用户名: 密码: 验证码:
硅片化学机械抛光中材料去除非均匀性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学机械抛光(Chemical mechanical polishing, CMP)加工技术既能获得良好的加工表面全局,也能得到较好的局部平面度,因此在大规模集成电路和超大规模集成电路(ULSI)的制造过程中得到了广泛的应用。CMP技术既能在硅片制备过程中用于硅片上下表面的双片同时平坦化,也广泛应用在多层布线金属互连结构工艺的层间平坦化加工中。CMP过程中硅片表面材料去除非均匀性(non-uniformity of the material removal, NUMR)直接影响硅片最终的平坦化精度。但是,由于NUMR受抛光头和抛光盘转速、抛光压力、抛光垫特性、抛光液流量和粘度、抛光区域温度等诸多因素以及这些因素交互作用的影响,这给CMP过程的NUMR形成机理及控制方法等方面的研究带来很多困难,目前生产中在一定程度上还是通过经验或半经验的手段控制CMP过程的NUMR。集成电路(IC)制造技术的发展对CMP技术水平提出了很高要求,研究CMP材料去除非均匀性及其控制控制方法对于提高CMP技术水平具有重要理论意义和应用价值。
     本文在全面分析硅片CMP加工中NUMR问题研究现状的基础上,系统研究了影响硅片NUMR的因素及减小NUMR的方法进行了,主要研究工作如下:
     根据硅片CMP的特点,通过仿真计算分析了在硅片与抛光垫直接接触和混合接触两种形态下,压力分布、抛光盘及抛光头转速、抛光头摆动变量、偏心距等参数对硅片NUMR的影响规律,为揭示硅片CMP中NUMR的形成机理,研究减小NUMR的工艺方法以及设计开发CMP机床提供了理论依据。
     基于对NUMR的影响因素的分析,首先研究了采用保持环加压降低NUMR的方法。利用接触力学和边界润滑理论分别建立了硅片与抛光垫直接接触和混合接触两种形态下的接触应力和抛光液压力模型,分析了保持环的压力、宽度以及硅片和保持环之间间隙等参数对接触应力分布的影响。结果表明使用保持环可以有效降低硅片边缘过高的接触应力,减小硅片接触应力分布的非均匀性,在一定程度上改善硅片的NUMR。但由于采用保持环减小硅片中心区域接触应力分布的非均匀性作用有限,而且增加生产成本,保持环在降低NUMR上的应用有局限性。
     为克服保持环在降低NUMR方面的局限性,进而提出了通过分区域调整硅片背压降低硅片CMP过程中材料去除非均匀性的方法。根据Preston方程和弹性板理论建立了硅片与抛光垫在直接接触形态下的硅片背压补偿模型,根据流体润滑方程和接触力学理论建立了硅片与抛光垫在混合接触形态下的硅片背压补偿模型,分别得到了两种接触形态下的硅片多区域背压曲线,以此为依据研制了具有多区域压力调整功能的硅片夹持器,应用于改造的CMP试验台进行了硅片CMP试验验证。试验结果表明多区域背压调整夹持器可有效地降低硅片CMP中由于抛光压力分布不均匀所造成的NUMR。
     考虑实际生产中硅片抛光前的表面轮廓和厚度变化,为提高多区域背压调整夹持器对硅片的适应性,应用试验设计法(Design Of Experiment, DOE),分别对多区域背压调整夹持器的各区域进行加压,进行抛光试验并测量抛光前后硅片厚度沿径向的变化,通过最小二乘法求出反映区域压力与硅片径向各点材料去除率关系的稳态增益矩阵,建立了改进的硅片背压补偿模型。
     针对硅片表面多层介质的层间CMP加工,为了在减小NUMR同时防止出现过抛光或抛光不足现象,开发了抛光垫温度在线测量系统,通过将抛光垫温度监测与硅片多区域背压调整相结合更好地监控CMP过程。
Chemical mechanical polishing (CMP) is a main planarization technology of wafer in ultra large scale integrated circuit (ULSI) manufacturing, it is not only used to obtain the ultra-smooth surface in manufacturing silicon wafer, but also to achieve local and global planarization of wafer with the multi-layer interconnect structure. The non-uniformity of the material removal (NUMR) on wafer surface in CMP has direct influence on the flatness of silicon wafer. However, because the NUMR is affected by many factors, such as the rotational speed of carrier and polishing pad, the polishing pressure, the characteristics of polishing pad, the polishing temperature, etc., and their interactions, the formation mechanism of the NUMR and influence the process variable on the NUMR have not yet been understood completely, the NUMR of wafer in CMP process has been mainly controlled by the semi-empirical or empirical means in some extent. It is important and necessary to study the NUMR and its control methods in CMP for the improvement of CMP technology to meet the needs of fast development of integrated circuit (IC) technology.
     Based on the analysis of the research status on the NUMR, the influencing factors on the NUMR and the methods to reduce the NUMR are systematically studied in this thesis. The main research contents and conclusions are as follows:
     According to the characteristic of wafer CMP, the effects of the distribution of pressure, the rotational speed of the carrier and the platen, the oscillation variables of the carrier, and center distance between the carrier and the platen on the NUMR were analyzed by simulation in the cases of the solid contact and the boundary lubrication contact between wafer and polishing pad, which provided the theoretical basis for research on the formation mechanism of the NUMR, development of the techniques to reduce the NUMR and design of CMP equipment.
     Base on the analysis of the influencing factors on the NUMR, a method of reducing the NUMR by using the retaining ring was researched. Through application of the contact mechanics and the two-dimensional boundary lubrication theory, a contact stress model and a hydrodynamic pressure model in the cases of solid contact and the boundary lubrication contact between wafer and polishing pad were established respectively. The effects of the width and pressure of the retaining ring, the gap between the wafer and the retaining ring on the contact stress distribution were discussed. The results indicated that the using of retaining ring can effectively reduce the excessive contact stress near the wafer edge and the non-uniformity of the contact stress distribution, so as to decrease the NUMR in CMP at a certain extent. However, the limitation of application of the retaining ring to control the NUMR in CMP is obvious because the using of retaining ring is incapable of reducing the contact stress in the wafer central area, and capable of increasing the production cost.
     To overcome the limitation of the retaining ring in reducing NUMR, a new method for controlling the NUMR in CMP by adjusting the back-pressure of wafer in multi-zone was presented. The calculating model of wafer back pressure in the case of solid contact between wafer and polishing pad were established based on the Preston equation for material removal rate and the elastic plate theory, the calculating model of wafer back pressure in the case of boundary lubrication contact between wafer and polishing pad were established according to the fluid lubrication equation and contact mechanics theory, and the back pressure profiles in multi-zone were calculated respectively for both cases, based on which a wafer carrier with pressure adjustment function in multi-zone was developed. The wafer CMP experiments were performed on a developed CMP platform by using the multi-zone pressure adjustment carrier of wafer. The verification experimental results indicated that the NUMR of wafer in CMP caused by the non-uniformity of the polishing pressure distribution can be effectively reduced through adjusting the back pressure of wafer in multi-zone by using the developed carrier of wafer.
     According to the actual profile and thickness variation of silicon wafer before CMP, the calculating model of wafer back pressure was modified to enhance the applicability of the multi-zone pressure adjustment carrier by using Design of Experiment (DOE), in which CMP experiments were carried out when the multi-zone pressure adjustment carrier was pressurized independently in different zone, the wafer thickness variation along the radial direction were measured before and after CMP, and the steady-state gain matrix of the relationships between the material removal rate distribution along radial direction and the pressure of different zone were obtained by using the least square regression method.
     In order to reduce the NUMR and avoid the over-polishing or under-polishing in CMP of the interlayer dielectric and metal on wafer, a in-situ temperature measurement system of polishing pad was developed, by which CMP process could be better monitored and controlled through combining with the multi-zone back pressure adjustment method.
引文
[1]张亚非.半导体集成电路制造技术[M].北京:高等教育出版社,2006.
    [2]韩郑生.半导体制造技术[M].北京:电子工业出版社,2004.
    [3]Moore G. The role of fairchild in silicon technology in the early days of silicon valley'[J]. Proceedings of the IEEE86,1998,1:59-64.
    [4]许居衍,李炳宗,汤庭鳌等.硅芯片技术的过去和未来,中国科学技术协会“科学技术面向新世纪”学术年会科技进步与学科发展[c].北京:[出版者不祥],1998.
    [5]Moore G. Cramming more components onto integrated circuits [J].Electronics,1965,38:8-14.
    [6]GEHMAN B L. In the age of 300mm silicon, tech standards are even more crucial [J]. Solid State Technology,2001,44:127-129.
    [7]张厥宗.硅单晶抛光片的加工技术[M].北京:化学工业出版社,2005.
    [8]Zhang G H, Qian H et al. A novel barrier to copper metallization by implanting nitrogen into SiO2[J]. Chinese Journal of Semiconductors,2001,22:271-274.
    [9]Mendel E. Polishing of Silicon [C]. Solid State Technol,1967,10:27-35.
    [10]李长河.化学机械抛光技术[J].MC现代零部件,2006,3:102-103.
    [11]贾英茜,刘玉岭,牛新环等.ULSI多层互连中的化学机械抛光工艺[J].微纳电子技术,2006,8:23-29.
    [12]梅燕,韩业斌,聂祚仁等.用于超精密硅晶片表面的化学机械抛光 (CMP)技术研究[J].润滑与密封,2006,9:36-42.
    [13]狄卫国.甚大规模集成电路制备中硅衬底精密抛光的研究[D].河北工业大学机械学院,2002.
    [14]Martinez M. SRC topical research conference on Chemical Mechanical Polishing [C]. Troy: [Rensselaer Polytechnic Institute],1995.
    [15]郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展[J].机械工程学报,2003,39:100-105.
    [16]郭东明,康仁科,金洙吉.大尺寸硅片的高效超精密加工技术[J].世界制造技术与装备市场,2003,1:35-40.
    [17]刘玉岭,檀柏梅,张楷亮等.超大规模集成电路衬底材料性能及加工测试技术工程[M].北京:冶金工业出版社,2002.
    [18]陈杰,高诚辉.大尺寸集成电路和硅片表面加工技术[J].现代制造工程,2007,11:127-131.
    [19]Noh K, Saka N. A multi-scale model for copper dishing in Chemical-Mechanical Polishing [EB/OL]. (2005,05,19) [2005,04,15]. http://dspace.mit.edu/bitstream/handle/1721.1/7485/
    [20]Lee J A, Moinpour M, Liou H C et al. Proceedings of materials research society[C]. San Francisco: ASME,2003
    [21]Semiconductor industry experts.International technology roadmap for Semiconductors[EB/OL]. (2006,12,19) [2006,08,15]. http://www.itrs.net/Links/2007ITRS/Home2007.html
    [22]何捍卫.铜化学机械抛光电化学机理与抛光速率的研究[D].长沙:中南大学机械院,2002.
    [23]李秀娟,金洙吉,苏建修等.铜布线化学机械抛光技术分析[J].中国机械工程,2005,16:896-900.
    [24]Steigerwald J M, Murarka S P, Gutmann R J et al. Chemical processes in the chemical mechanical polishing of copper[J]. Materials chemical and physics,1995,41:217-228.
    [25]Luo Q, Campbell D R, Babu S V. Chemical mechanical polishing of copper in alkaline media[J]. Thin Solid Films,1997,311:177-182.
    [26]Zeider D,Stavreva Z, Plotner M et al. Characterization of Cu chemical mechanical polishing by electrochemical invertigations[J]. Microelectronic engineering,1997,33:259-265.
    [27]Luo J. Wafer-scale CMP modeling of with-in-wafer non-uniformity, [EB/OL]. (2002,08,17) [2002,03,15]. http://repositories. cdlib.org/lma/pmg/2002_luo_2.
    [28]Lin Y Y, Lo S P. Finite element modeling for chemical mechanical polishing process under different back pressures[J].Journal of Materials Processing Technology,2003,140:646-652.
    [29]Srinivasa-Murthy C, Wang D, Beaudoin S P et al. Stress distribution in chemical-mechanical polishing. Thin Solid Films,1997,308:533-537.
    [30]Shi F G, Zhao B and WangS Q. A new theory for CMP with soft pads. IITC 1998,7:73-75.
    [31]Liu C W, Dai B T, Tseng W T et al. Modeling of wear mechanical during chemical mechanical polishing [J]. Journal of the Electrochemical Society,1996,143:716-721.
    [32]苏建修.IC制造中硅片化学机械抛光材料去除机理研究[D].大连:大连理工大学,2006.
    [33]Runnels S R. Feature-scale fluid-based erosion modeling for chemical mechanical polishing[J]. Journal of the Electrochemical Society,1994,141:1900-1904.
    [34]Runnels S R and Eyman L M. Tribology analysis of chemical mechanical polishing [J]. Journal of the Electrochemical Society,1994,141:1698-1701.
    [35]Sundararajan S, Thakurta D G, Schwendeman D W et al. Two-dimensional wafer-scale chemical mechanical planarization models based on lubrication theory and mass transport [J]. Journal of The Electrochemical Society,1999,146:761-766.
    [36]Thakurta D G, Borst C L, Schwendeman D W et al. Pad porosity, compressibility and slurry delivery effects in chemical mechanical planarization:modeling and experiments [J]. Thin Solid Films,2000, 366:181-190.
    [37]Thakurta D G, Borst C L, Schwendeman D W et al. Three-dimensional chemical mechanical planarization slurry flow model based on lubrication theory [J]. Journal of the Electrochemical Society,2001,148:207-214.
    [38]Cho C H, Park S S, Ahn Y. Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical polishing [J].Thin Solid Films,2001,389:254-260.
    [39]Cho C H, Park S S, Ahn Y. Hydrodynamic analysis of chemical mechanical polishing process [J]. Tribology International,2000,33:723-730.
    [40]Kim H G, An Y M, Park J G et al. Effect of chemicals and slurry particles on chemical mechanical polishing of polyimide [J].Japanese Journal of Applied Physics,2000,39:1085-1090.
    [41]张朝辉,雒建斌,温诗铸.CMP润滑方程的多重网格求解[J].自然科学进展,2003:1224-1227.
    [42]张朝辉,雒建斌,温诗铸.化学机械抛光中纳米颗粒的作用分析[J].物理学报,2005,54:2123-2127.
    [43]Zhang C H, Luo J B. Modeling chemical mechanical polishing with couple stress fluid [J]. Tsinghua Science Technology,2004,9:270-273.
    [44]张朝辉,雒建斌.化学机械抛光中抛光液流动的的微极性分析[J].北京交通大学学报,2005,29:74-77.
    [45]Tichy J, Levert J, Shan L et al. Contact mechanics and lubrication hydrodynamics of chemical mechabical polishing [J]. Journal of the Electrochemical Society,1999,146:1523-1528.
    [46]Shan L, Levert J, Meade L et al. Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing [J]. Journal of Tribology,2000,122:539-543.
    [47]Shan L, Zhou C, Danyluk S. Mechanical interactions and their effects on chemical mechanical polishing[J].IEEE Transactions on Semiconductor Manufacturing,2001,14:207-213.
    [48]Shan L, Danyluk S, Levert J. Interfacial pressure measurements at chemical mechanical polishing interfaces [J]. Materials Research Society Symposium-Proceedings,2000,566:187-195.
    [49]Zhou C, Shan L, Robert Hight J et al. Fluid pressure and its effects on chemical mechanical polishing [J].Wear,2002,253:430-437.
    [50]Levert J, Danyluk S,Tichy J et al. Mechanism for Subambient Interfacial Pressures While Polishing With Liquids [J]. Journal of Tribology,2000,122:450-457.
    [51]Ng S H, Higgs C F, Yoon I et al. An analysis of mixed lubrication in chemical mechanical polishing [J]. Journal of Tribology,2005,127:287-292.
    [52]Yu T K, Yu C C, Orlowski M. Ststistic polishing pad model for chemical mechanical polishing [J]. IEEE IEDM,1993,58:865-868.
    [53]Yu T K, Yu C C, Orlowski M. Combined asperity contact and fluid flow model for chemical mechanical polishing, numerical modeling of processes and devices for integrated circuits [J]. NUPAD,1994,67:29-32.
    [54]Hocheng H, Tsai H Y, Tsai M S. Effects of kinematic variables on nonuniformity in chemical mechanical planarization [J]. International Journal of Machine Tools & Manufacture,2000,40: 1651-1669.
    [55]苏建修,郭东明,康仁科等.硅片化学机械抛光时运动形式对片内非均匀性的影响分析[J].中国机械工程,2005,16:815-818.
    [56]苏建修,郭东明,康仁科等.ULSI制造中硅片化学机械抛光的运动机理[J].半导体学报,2005,26:606-612.
    [57]Fu G, Chandra A, Guha S et al. A plasticity-based model of material removal in Chemical Mechanical Polishing (CMP) [J]. IEEE Transactions on Semiconductor Manufacturing,2001,14: 406-417.
    [58]Fu G, Chandra A, Guha S et al. A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelestic pad deformation [J]. Electronic Materials,2002, 31:1066-1073.
    [59]Xin Y B. Modeling of Pad-Wafer Contact Pressure Distribution Chemical Mechanical Polishing [J]. Wafer Technology,1999,2:1-15.
    [60]Wang D, Lee J, Holland K et al. Von Mises stress in chemical-mechanical polishing processes [J]. Electrochemical society,1997,144:1121-1127.
    [61]Philipossian A. Tutorial on chemical mechanical polishing (CMP) [C]. Santa Clara:Intel Corp, 1999.
    [62]Baker, AR. The origin of the edge effect in chemical mechanical planarization. J Electrochem Soc 1996 ECS Fall meeting, San Antonio, TX:1996; l-7.Baker A R. The origin of the edge effect in chemical mechanical planarization [J]. Proceedings of the Electrochemical Society,1996,69:1-7.
    [63]Kim H J, Kim H Y, Jeong H D et al. Friction and thermal phenomenon in chemical mechanical Polishing [J]. Materials Processing Technology,2002,130:334-338.
    [64]刘金泉.化学机械抛光中的温度场计算[D].北京:北京交通大学,2007.
    [65]Cheng H H, Huang Y L. In situ endpoint detection by pad temperature in Chemical Mechanical Polishing of copper overlay [J]. IEEE Transactions on Semiconductor Manufacturing,2004,17: 180-187.
    [66]叶巍.化学机械抛光的流动性能和温度场的计算[D].北京:北京交通大学,2007.
    [67]郑晓锋.CMP过程中抛光液流场数值仿真研究[D].杭州:浙江大学,2008.
    [68]刘昌雄.圆平动研抛的流体动力学性能仿真分析[D].哈尔滨:哈尔滨工业大学,2006.
    [69]Kao Y C.Robust operation of copper chemical mechanical polishing [J].Microelectronic Engineering, 2003,65:61-75.
    [70]Sndararajan S, DIPto G, Thakur.a D W, etc. Two Dimensional Wafer-Seale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport[J].J Electrochem Soc,1999, 146:761—766
    [71]Hu A, Du H, Wong S et al. Application of run by run controller to the Chemical-Mechanical Planarization process [J]. Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium,1994,1:371-378.
    [72]翁寿松.CMP/Post CMP工艺及其设备[J].电子工业专用设备,2003,8:9-12.
    [73]Matsuzaki S, Tanzawa A, Igarashi T et al. Development of data logging system for Chemical Mechanical Polishing and its application for process control [J]. IEEE Transactions on Semiconductor Manufacturing,2002,15:438-441.
    [74]Wenski G, Altmann T, Winkler W. Double side polishing-a technologry mandatory for 300mm wafer manufacturing [J]. Materials Science in Semiconductor Processing,2003,5:375-380.
    [75]袁巨龙,功能陶瓷的超精密加工技术,哈尔滨工业大学出版社,2000,8
    [76]Hartsough L D. Electrostatic wafer holding [J]. Solid State Technol,1993,1:87-90.
    [77]Wardly G A. Electrostatic wafer chuck for electron beam microfabrication [J]. Solid State Technol, 1993,2:67-75.
    [78]Watanabe T, Kitabayashi T. Effect of Additives on the Electrostatic force of alumina electrostatic chucks [J]. Journal of the Ceramic Society of Japan,1992,100:1-6.
    [79]K. Asano, F. Hatakeyama and K. Yatsuzuka, Fundamental study of an electrostatic chuck silicon wafer handling [J], IEEE Industry Applications Conference,1997,3:1998-2003.
    [80]G. Kalkowski, S. Risse, V. Guyenot, Electrostatic chuck behaviour at ambient conditions [J], Microelectronic Engineering,2002,61:357-361.
    [81]Bendfeldt L, Schulz H, Roos N et al. Groove design of vacuum chucks for hot embossing lithography [J]. Microelectronic Engineering,2002,61-62:455-459.
    [82]Heyderman L J, Schift H, David C et al. Flow behaviour of thin polymer films used for hot embossing lithography [J]. Microelectronic Engineering,2000,54:229-245.
    [83]Advanced Wafer Carrier Reduces Edge Exclusion and Improves Uniformity [EB/OL]. 2001,12,11 [2003,6,25].http://www.strasbaugh.com/cm/Products/CMP/VIPRR%20WAFER%20CA RRIERS.html
    [84]Perlov, et al. Carrier head with a flexible membrane, U.S.Pat,6,506,104[P/OL].2003-02-17 [2001-07-18]. http://www.patentgenius.com/patent/6506104.html;
    [85]Hung Chen, San Jose, Steven M.Zuniga, Soquel, Carrier head including a flexible membrane and a compliant backing member for a chemical mechanical polishing apparatus, US Patent,6,080,050 [P/OL].2000-06-27 [1997-12-31]. http://www.patentstorm.us/patents/6080050.html.
    [86]Steven M.Zuniga, Soquel et al. Carrier head with a flexible membrane for a chemical mechanical polishing system, U.S.Pat,6,106,378 [P/OL].2000-08-22 [1999-08-04]. http://www. patentgenius.com/patent/6106378.html.
    [87]Miguel A.Saldana, Fremont, et al. Polishing apparatus and methods having high processing workload for controlling polishing pressure applied by polishing head, U.S.Pat,7,481,695 [P/OL]. 2009-01-27 [2000-12-22]. http://www.patentgenius.com/patent/7481695.html
    [88]Hiroyuki Ohashi, kamakura, et al.Polishing apparatus of semiconductor wafer, U.S. Pat No.5, 605,.488 [P/OL].1997-02-25 [1994-10-27]; http://www.patents.com/us-5605488.html
    [89]Une A, Kunyoo P, Mochida M et al. A new vacuum pin chuck for ArF laser lithography [J]. Microelectronic Engineering,2002,61:113-121.
    [90]Une A, Kai Y, Mochida M et al. Influence of wafer chucking on focus margin for resolving fine patterns in optical lithography [J]. Microelectronic Engineering,2000,61:137-140.
    [91]Une A, Kai Y, Mochida M et al. Flattening ability of a vacuum pin chuck around the periphery of a processed wafer [J]. Microelectronic Engineering,2001,61:57-58.
    [92]Gotcher L F. Compiler:US Patent,6176764 [P/OL].2001-01-23 [1999-03-10]. http://www. freepatentsonline. com/6176764, html.
    [93]Yashraj K.,Bhatnagar, Vepa Krishna, et.al, Method for removal of surface films from reclaim substrates,7,775,856[P/OL].2010-08-17[2007-09-27]. http://www.patentgenius.com/patent/ 7775856.html
    [94]Lee Melbourne, Cook, et al. Apparatus and methods for chemical-mechanical polishing of semiconductor wafers, U.S.Pat,6,518,188 [P/OL].2003-02-11 [2002-02-01]. http:// www.patentgenius.com/patent/6518188.html
    [95]Lai J Y. Mechanics, mechanisms, and modeling of the chemical mechanical process [D]. Massachusetts:Massachusetts Institute of Technology,2001.
    [96]Steigerwald M, Murarka S D. Chemical processes in the chemical mechanical polishing of copper [J]. Material Chemistry,1995,41:217-228.
    [97]Luo J, Dornfeld D A. Material removal mechanism in chemical mechanical polishing:theory and modeling [J]. IEEE Transaction on semiconductor manufacturing,2001,14:112-133.
    [98]Shi F G, Zhao B. Modeling of chemical-mechanical polishing with soft pads [J]. Applied Physics A (Materials Science & Processing),1998,67:249-252.
    [99]Fu G H, Abhijit C. A model for wafer scale variation of material removal rate in chemical mechanical polishing based on elestic pad deformation [J]. Electronic Materials,2001,30:400-408.
    [100]Shi F G, Zhao B, Wang S Q. A new theory for CMP with soft pads [J]. IITC,1998.7:73-75
    [101]Liu C W, Dai B T, Tsent W T et al. Modeling of wear mechanical during chemical mechanical polishing [J]. Journal of the Electrochemical Society,1996,143(2):716-721
    [102]Luo J F, Dornfeld D A. Material removal regions in Chemical Mechanical Planarization for submicron integrated circuit fabrication:Coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area [J]. IEEE Transactions on Semiconductor Manufacturing, 2003,16:45-56:
    [103]Luo J F, Dornfeld D A. Effects of abrasives size distribution in chemical mechanical polishing: modeling an verification [J]. IEEE Transaction:Semiconductor manufacturing,2003,16:469-476.
    [104]Xie Y S, Bhushan B. Effects of particle size, polishing pad and contact pressure in free abrasice polishing [J].Wear,1996,2004:281-295.
    [105]Franklin Institute Research Lab., "NASA Contribution to Fluid-Film Lubrication-A Survey,' NASA SP-5058,1963
    [106]Heidenreich J, Edelstein D, Goldblatt R et al. Copper dualDamascene wiring for sub-0.25um CMOS technology. Proceedings of international interconnect technology conference (IITC98) [C]. California:IEEE,1998.
    [107]Johnson K L. Contact mechanics [M]. London:Cambridge University Press,1985
    [108]Borucki L J, Ng S H, Danyluk S. Fluid pressures and pad topography in chemical mechanical polishing [J]. Journal of the Electrochemical Society,2005,152:391-397.
    [109]Patir N, Cheng H S. An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication [J]. ASME,1978,100:12-17.
    [110]Patir N, Cheng H S. Application of average flow model to lubrication between rough sliding surfaces [J]. ASME,1979,101:220-230.
    [111]Patir N. Effects of surface roughness on partial film lubrication using an average flow model based on numerical simulation [D]. Illinois:Northwestern University,1978.
    [112]Gerd Nanz, Lawrence E., Modeling of chemical mechanical polishing:a review, IEEE Transactions on Semiconductor Manufacturing,1995,8:382-389.
    [113]Kuide Q, Brij Moudgil, A chemical mechanical polishing model incorporating both the chemical and mechanical efdects. Thin Solid Film,2004,446:277-286
    [114]Zhao Y W, Chang L A. A micro-contact and wear model for chemical-mechanical polishing of silicon wafers [J]. Wear,2002,252:220-226.
    [115]王军,孙军,吕玉山.硅片边界悬伸法研磨和抛光技术的研究[J].机械设计与制造,2000,5:24-28
    [116]刘敬远.硅片化学机械抛光加工区域中抛光液动压和温度研究[D].大连理工大学机械学院,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700