fuzzy rough sets[C],2007 IEEE International Conference on Systems, Man and Cybernetics,1 (2007)486-491
    [128]刘清.邻域信息表上的邻域逻辑及其数据推理[J],计算机学报,2001,24(4):1-6
    [129]Qinghua Hu, Daren Yu, Zongxia Xie. Neighborhood classifiers[J]. Expert Systems with Applications,34(2)(2008) 866-876
    [130]Degang Chen, Wenxiu Zhang, Daniel S.Yeung. Rough approximations on a complete completely distributive lattice with applications to generalized rough sets[J]. Information Sciences,176(2006)1829-1848
    [131]D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets[J], Internat. J. Genaral Systems,17(1990)191-209
    [132]Z. Pawlak. Rough sets[J]. Information Journal of Computer and Information Sciences,11(1982),341-356
    [133]A. M. Radzikowska, E. E. Kerre. A comparative study of rough sets[J]. Fuzzy Sets and Systems,126(2002)137-155
    [134]Daniel S.Yeung, Chen Degang, Eric C.C. Tsang. On the Generalization of Fuzzy Rough Sets[J]. IEEE Transactions on Fuzzy Systems,13(3)(2005) 343-361
    [135]D. G. Chen, X. Z. Wang, S. Y. Zhao. Attributes reduction based on fuzzy rough sets[J]. RSEISP 2007, LNAI 4585(2007) 381-390
    [136]R. Jensen, Qiang Shen. Fuzzy-rough sets assisted attribute selection[J]. IEEE Transactions on Fuzzy Systems,15(1) (2007) 73-89
    [137]Qinghua Hu, Daren Yu, Zongxia Xie. Fuzzy probabilistic approximation spaces and their information measures[J]. IEEE Transactions on Fuzzy Systems, 14(2)(2006)191-201
    [138]F. Li, Y. Q. Yin. Approaches to knowledge reduction of covering decision systems based on information theory[J]. Information Sciences,179(11) 1694-1704
    [139]J. Y. Liang, Z. B. Xu. The algorithm on knowledge reduction in incomplete information systems, International Journal of Uncertainty[J]. Fuzziness and Knowledge-based Systems 12(5) (2004) 651-672
    [140]Z. Q. Meng, Z. Z. Shi. A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets[J]. Information Sciences, 179(16)2774-2793
    [141]D. Q. Miao, Y. Zhao, Y. Y. Yao. Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model, Information Sciences[J],179 (24) 4140-4150
    [142]S. H. Nguyen, H. S. Nguyen. Some efficient algorithms for rough set methods[J]. Proceedings of the International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems,1996,1451-1456
    [143]Y. H. Qian, J. Y. Liang, W. Pedrycz. Positive approximation:An accelerator for attribute reduction in rough set theory[J]. Artificial Intelligence,174 (2010): 597-618
    [144]D. G. Chen, X. Z. Wang, Q. H. Hu. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets[J]. Information Sciences,2007,177(17):3500-3518
    [145]E. C. Tsang, D. G. Chen, D. S. Yeung, et al. attributes reduction using fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems,2008,16(5):1130-1141
    [146]D. G. Chen, S. Y. Zhao. Local reduction of decision system with fuzzy rough sets[J]. Fuzzy Sets and Systems,2010,161(13):1871-1883
    [147]B. Scholkopf, A. J. Smola. Learning with kernels[M]. The MIT Press,2002
    [148]Eric Tsang, Zhao Suyun. Decision table reduction in KDD:fuzzy rough based approach, Transactions on Rough Sets XI, LNCS 5946, pp.177-188,2010
    [149]张文修,粗糙集理论与方法[M],北京:科学出版社,2000
    [150]覃一宁.大型火力发电厂运行优化控制系统的研究与实现:[硕士学位论文],大连理工大学,2001
    [151]江浩.电站运行优化决策支持系统的研究:[博士学位论文],东南大学,2003
    [152]毕政益.国内外火电机组运行优化在线管理系统的应用现状[J].能源研究与信息,2000,16(1):12-17
    [153]闫顺林,王俊有,李太兴,等.汽轮机低压缸排汽焓在线计算新模型的研究及应用[J].华东电力,2007,35(4):84-86
    [154]闫顺林,徐鸿,李永华,等.汽轮机排汽焓动态在线计算模型的研究[J].动力工程,2008,28(2):181-185
    [155]高俊如,丁光彬,孟鑫,等.利用层次径向基神经网络的汽轮机排汽焓计算[J].动力工程,2005,25(4):466-469
    [156]蔡杰进,马晓茜.支持向量机在电站汽轮机排汽焓在线预测中的应用[J].电力系统自动化,2006,30(18):77-81
    [157]张利平,王铁生.基于免疫原理的RBF神经网络模型在汽轮机排汽焓计算中的应用[J].汽轮机技术,2008,50(5):347-349
    [158]王惠杰.基于混合模型的机组状态重构及运行优化研究:[博士学位论文],华北电力大学,2009
    [159]张春发,王惠杰,等.火电厂单元机组最优运行初压的定量研究[J].中国电机工程学报,2006,26(4):36-40
    [160]张春发,张德成,张宝,等.火电大机组热力系统、设备及运行节能在线监测及指导系统[J].汽轮机技术,2001,43(3):129-132
    [161]李蔚,任浩仁.300MW火电机组在线能耗分析系统的研制[J].中国电机工程学报,2002,22(11):153-155
    [162]O. S. Naimanov. Features of the selection of initial steam pressure of geothermal power stations with one and two evaporation stages[J]. Thermal Engineering,1986,33(2):79-82
    [163]Toda, Hiromichi, Yamanaka. Planning and operation performance of 600MW coal and oil dual-fired boiler for a supercritical sliding pressure operation[J]. Technical Review-Mitsubishi Heavy Industries,1985,22(3) 225-233
    [164]司风琪.电站性能在线监测中的数据检验和热力系统模型研究:[博士学位论文],东南大学,2001
    [165]朱小良.大型火电机组热工测量数据诊断、融合和补偿:[博士学位论文],东南大学,2003
    [166]董学育,胡华进,徐治皋.电站性能分析采样数据的可靠性检验方法[J].动力工程,1998,18(2):16-19,74
    [167]李蔚,刘长东,盛德仁,等.国内火电厂运行优化系统的现状和发展方向[J].电站系统工程,2004,20(1):59-61
    [168]ASME PTC4.1-1998,锅炉机组性能试验规程
    [169]GB10184-1998,电站锅炉性能试验规程
    [170]刘长东.600MW机组监测与诊断技术的研究:[硕士学位论文],浙江大学,2004
    [171]侯子良.再论火电厂厂级监控信息系统[J].电力系统自动化,2002,26(15):1-3
    [172]张春发,张德成,张宝,等.火电大机组热力系统、设备及运行节能在线监测及指导系统[J].汽轮机技术,2001,43(3):129-132
    [173]李蔚,盛德仁,陈坚红,等.火电厂SIS系统中实时数据库平台的选择[J].中国电机工程学报,2003,12(12):218-221
    [174]卢勇.数据信息采集与热工过程控制优化:[博士学位论文],清华大学,2003
    [175]胡小健,杨善林,马溪骏.基于联结树的贝叶斯网的推理结构与构造算法[J].系统仿真学报,2004.16(11)
    [176]丁海山,毛建琴.模糊系统逼近理论的发展现状[J].系统仿真学报.2006,18(8)
    [177]Z. Song. Meta-control of combustion performance with a data-mining approach[D]. University of Iowa,2008
    [178]H. Talbi, A. Draa, M. Batouche. A new quantum-inspired genetic algorithm for solving the traveling salesman problem[C]. Proceedings of IEEE International Conference on Industrial Technology, Tunisia,2004
    [179]江浩,徐治皋.电站运行优化决策支持系统及优化值的确定[J].动力工程,2003,23(3):2480-2484
    [180]董学育,胡华进,徐治皋.电站性能分析采样数据的可靠性检验方法[J].动 力工程,1998,18(2):16-19,74
    [181]Zhang Xiaoxing, Sun Caixin. Dynamic intelligent cleaning model of dirty electric load data[J]. Energy Conversion and Management,49(2008):564-569
    [182]毕小龙,王洪月,司风琪,等.基于趋势提取的稳态检测方法[J].动力工程,2006,26(4):503-507
    [183]王楠,律方成.在线监测数据预处理方法的研究[J].高压电器,2003,39(3):57-59,63
    [184]陈丽丽,李蔚,盛德仁,等.火电厂实时监控系统测量数据预测的研究进展[J].电站系统工程,2005,3(2):1-4
    [185]陈坚红,李蔚,盛德仁,等.一种火电机组在线性能计算中的数据融合方法[J].中国电机工程学报,2002,22(5):152-156
    [186]王惠杰,张春发,宋之平.火电机组运行参数能耗敏感性分析[J].中国电机工程学报,2008,28(29):6-10
    [187]潘文泉.工程流体力学[M].北京:清华大学出版社,2001
    [188]欧连军,邱红专,张洪越.多个相关测量的融合算法及其优越性[J].控制与决策,2005,34(6):690-696
    [189]于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210
    [190]朱小良,邹泉.一种基于贝叶斯理论的电站模拟量数据融合诊断方法[J].中国电机工程学报,2006,26(19):117-121
    [191]李勇,陈梅倩.汽轮机运行性能诊断技术及其应用[M].北京:科学出版社,1999
    [192]刘福国.电厂入炉煤元素分析和发热量的软测量实时监测技术[J].中国电机工程学报,2005,25(6):139-146
    [193]李维特,黄保海.汽轮机变工况热力计算[M].北京:中国电力出版社,2001
    [194]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998
    [195]中国动力工程学会.火力发电设备技术手册(第二卷)[M].北京:机械工业出版社,1999
    [196]沈士一,庆贺庆,康松,等.汽轮机原理[M].北京:中国电力出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700