用户名: 密码: 验证码:
地开石的有机修饰及在聚合物体系中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以地开石为原料,以硅烷偶联剂、磷酸酯、油酸和硬脂酸为改性剂对地开石进行表面改性;以尿素为插层剂为地开石进行插层处理。通过分散性实验、接触角实验、X射线衍射和红外分析等手段评价了地开石表面憎水性改性效果和有机分子插层效果。并通过快速煅烧地开石插层复合物的方法制备了片层剥离的地开石粉体。在此基础上,将地开石作为填料,与聚乙烯熔融复合制备了改性地开石/聚乙烯复合物和剥离地开石/聚乙烯复合物,比较两者在力学性能、热稳定性和防腐蚀包装效果上的差别。
     为了提高复合物的功能性和探索多组分、多形貌功能填料在非极性体系中的界面效果、反应活性,以及不同填料间的作用效果,将铜微粉联合层状铝硅酸盐添加到聚乙烯体系中。借助X射线衍射、扫描电镜和透射电镜研究方法,分析层状铝硅酸盐和铜微粉在基体中的分布,并从结构角度研究两种填料的协同效果和对复合材料力学性能、热稳定性、抗菌性和防腐蚀包装效果的影响。
     初步探讨了地开石在极性橡胶体系中的作用效果。在炭化硅藻土代替部分炭黑补强的天然橡胶的体系中,少量改性地开石的加入可以显著提高橡胶基体的耐磨性
Dickite is natural clay mineral.The exploitation and utilization about dickite is not enough, because the reserves are not as more as kaolinite and the distribution is not widespread. Besides some common physical and chemical properties belong to dickite and kaolinite, dickite has other advantages such as low impurity content, low water absorption, high whiteness and et al. It is an excellent filler for plastic and rubber. It is also the potential filler for preparing novel polymer/layered silicate nanocomposites. However, the reports on the applications of dickite as filler in polymer matrix are rare. Thefore, in the paper we try to use dickite as functional filler to prepare novel dickite/polymer composite and study the related properties of complexes.
     Silane coupling agent (KH-550), hexadecyl phosphate, oleic acid, and stearic acid (SA) was used to modify dickite and hydrophilicity of modified dickite was characterized by dispersion experiments and contact angle tests. The results indicated that hydrophilicity of modified dickite decreases sharply, compared with nonmodified dickite. The order of effective hydrophobicity modification of dickite for modifying agents is SA> OA> HP> SCA. The results of FTIR indicated that SA is chemically bonded on the surface of dickite, whereas HP, a modifying agent with poor modification effect, is physically absorbed on the surface of dickite. The results suggest that the chemical bonding between modifying agents and dickite is more beneficial than physical adsorption for the hydrophobic modification of dickite. SEM micrographs of the modified dickite/PE composites show that modified dickite with hydrophobic surface could uniformly distribute in the PE matrix, where more platelet structure parallel to the composite film surface is formed, and the anticorrosion properties of composite are greatly improved. The mechanical properties of the resultant composites displayed a fact of reinforcement of modified dickite.
     The particle size of dickite decreased because of the mechanical grinding process. However, the size of dickite is still more than 5μm and the as-prepared modified dickite/PE composites are still traditional microcomposite. Some obtained performance is not satisfactory. Therefore, the preparation of smaller particles even exfoliated dickite could be a new exploration direction. The dickite intercalation complex was prepared using urea molecules as a precursor for the exfoliation of dickite. The results revealed organic molecule could intercalate the layers of dickite and react with inner surface hydroxyl of dickite, leading to the formation of hydrogen bond. By the method of rapid calcination dickite intercalated composites, exfoliated dickite particles were prepared.500℃calcination rapidly decomposed interlamellar urea molecules and produced a large amount of gases, including ammonia and carbon dioxide, which expanded the dickite interlayer and led to a more complete exfoliation of the dickite. The surface modification of exfoliated dickite and the process of melt mixing combined with melt extruding had effectively inhibited the agglomeration of exfoliated dickite in PE matrix. The highly dispersed clay platelets formed a more tortuous pathway, which retarded the progress of salt spray through the composites film, and therefore, the obtained anticorrosion packing properties and thermooxidative stability of exfoliated dickite/PE composite were better than that of the modified dickite/PE composite.
     In order to explore the interface effect, reaction activity and interaction between multi-component and multi-functional filler, homemade copper powder and layered silicate montmorillonite were introduced into PE matrix to prepare layered silicate/copper/PE composites. The results of XRD and TEM showed that the layered silicate was exfoliated and some of the layers nearly paralleled to the composite film surface. The agglomeration of copper powder had been reduced in the PE matrix. High active copper powder could react with permeated oxygen and intercept the permeation of O2, so as to protect packaged products from corrosion. In particular, permeation of water and oxygen along the formed tortuous path way resulted in more contacts between the corrosive species and copper powder and ensured the more complete reaction. Thus, we draw the conclusion that the combination of physical barrier effect of silicate layers and chemical consumption function of copper powder had played an important role in theimprovement of the anticorrosion packing properties of PE matrix. Coexistence of the exfoliated silicate layers and the copper powder particles in PE matrix could produce a synergistic effect on enhancing the thermal-oxidative stability and mechanical performance of as-prepared composites. Furthermore, it was observed that the bactericidal ability of as-prepared composites increased with copper powder content effectively. In addition, the well dispersed silicate layers in layered silicate/copper/PE composites could hinder the release of Cu ions and improved the long-term antibacterial effect of the composites.
     The introduce of layered dickite into PE matrix has significantly improved the barrier properties of materials, while it may play a different role on the nature rubber system reinforced by carbonized diatomite. The results showed that the organic matter in diatomite could be translated into amorphous carbon adsorbed on the surface of diatomite and in the micropore of diatomite. Because the carbon in carbonized diatomite could improve the compatibility between diatomite and nature rubber, the introduction of carbonized diatomite into nature rubber matrix could enhance the mechanical properties. When 25 wt% carbon black was replaced with carbonized diatomite, the tensile strength and tear strength of NR vulcanizates was significantly improved. The introduce of a small amount of addition of modified dickite could prevent crack propagation, reduce the wear volume, significantly improve the wear resistance of rubber samples.
引文
[1]JO C, NAGUIB H E. Constitutive modeling of HDPE polymer/clay nanocomposite foams [J]. Polymer,2007,48:3349-3360.
    [2]BISWAS S, FUKUSHIMA H, DRZAL L T. Mechanical and electrical property enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer nanocomposites [J]. Composites Part A:Applied Science and Manufacturing,2011,42:371-375.
    [3]W00 R S C, ZHU H, LEUNG C K Y, et al. Environmental degradation of epoxy-organoclay nanocomposites due to UV exposure:Part Ⅱ residual mechanical properties [J]. Composites Science and Technology,2008,68:2149-2155.
    [4]CAI Y, HUANG F, WEI Q, et al. Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibers [J].Polymer Degradation and Stability,2008,93:2180-2185.
    [5]MODESTI M, LORENZETTI A, BON D, et al. Thermal behaviour of compatibilised polypropylene nanocomposite:Effect of processing conditions [J]. Polymer Degradation and Stability,2006,91:672-680.
    [6]RAY S S, BANDYOPADHYAY J, BOUSMINA M. Thermal and thermomechanical properties of poly[(butylene succinate)-co-adipate] nanocomposite [J]. Polymer Degradation and Stability,2007,92:802-812.
    [7]ZULFIQAR S, SARWAR M I. Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials [J].Scripta Materialia,2008,59:436-439.
    [8]DAI C-F, LI P-R, YEH J-M. Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials [J]. European Polymer Journal,2008,44:2439-2447.
    [9]DURMUS A, WOO M, KA$GOZ A, et al. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer:Structural, mechanical and barrier properties [J]. European Polymer Journal,2007,43:3737-3749.
    [10]MENEGHETTI P, QUTUBUDDIN S. Synthesis, thermal properties and applications of polymer-clay nanocomposites [J]. Thermochimica Acta,2006,442:74-77.
    [11]YEH J-M, CHANG K-C. Polymer/layered silicate nanocomposite anticorrosive coatings [J]. Journal of Industrial and Engineering Chemistry,2008,14:275-291.
    [12]COSTA F R, WAGENKNECHT U, HEINRICH G. LDPE/Mg-Al layered double hydroxide nanocomposite:Thermal and flammability properties [J]. Polymer Degradation and Stability,2007,92:1813-1823.
    [13]KILIARIS P, PAPASPYRIDES C D. Polymer/layered silicate (clay) nanocomposites:An overview of flame retardancy [J]. Progress in Polymer Science,2010,35:902-958.
    [14]WANG L, SU S, CHEN D, et al. Variation of anions in layered double hydroxides:Effects on dispersion and fire properties [J]. Polymer Degradation and Stability,2009,94:770-781.
    [15]Szep A, Szabo A, Toth N, et al. Role of montmorillonite in flame retardancy of ethylene-vinyl acetate copolymer [J]. Polymer Degradation and Stability,2006,91:593-599.
    [16]LIAO C-S, YE W-B. Effect of surface states of layered double hydroxides on conductive and transport properties of nanocomposite polymer electrolytes [J]. Materials Chemistry and Physics,2004,88:84-89.
    [17]LIAO C-S, YE W-B. Structure and conductive properties of poly(ethylene oxide)/layered double hydroxide nanocomposite polymer electrolytes [J]. Electrochimica Acta,2004,49:4993-4998.
    [18]MAZINANI S, AJJI A, DUBOIS C. Morphology, structure and properties of conductive PS/CNT nanocomposite electrospun mat [J]. Polymer,2009,50:3329-3342.
    [19]ZHANG J, HAN H, WU S, et al. Conductive carbon nanoparticles hybrid PEO/P(VDF-HFP)/SiO2 nanocomposite polymer electrolyte type dye sensitized solar cells [J]. Solid State Ionics,2007,178:1595-1601.
    [20]CHAU J L H, TUNG C-T, LIN Y-M, et al. Preparation and optical properties of titania/epoxy nanocomposite coatings [J]. Materials Letters,2008,62:3416-3418.
    [21]DENG Y, SUN Y, WANG P, et al. In situ synthesis and nonlinear optical properties of Ag nanocomposite polymer films [J].Physica E: Low-dimensional Systems and Nanostructures,2008,40:911-914.
    [22]SPANO F, MASSARO A, CINGOLANI R, et al. Optical enhancement by means of concentration tuning of gold precursors in polymer nanocomposite materials [J]. Microelectronic Engineering,2011,In Press, Corrected Proof.
    [23]PEETERBROECK S, ALEXANDRE M, NAGY J B, et al. Polymer-layered silicate-carbon nanotube nanocomposites:unique nanofiller synergistic effect [J]. Composites Science and Technology,2004,64:2317-2323.
    [24]WANG Q, ZHANG X, PEI X. Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites [J]. Materials & Design,2010,31:3761-3768.
    [25]WETZEL B, HAUPERT F, QIU ZHANG M. Epoxy nanocomposites with high mechanical and tribological performance [J]. Composites Science and Technology,2003,63:2055-2067.
    [26]DI VONA M L, AHMED Z, BELLITTO S, et al. SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol-gel process [J]. Journal of Membrane Science,2007,296:156-161.
    [27]GULCEV M D, GORING G L G, RAKIC M, et al. Reagentless pH-based biosensing using a fluorescently-labelled dextran co-entrapped with a hydrolytic enzyme in sol-gel derived nanocomposite films [J]. Analytica Chimica Acta,2002,457:47-59.
    [28]SMARSLY B, GARNWEITNER G, ASSINK R, et al. Preparation and characterization of mesostructured polymer-functionalized sol-gel-derived thin films [J]. Progress in Organic Coatings,2003,47:393-400.
    [29]DROZDOV A D, DEC. CHRISTIANSEN J. Cyclic viscoplasticity of high-density polyethylene/montmorillonite clay nanocomposite [J].European Polymer Journal,2007,43:10-25.
    [30]QIN H, ZHAO C, ZHANG S, et al. Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite [J].Polymer Degradation and Stability,2003,81:497-500.
    [31]CHANG J-H, KIM S J, IM S. Poly (trimethylene terephthalate) nanocomposite fibers by in situ intercalation polymerization: thermo-mechanical properties and morphology (Ⅰ) [J]. Polymer,2004,45:5171-5181.
    [32]VAUGHAN B, PETER J, MARAND E, et al. Transport properties of aluminophosphate nanocomposite membranes prepared by in situ polymerization [J]. Journal of Membrane Science,2008,316:153-163.
    [33]YILMAZ O, CHEABURU C N, DURRACCIO D, et al. Preparation of stable acrylate/montmorillonite nanocomposite latex via in situ batch emulsion polymerization:Effect of clay types [J]. Applied Clay Science,2010, 49:288-297.
    [34]XU S, LIU A, CHEN Q, et al. Self-assembly nano-structure of type I collagen adsorbed on Gemini surfactant LB monolayers [J]. Colloids and Surfaces B:Biointerfaces,2009,70:124-131.
    [35]BALAN L, BURGET D. Synthesis of metal/polymer nanocomposite by UV-radiation curing [J].European Polymer Journal,2006,42:3180-3189.
    [36]DECKER C, KELLER L, ZAHOUILY K, et al. Synthesis of nanocomposite polymers by UV-radiation curing [J]. Polymer,2005,46:6640-6648.
    [37]VODNIK V V, BOZANIC D K, DZUNUZOVIC E, et al. Thermal and optical properties of silver-poly(methylmethacrylate) nanocomposites prepared by in-situ radical polymerization [J]. European Polymer Journal,2010,46:137-144.
    [38]TYAN H L, WU C Y. Effect of montmorillonite on thermal and moisture absorption properties of polyimide of different chemical structures [J]. Journal of Applied Polymer Science,2001,81:1742-1747.
    [39]USUKI A, KOJIMA Y, KAWASUMI M, et al. Synthesis of nylon-6-clay hybrid [J].Journal of Material Research,1993,8:1179-1183.
    [40]赵竹第,李强,欧玉春等.尼龙-6蒙脱土纳米复合材料的制备,结构与力学性能的研究[J].高分子学报,1997,5:519-523.
    [41]REICHERT P, KRESSLER J, THOMANN R, et al. Nanocomposites based on a synthetic layer silicate and poly-amide-12 [J].Acta Polymcrica,1998,49:116-123.
    [42]MESSERSMITH P B, GIANNELIS E P. Polymer-layered silicate nanocomposites:In-situ intercalative polymerization of 1-caprolactone in layered silicates [J]. Chemistry of Materials,1993,5:1064-1066.
    [43]PANTOUSTIER N, ALEXANDRE M, DEGEE P, et al. Poly (1-caprolactone) layered silicate nanocomposites:effect of clay surface modifiers on the melt intercalation process [J]. Polymer,2001,9:1-9.
    [44]PANTOUSTIER N, LEPOITTEVIN B, ALEXANDRE M, et al. Biodegradable polyester layered silicate nanocomposites based on Poly (1-caprolactone) [J]. Polymer Engineering and Science,2002,42:1928-1937.
    [45]ZHU J, MORGAN A B, LAMELAS F J, et al. Fire properties of polystyrene-clay nanocomposites [J]. Chemistry of Materials,2001,13:3774-3780.
    [46]OKAMOTO M, MORITA S, TAGUCHI H, et al. Synthesis and structure of smectic clay / poly (methylmethacrylate) and clay polystyrene nanocomposites via in situ intercalative polymerization [J]. Polymer,2000,41:3887-3890.
    [47]OKAMOTO M, MORITA S, KIM Y H, et al. Dispersed structure change of smectic clay / poly (methylmethacrylate) nanocomposites by copolymerization with polar comonomers [J]. Polymer,2001,42:1201-1206.
    [48]YAOK J, SONG M, HOURSTON D J, et al. Polymer / layered clay nanocomposites:2 Polyurethane nanocomposites [J]. Polymer,2002,43: 1017-1020.
    [49]TUDOR J, WILLINGTON L,O'HARE D, et al. Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerization catalyst [J].Chemical Communications,1996,2031-2032.
    [50]SUN T, GARCES J M. High-performance polypropylene-clay nanocomposites by in-situ polymerization with metallocene / clay catalysts [J]. Advanced Materials,2002,14:128-130.
    [51]ALEXANDRE M, OUBOIS P, SUN T, et al. Polyethylene-layered silicate nanocomposites prepared by the polymerization-filling technique: Synthesis and mechanical properties [J].Polymer,2002,43:2123-2132.
    [52]BERGMAN J S, CHEN H, GIANNELIS E P, et al. Synthesis and characterization of polyolefin-silicate nanocomposites:A catalyst intercalation and in situ polymerization approach [J]. Chemical Communications,1999,21:2179-2180.
    [53]MESSERSMITH P B, GIANNELIS E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chemistry of Materials,1994,6:1719-1725.
    [54]LAN T, PINNAVAIA T J. Clay-reinforced epoxy nanocomposites [J]. Chemistry of Materials,1994,6:2216-2219.
    [55]BECKER O, VARLEY R, SIMON G. Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins [J]. Polymer,2002,43:4365-4373.
    [56]Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Polymer Chemistry,1995,33:1047-1057.
    [57]JIMENEZ G, OGATA N, KAWAI H, et al. Structure and thermal / mechanical properties of poly (1-caprolactone)-clay blend [J]. Journal of Applied Polymer Science,1997,64:2211-2220.
    [58]ARANDA P, RUIZ-HITZKY E. Poly (ethyleneoxide)-silicate intercalation materials [J]. Chemistry of Materials,1992,4:1395-1403.
    [59]WU J, LERNER M M. Structural, thermal and electrical characterization of layered nanocomposites derived from sodium-montmorillonite and polyethers [J]. Chemistry of Materials,1993,5:835-838.
    [60]Hyun Y H, Lim S T, Choi H J, et al. Rheology of poly (ethyleneoxide)/organo clay nanocomposites. Macromolecules,2001,34:8084-8093.
    [61]Lim S K, Kim J W, Chin I, et al. Preparation and interaction characteristics of organically modified montmorillonite nanocomposites with miscible polymer blend of poly (ethyleneoxide) and poly (methylmethacrylate) [J]. Chemistry of Materials,2002,14:1989-1994.
    [62]Greenland D J. Adsorption of poly (vinylalcohols) by montmorillonite [J]. Journal of Colloid and Interface Science,1963,18:647-649.
    [63]Ogata N, Kawakage S, Ogihara T. Poly (vinylalcohOl)-clay and poly (ethyleneomde)-clay blend prepared using water as solvent [J]. Journal of Applied Polymer Science,1997,66:573-581.
    [64]Francis C W. Sorption of polyvjnylpyrrolidone on reference clay minerals [J].Soil Science,1973,115:40-54.
    [65]Vaia R A, Ishii H, Giannelis E P. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates [J].Chemistry of Materials,1993,5:1694-1696.
    [66]LIU L M, QI Z N, ZHU X G. Studies on Nylon6/clay nanocomposites by melt-intercalation process [J]. Journal of Applied Polymer Science,1999,71:1133-1138.
    [67]FORNES T D, YOON P J, HUNTER D L, et al. Effect of organoclay structure on nylon-6 nanocomposite morphology and properties [J]. Polymer,2002,43:5915-5933.
    [68]USUKI A, KATO M, OKADA A, et al. Synthesis of polypropylene-clay hybrid [J]. Journal of Applied Polymer Science,1997,63:137-138.
    [69]HASEGAWA N, KAWASUMI M, KATO M, et al. Preparation and mechanical properties of polypropylene-clay hybrids using amaleicanhydride-modified polypropylene oligomer [J]. Journal of Applied Polymer Science,1998,67:87-92.
    [70]吴立波,华幼卿.聚丙烯/马来酸酐接枝聚丙烯/蒙脱土纳米复合材料的非等温结晶研究[J].北京化工大学学报,2003,30:45-53.
    [71]LIU X, WU Q. PP/clay nanocomposites prepared by grafting melt intercalation [J]. Polymer,2001,42:10013-10019.
    [72]WANG K H, CHOI M H, K00 C M, et al. Synthesis and characterization of maleated polyethylene/clay nanocomposites [J].Polymer,2001,42:9819-9826.
    [73]USUKI A, TUKIGASE A, KATO M. Preparation and properties of EPMD-clay hybrids [J].Polymer,2002,43:2185-2189.
    [74]DAVIS C H, MATHIAS L J, GILMAN J W, et al. Effects of melt-processing conditions on the quality of poly (ethyleneterephthalate) montmorillonite clay nanocomposites [J]. Journal of Polymer Science Part B-Polymer Physics,2002,40:2661-2666.
    [75]CHISHOLM B J, MOORE R B, BARBER G, et al. Nanocomposites derived from sulfonated poly (butyleneterephthalate) [J]. Macromolecules,2002,35:5508-5516.
    [76]HUANG X, LEWIS S, BRITTAIN W J, et al. Synthesis of polycarbonate-layered silicate nanocomposites via cyclic oligomers [J]. Macromolecules,2000,33:2000-2004.
    [77]RAY S S, MAITI P, OKAMOTO M, et al. Newpolylactide/layered silicate nanocomposites.1. Preparation, characterization and properties [J].MacromolecuIe,2002,35:3104-3110.
    [78]MAITI P, YAMADA K, OKAMOTO M, et al. New polylactide/layered silicate nanocomposites:Role of organoclay [J]. Chemistry of Materials,2002,14:4654-4661.
    [79]PLUTA M, CALESKI A, ALEXANDRE M, et al. Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending:Structure and some physical properties [J]. Journal of Applied Polymer Science,2002,1497-1506.
    [80]PAUL M A, ALEXANDRE M, DEGEE P, et al. Newnanocomposite materials based on plasticized poly (L-lactide) and organo-modified montmorillonites:thermal and morphological study [J]. Polymer,2003,44:443-450.
    [81]RAY S S, YAMADA K, OKAMOTO M, et al. Newpolylactide/layered silicate nanocomposites.2. Concurrent improvements of material properties, biodegradability and melt rheology [J]. Polymer,2003,44:857-866.
    [82]RAY S S, OKAMOTO K, OKAMOTO M. Structure-property relationship in biodegradable poly (butylenesuccinate)/layered silicate nanocomposites [J]. Macromolecules,2003,36:2355-2367.
    [83]KIM B K, SEO J W, JEONG H M. Morphology and properties of waterborne polyurethane/clay nanocomposites [J]. European Polymer Journal,2003,39:85-91.
    [84]LEE S R, PARK H M, LIM H L, et al. Microstructure, tensileproperties and biodegradability of aliphatic polyester/clay nanocomposites [J]. Polymer,2002,43:2495-2500.
    [85]AIT HOCINE N, MEDERIC P, AUBRY T. Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure [J]. Polymer Testing,2008,27:330-339.
    [86]DEKA B K, MAJI T K. Effect of coupling agent and nanoclay on properties of HDPE, LDPE, PP, PVC blend and Phargamites karka nanocomposite [J]. Composites Science and Technology,2010,70:1755-1761.
    [87]DJOUANI F, HERBST F, CHEHIMI M M, et al. Synthesis, characterization and reinforcing properties of novel, reactive clay/poly(glycidyl methacrylate) nanocomposites [J]. Construction and Building Materials,2011,25:424-431.
    [88]DUNKERLEY E, KOERNER H, VAIA R A, et al. Structure and dynamic mechanical properties of highly oriented PS/clay nanolaminates over the entire composition range [J]. Polymer,2011,52:1163-1171.
    [89]KELNAR I, KHUNOV V, KOTEK J, et al. Effect of clay treatment on structure and mechanical behavior of elastomer-containing polyamide 6 nanocomposite [J]. Polymer,2007,48:5332-5339.
    [90]WANG Y-L, LEE B-S, CHANG K-C, et al. Characterization, fluoride release and recharge properties of polymer-kaolinite nanocomposite resins [J]. Composites Science and Technology,2007,67:3409-3416.
    [91]XIE Y, KOHLS D, NODA I, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanocomposites with optimal mechanical properties [J]. Polymer,2009,50:4656-4670.
    [92]刘立敏,乔放,朱晓光等.熔体插层制备尼龙6/蒙脱土纳米复合材料的性能表征[J].高分子通报,1998,3,304-310.
    [93]王胜杰,李强,漆宗能等.硅橡胶/蒙脱土纳米复合材料的制备、结构与性能[J].高分子学报,1998,2:149-153.
    [94]KOKABI M, SIROUSAZAR M, HASSAN Z M. PVA-clay nanocomposite hydrogels for wound dressing [J]. European Polymer Journal,2007,43:773-781.
    [95]LESZCZYNSKA A, NJUGUNA J, PIELICHOWSKI K, et al. Polymer/montmorillonite nanocomposites with improved thermal properties: Part Ⅱ. Thermal stability of montmorillonite nanocomposites based on different polymeric matrixes [J]. Thermochimica Acta,2007,454:1-22.
    [96]ZANETTI M, BRACCO P, COSTA L. Thermal degradation behaviour of PE/clay nanocomposites [J]. Polymer Degradation and Stability,2004,85:657-665.
    [97]ZHANG X, LOO L S. Synthesis and thermal oxidative degradation of a novel amorphous polyamide/nanoclay nanocomposite [J]. Polymer,2009,50:2643-2654.
    [98]DAVIS R D, GILMAN J W, VANDERHART D L. Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier [J]. Polymer Degradation and Stability,2003,79:111-121.
    [99]MENG N, ZHOU N-L, ZHANG S-Q, et al. Synthesis and antimicrobial activities of polymer/montmorillonite-chlorhexidine acetate nanocomposite films [J]. Applied Clay Science,2009,42:667-670.
    [100]PRAMODA K P, LIU T, LIU Z, et al. Thermal degradation behavior of polyamide 6/clay nanocomposites [J]. Polymer Degradation and Stability,2003,81:47-56.
    [101]乔放,李强,漆宗能等.聚酰胺/黏土纳米复合材料的制备、结构表征及性能研究[J].高分子通报,1997,3:135-143.
    [102]BURNSIDE S D, GIANNELIS E P. Synthesis and properties of new poly(dimethylsiloxane) nanocomposites [J]. Chemistry of Materials,1995,7:1597-1600.
    [103]CHOUDALAKIS G, GOTSIS A D. Permeability of polymer/clay nanocomposites:A review [J]. European Polymer Journal,2009,45:967-984.
    [104]HERRERA-ALONSO J M, MARAND E, LITTLE J, et al. Polymer/clay nanocomposites as VOC barrier materials and coatings [J]. Polymer,2009,50:5744-5748.
    [105]JIANG T, WANG Y-H, YEH J-T, et al. Study on solvent permeation resistance properties of nylon6/clay nanocomposite [J]. European Polymer Journal,2005,41:459-466.
    [106]KOH H C, PARK J S, JEONG M A, et al. Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes [J]. Desalination,2008,233:201-209.
    [107]SUN L, BOO W J, CLEARFIELD A, et al. Barrier properties of model epoxy nanocomposites [J]. Journal of Membrane Science,2008,318:129-136.
    [108]SUN Q, SCHORK F J, DENG Y. Water-based polymer/clay nanocomposite suspension for improving water and moisture barrier in coating [J]. Composites Science and Technology,2007,67:1823-1829.
    [109]TSAI T-Y, LIN W-H, LIN Y-Y, et al. Permeability property of Nylon 6 nanocomposite membranes with various clay minerals [J]. Desalination,2008,233:183-190.
    [110]XU B, ZHENG Q, SONG Y, et al. Calculating barrier properties of polymer/clay nanocomposites:Effects of clay layers [J].Polymer,2006,47:2904-2910.
    [111]CHATTOPADHYAY D K, WEBSTER D C. Thermal stability and flame retardancy of polyurethanes [J]. Progress in Polymer Science,2009,34:1068-1133.
    [112]JANG B N, COSTACHE M, WILKIE C A. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites [J]. Polymer,2005,46:10678-10687.
    [113]SAHOO P K, SAMAL R. Fire retardancy and biodegradability of poly(methyl methacrylate)/montmorillonite nanocomposite [J]. Polymer Degradation and Stability,2007,92:1700-1707.
    [114]SAMYN F, BOURBIGOT S, JAMA C, et al. Fire retardancy of polymer clay nanocomposites:Is there an influence of the nanomorphology? [J]. Polymer Degradation and Stability,2008,93:2019-2024.
    [115]ZHENG X, WILKIE C A. Flame retardancy of polystyrene nanocomposites based on an oligomeric organically-modified clay containing phosphate [J]. Polymer Degradation and Stability,2003,81:539-550.
    [116]GILMAN J W, KASHIWAGI T, LICHTENHAN J D. Nanocomposites:A revolutionary new flame retardant approach [J].SAMPE J,1997,33:40-46.
    [117]MASSAM J, PINNAVAIA T J. Mater. Res. Soc. Symp. Proc,1998,520:223.
    [118]QIN H, ZHANG S, LIU H, et al. Photo-oxidative degradation of polypropylene/montmorillonite nanocomposites [J]. Polymer,2005,46:3149-3156.
    [119]LOO L S, GLEASON K K. Investigation of polymer and nanoclay orientation distribution in nylon 6/montmorillonite nanocomposites [J]. Polymer,2004,45:5933-5939.
    [120]PERNYESZI T, DEKANY I. Surface fractal and structural properties of layered clay minerals monitored by small-angle X-ray scattering and low-temperature nitrogen adsorption experiments [J]. Colloid and Polymer Science,2003,281:73-78.
    [121]WANG S, ZHANG Y, REN W, et al. Morphology, mechanical and optical properties of transparent BR/clay nanocomposites [J]. Polymer Testing,2005,24:766-774.
    [122]王濮,潘兆橹,翁玲宝.系统矿物学·中册[M].地质出版社,1984.
    [123]BARCROFT F T, PARK D. Interactions on heated metal surfaces between zinc dialkyldithiophosphates and other lubricating oil additives [J].Wear,1986,108:213-234.
    [124]LENG A, STRATMANN M. The inhibition of the atmospheric corrosion of iron by vapour-phase-inhibitors [J].Corrosion Science,1993,34:1657-1683.
    [125]LENARD D R, MOORES J G. The effects of vapor phase corrosion inhibitors on the galvanic corrosion of aluminum [J]. Corrosion Science,1993,34:871-880.
    [126]BOYLE B. A look at developments in vapor phase corrosion inhibitors [J]. Metal Finishing.,2004,120:37-41.
    [127]OKADA A, KAWASUMI M, KURAUCHI T, et al. Synthesis and characterization of a nylon 6-clay hybrid [J]. Polymeric. Preprints.,1987,28:447-448.
    [128]GORRASI G, TORTORA M, VITTORIA V, et al. Vapor barrier properties of polycaprolactone montmorillonite nanocomposites:effect of clay dispersion [J]. Polymer,2003,44:2271-2279.
    [129]KE Z, YONGPING B. Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization [J]. Material. Letters.,2005,59:3348-3351.
    [130]PICARD E, GAUTHIER H, GEARD J F, et al. Influence of the intercalated cations on the surface energy of montmorillonites: Consequences for the morphology and gas barrier properties of polyethylene/montmorillonites nanocomposites [J]. Journal of Colloid and Interface Science,2007,307:364-376.
    [131]THOMASSIN J M, PAGNOULLE C, BIZZARI D, et al. Improvement of the barrier properties of Nafion(?) by fluoro-modified montmorillonite [J]. Solid State Ionics,2006,177:1137-1144.
    [132]SCHUMAN T, KARLSSON A, LARSSON J, et al. Characteristics of pigment-filled polymer coatings on paperboard [J].Preg. Org. Coat.,2005,54:360-371.
    [133]TAKAHASHI S, GOLDBERG H A, FEENEY C A, et al. Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings [J]. Polymer,2006,47:3083-3093.
    [134]MANSOURI J, BURFORD R P, CHENG Y B. Pyrolysis behaviour of silicone-based ceramifying composites [J]. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2006,425:7-14.
    [135]MICHALKOVA A, SZYMCZAK J J, LESZCZYNSKI J. Adsorption of 2,4-dinitrotoluene on dickite:The role of H-bonding [J]. Structural Chemistry,2005,16:325-337.
    [136]BALAN E, LAZZERI M, SAITTA A M, et al. First-principles study of OH stretching modes in kaolinite, dickite and nacrite [J]. American Mineralogist,2005,90:50-60.
    [137]FARMER V C. Transverse and longitudinal crystal modes associated with OH stretching vibrations in single crystals of kaolinite and dickite [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2000,56:927-930.
    [138]MICHALKOVA A, TUNEGA D, NAGY L T. Theoretical study of interactions of dickite and kaolinite with small organic molecules [J]. Journal of Molecular Structure-Theochem,2002,581:37-49.
    [139]SHOVAL S, YARIV S, MICHAELIAN K H, et al. Hydroxyl-stretching bands in curve-fitted micro-raman, photoacoustic and transmission infrared spectra of dickite from st. claire, pennsylvania [J]. Clays and Clay Minerals,2001,49:347-354.
    [140]CRUZ M D R, FRANCO F. Thermal decomposition of a dickite-hydrazine intercalation complex [J]. Clays and Clay Minerals,2000,48:586-592.
    [141]FRANCO F, CRUZ M D R. Thermal behaviour of dickite-dimethylsulfoxide intercalation complex [J]. Journal of Thermal Analysis and Calorimetry,2003,73:151-165.
    [142]FRANCO F, CRUZ M D R. A comparative study of the dehydroxylation process in untreated and hydrazine-deintercalated dickite [J]. Journal of Thermal Analysis and Calorimetry,2006,85:369-375.
    [143]ZAMAMA M, KNIDIRI M. IR study of dickite-formamide intercalate, A12Si205(OH)4-H2NCOH [J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy,2000,56:1139-1147.
    [144]MICHALKOVA A, GORB L, ILCHENKO M, et al. Adsorption of Sarin and Soman on Dickite:An ab Initio ONIOM Study [J].The Journal of Physical Chemistry B,2004,108:1918-1930.
    [145]MICHALKOVA A, GORB L, ZHIKOL O A. Theoretical Study of Adsorption of Methyl tert-butyl Ether on the Substituted Tetrahedral Surface of Dickite [J]. International Journal of Quantum Chemistry,2004,100:818-831.
    [146]ROBINSON T L, MICHALKOVA A, GORB L, et al. Hydrogen bonding of thymine and uracil with surface of dickite:An ab initio study [J]. Journal of Molecular Structure,2007,844:48-58.
    [147]Cremel S, Zamama O, Dossot M, et al. Sorption of Eu3+ on dickite particles studied by Raman, luminescence, and X-ray photoelectron spectroscopies [J].Comptes Rendus Chimie,2007,10:1050-1059.
    [148]CH00 C O, KIM S J. Dickite and other kaolin polymorphs from an al-rich clay deposit formed in volcanic tuff, southeastern korea [J]. Clays and Clay Minerals,2004,52:749-759.
    [149]VENIALE F, DELGADO A, MARINONI L, et al. Dickite genesis in the 'varicoloured' clay-shale formation of the Italian Apennines:an isotopic approach [J].Clay Minerals,2002,37:255-266.
    [150]BOZKAYA O, YALCIN H, BASIBUYUK Z, et al. Metamorphic-hosted pyrophyllite and dickite occurrences from the hydrous al-silicate deposits of the malatya-puturge region, central eastern anatolia, turkey [J]. Clays and Clay Minerals,2007,55:423-442.
    [151]PARNELL J, BARON M, BOYCE A. Controls on kaolinite and dickite distribution, Highland Boundary Fault Zone, Scotland and Northern Ireland [J]. Journal of The Geological Society,2000,157:635-640.
    [152]PATRIER P, BEAUFORT D, LAVERRET E, et al. High-grade diagenetic dickite and 2M1 illite from the middle proterozoic kombolgie formation (northern territory, australia) [J].Clays and Clay Minerals,2003,51:102-116.
    [153]CHEN P Y, WANG M K, YANG D S. Mineralogy of dickite and nacrite from northern taiwan [J]. Clays and Clay Minerals,2001,49:586-595.
    [154]CHEN C H, MAO C F, TSAI M S, et al. Influence of surface modification on the dispersion of nanoscale α-A1203 particles in a thermoplastic polyurethane matrix [J]. Journal of Applied Polymer Science,2008,110:237-243.
    [155]YUAN X P, LI C C, GUAN G H, et al. Surface grafting modification of fibrous silicates with polyvinylpyrrolidone and its application in nanocomposites [J]. Journal of Applied Polymer Science,2009,111:566-575.
    [156]AKBULUT S, ARASAN S, KALKAN E. Modification of clayey soils using scrap tire rubber and synthetic fibers [J].Journal of Applied Polymer Science,2007,38:23-32.
    [157]ARGUN M E, DURSUN S. A new approach to modification of natural adsorbent for heavy metal adsorption [J]. Bioresource Technology,2008,99:2516-2527.
    [158]LUO M L, TANG W, ZHAO J Q, et al. Hydrophilic modification of poly(ether sulfone) used TiO2 nanoparticles by a sol-gel process [J]. Journal of Materials Processing Technology,2006,172:431-436.
    [159]LI Z W, ZHU Y F. Surface-modification of SiO2 nanoparticles with oleic acid [J].Applied Surface Science,2003,211:315-320.
    [160]Madejov a J. FTIR techniques in clay mineral studies [J]. Vibrational Spectroscopy,2003,31:1-10.
    [161]YARIV, S. Red clays from Central and Eastern Crete:geochemical and mineralogical properties in view of provenance studies on ancient ceramics [J]. Applied Clay Science,2004,24:245-225.
    [162]ZHANG Z J, ZHANG L N, LI Y, et al. New fabricate of styrene butadiene rubber/montmorillonite nanocomposites by anionic polymerization [J].Polymer,2005,46,129-136.
    [163]DURAN N G, KARAKISLA M, AKSU L, et al. Conducting polyaniline/kaolinite composite:Synthesis, characterization and temperature sensing properties [J]. Materials chemistry and physics,2009,118:93-98.
    [164]ESSAWY H A, YOUSSEF A M, ABD EI-HAKIM A A, et al. Exfoliation of Kaolinite Nanolayers in Poly(methylmethacrylate) Using Redox Initiator System Involving Intercalating Component [J]. Polymer-plastics Technology and Engineering,2009,48:177-184.
    [165]ELBOKL T A, DETELLITE C. Kaolinite-poly(methacrylamide) intercalated nanocomposite via in situ polymerization [J]. Canadian Journal of Chemistry-Revue Canadienne De Chimie,2009,87:272-279.
    [166]LI Y F, ZHANG B, PAN X B. Preparation and characterization of PMMA-kaolinite intercalation composites [J]. Composites Science and Technology,2008,9:1954-1961.
    [167]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展[J].橡胶合成工业,2002,25:190-193.
    [168]WANG B X, ZHAO X P. The influence of intercalation rate and degree of substitution on the electrorheological activity of a novel ternary intercalated nanocomposite [J]. Journal of Solid State Chemistry,2006,3:949-954.
    [169]BROCORENS P, BENALI S, BROEKAERT C, et al. Microscopic morphology of chlorinated polyethylene-based nanocomposites synthesized from poly(epsilon-caprolactone)/clay masterbatches [J]. Langmuir,2008,5:2072-2080.
    [170]GARDOLINSKI J E, RAMOS L P, DE SOUZA G P, et al. Intercalation of benzamide into kaolinite [J]. Journal of Colloid and Interface science,2000,2:284-290.
    [171]MICHALKOVA A, TUNEGA D, NAGY L T. Theoretical study of interactions of dickite and kaolinite with small organic molecules [J]. Journal of molecular structure,2002,581:37-49.
    [172]SUN D, LI B, LI Y F, et al. Characterization of exfoliated/delamination kaolinite [J]. Materials Research Bulletin,2011,46:101-104.
    [173]GARDOLINSKI J E, WYPYCH F, CANTAO M P. Exfoliation and hydration of kaolinite after intercalation with urea [J].Quimica Nova,2001,6:761-767.
    [174]VASKOVA M, RIEDER M, MATEJKA V, et al. Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates [J]. Applied Clay Science,2007,35:108-118.
    [175]王万军.高岭石有机插层复合物的制备、表征及应用探讨[D].湖南:中南大学地学与环境工程学院,2005.
    [176]VALA S KOVA M, RIEDER M, MAT E JKA V, et al. Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates Original Research Article [J].Applied Clay Science,2007,35:108-118.
    [177]FROST R L, TRAN T H, KRISTOF J. The structure of an intercalated ordered kaolinite; a Raman microscopy study [J].Clay Minerals,1997,32:587-596.
    [178]ONODA H, NARIAI H, MAKI H, et al. Addition of urea or biuret on synthesis of rhabdophane-type neodymium and cerium phosphates [J]. Journal of Materials Synthesis and Processing,2002,10:121-126.
    [179]ABRAMOVA E, LAPIDES I, YARIV S. Thermo-XRD investigation of monoionic montmorillonites mechanochemically treated with urea [J]. Journal of Thermal Analysis and Calorimetry,2007,90:99-106.
    [180]RUTKAI G, MAKO E, KRISTOF T. Simulation and experimental study of intercalation of urea in kaolinite [J]. Journal of Colloid and Interface Science,2009,334:65-69.
    [181]VALA S KOVA M, RIEDER M, MAT E JKA V, et al. Exfoliation/delamination of kaolinite by low-temperature washing of kaolinite-urea intercalates [J]. Applied Clay Science,2007,35:108-118.
    [182]Akbulut S, Arasan S, Kalkan, E. Modification of clayey soils using scrap tire rubber and synthetic fibers [J]. Applied Clay Science,2007,38:23-32.
    [183]ARGUN M E, DURSUN S. A new approach to modification of natural adsorbent for heavy metal adsorption [J]. Bioresource Technology,2008,99:2516-2527.
    [184]KORNILOV V M, LACHINOV A N. STM surface modification of the Si-SiO-polymer system [J]. Microelectronic Engineering,2003,69:399-404.
    [185]SANCHEZ-GARCIA M D, GIMENEZ E, LAGARON J M. Morphology and barrier properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates [J]. Journal of Applied Polymer Science,2008,108:2787-2801.
    [186]FRANCO F, CRUZ M D R. A comparative study of the dehydroxylation process in untreated and hydrazine-deintercalated dickite [J]. Journal of Thermal Analysis and Calorimetry,2006,85:369-375.
    [187]Yeh J M, Kuo T H, Huang H J, et al. Preparation and characterization of poly(o-methoxyaniline)/Na+-MMT clay nanocomposite via emulsion polymerization:Electrochemical studies of corrosion protection [J]. European Polymer Journal,2007,43:1624-1634.
    [188]BARCROFT F T, PARK D. Interactions on heated metal surfaces between zinc dialkyldithiophosphates and other lubricating oil additives [J]. Wear,1986,108:213-234.
    [189]OUHADI V R, YONG R N. Impact of clay microstructure and mass absorption coefficient on the quantitative mineral identification by XRD analysis [J]. Applied Clay Science,2003,23:141-148.
    [190]ZHENG H M, LIU X H, YANG S B, et al. New approach for preparation of ultrafine Cu particles and shell/core compounds of Cu/CuO and Cu/Cu2O [J]. Journal of Materials Science,2005,40:1039-1041.
    [191]XIA X P, CAI S Z, XIE C S. Preparation, structure and thermal stability of Cu/LDPE nanocomposites [J]. Materials Chemistry and Physics,2006,95:122-129.
    [192]LI P, TAN T C, LEE J Y. Corrosion protection of mild steel by electroactive polyaniline coatings [J]. Synthetic Metals,1997,88:237-242.
    [193]LENZ D M, DELAMAR M, FERREIRA C A. Improvement of the anticorrosion properties of polypyrrole by zinc phosphate pigment incorporation [J]. Progress in Organic Coatings,2007,58:64-69.
    [194]WANG J, TORARDI C C, DUCH M W. Polyaniline-related ion-barrier anticorrosion coatings:II. Protection behavior of polyaniline, cationic, and bipolar films [J]. Synthetic Metals,2007,157:851-858.
    [195]XIA X P, CAI S Z, HU J H. Water absorption characteristics of novel Cu/LDPE nanocomposite for use in intrauterine devices [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79:345-352.
    [196]CAI Y, HUANG F, WEI Q, et al. Structure, morphology, thermal stability and carbonization mechanism studies of electrospun PA6/Fe-OMT nanocomposite fibers [J]. Polymer Degradation and Stability,2008,93:2180-2185.
    [197]KNILL C J, KENNEDY J F, MISTRY J, et al. Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings [J]. Carbohydrate Polymers,2004,55:65-76.
    [198]DAN Z G, NI H W, XU B F, et al. Microstructure and antibacterial properties of AISI 420 stainless steel implanted by copper ions [J].Thin Solid Films,2005,492:93-100.
    [199]GOLEBIEWSKI J, ROZANSKI A, DZWONKOWSKI J, et al. Low density polyethylene-montmorillonite nanocomposites for film blowing [J]. European Polymer Journal,2008,44:270-286.
    [200]HUANG Y, YANG K, DONG J-Y. An in situ matrix functionalization approach to structure stability enhancement in polyethylene/montmorillonite nanocomposites prepared by intercalative polymerization [J]. Polymer,2007,48:4005-4014.
    [201]YANG H-M, SONG Y-H, XU B, et al. Preparation of Exfoliated Low-density Polyethylene/Montmorillonite Nanocomposites Through Melt Extrusion [J].Chemical Research in Chinese Universities,2006,22:383-387.
    [202]YANG H-M, ZHENG Q, DU M. Rheological Behavior of the Melts for Polyethylene-based Montmorillonite Nanocomposites [J]. Chemical Research in Chinese Universities,2006,22:651-657.
    [203]Morawiec J, Pawlak A, Slouf M, et al. Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites [J]. European Polymer Journal,2005,41:1115-1122.
    [204]Chow W S. Water absorption of epoxy glass fiber organo-montmorillonite nanocomposites [J]. Express Polymer Letters,2007,1:104-108.
    [205]Abacha N, Kubouchi M, Tsuda K, et al. Performance of epoxy-nanocomposite under corrosive environment [J]. Express Polymer Letters,2007,1:364-369.
    [206]Choi Y S, Choi M H, Wang K H. Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization [J]. Macromolecules,2001,34:8978-8985.
    [207]Tyan H, Leu C, Wei K. Effect of reactivity of organics-modified montmorillonite on the thermal and mechanical properties of montmorillonite/polyimide nanocomposites [J]. Chemistry of Materials,2001,13:222-226.
    [208]Yeh J M, Kuo T H, Huang H J, et al. Preparation and characterization of poly(o-methoxyaniline)/Na+-MMT clay nanocomposite via emulsion polymerization:Electrochemical studies of corrosion protection [J].European Polymer Journal,2007,43:1624-1634.
    [209]Yu T S, Lin J P, Xu J F, et al. Nanocomposites of Vinyl Chloride-Acrylonitrile Copolymer and Silica [J]. Journal of Polymer Science Part B-Polymer Physics,2005,43:3127-3134.
    [210]Dietsche F, Mulhaupt R. Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates [J]. Polymer Bulletin,1999,43:395-402.
    [211]郑水林.非金属矿加工与应用[M].化学工业出版社,2003.
    [212]AL-DEGS Y, KHRAISHEH M A M, TUTUNJI M F. Sorption of lead ions on diatomite and manganese oxides modified diatomite [J].Water Research,2001,35:3724-3728.
    [213]KHRAISHEH M A M, AL-DEGS Y S, MCMINN W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite [J]. Chemical Engineering Journal,2004,99:177-184.
    [214]赵华文,黄志桂.酸浸硅藻土制取橡胶补强填料的研究[J].无机盐工业,1997,(3):11-13.
    [215]陈庸勋,贝丰,宋振亚等.云南腾冲盆地硅藻土中有机质的初步研究[J].矿物岩石,1986,(4):68-77.
    [216]袁鹏,吴大清,林种玉等.硅藻土表面羟基的漫反射红外光谱(DRIFT)研究[J].光谱学与光谱分析,2001,21:783-786.
    [217]JANOTKA I, KISS S, BASLIK R. Geosynthetic mat Tatrabent--development, production and application [J]. Applied Clay Science,2002,21:21-31.
    [218]NAPOLA A, PIZZIGALLO M D R, DI LEO P, et al. Mechanochemical approach to remove phenanthrene from a contaminated soil [J]. Chemosphere,2006,65:1583-1590.
    [219]杨宇翔,陈荣三,戴安邦.国产硅藻土结构的研究[J].化学学报,1996,54:57-63.
    [220]OMNES B, THUILLIER S, PILVIN P, et al. Effective properties of carbon black filled natural rubber:Experiments and modeling [J]. Composites Part A:Applied Science and Manufacturing,2008,39:1141-1149.
    [221]孙良栋.纳米蒙脱土在轮胎用橡胶中的应用研究[D].山东:青岛大学,2009.
    [222]王益庆.层状铝硅酸盐/橡胶纳米复合材料制备机理及工业化技术研究[D].北京:北京化工大学.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700