用户名: 密码: 验证码:
采动煤岩瓦斯动力灾害致灾机理及微震预警方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤与瓦斯突出是复杂的矿山动力灾害现象之一,目前是煤矿工程中的世界性难题。严重的瓦斯突出灾害不仅造成巨大的经济损失,而且还可能造成重大的人员伤亡。近年来煤矿动力灾害事故更是频频发生,特别是煤矿日渐转入深部开采后,煤岩高地应力、高瓦斯压力及高渗透性的现象愈加明显,以瓦斯突出等为主的煤矿动力灾害已成为我国工业安全领域的主要灾害,给煤矿的高效安全开采带来更多的技术难题。本文以淮南新庄孜矿六水平典型的强突出工作面为研究对象,通过理论分析、数值模拟、数理统计理论、非线性分形理论以及现场工业性试验等手段,提出了煤与瓦斯突出致灾机理及危险性预警的新思路、新方法,着重探讨了诱发煤岩突出灾害的本质机理和微破裂前兆规律。另外,借助于微震监测技术,重点阐述了采掘工作面煤与瓦斯突出危险性评价指标与预警模型,系统研究了采场覆岩采动裂隙的演化特征与瓦斯富集区的确定方法,取得了一些有意义的研究成果。
     基于含瓦斯煤岩破裂过程气固耦合作用模型,采用RFPA2D-GasFlow程序一方面分析并完善了应力场-损伤场-瓦斯渗流场的多场耦合时空演化规律;另一方面模拟再现了瓦斯突出过程背景应力场演化特征及其微破裂前兆活动信息的规律。
     运用RFPA2D软件模拟了载荷下煤岩样的初始裂纹出现及扩展过程,揭示了煤岩破坏过程的微震效应及其演化规律,进一步验证了煤岩破裂过程中存在的微震现象。研究表明,微震效应在研究煤岩体微裂纹、微缺陷的演化规律和力学机制以及局部变形特征有着独特的优势,借助于该特征可以实现对煤岩破坏过程的实时动态监测,从而为瓦斯突出动力灾害的预测预报提供了技术基础。
     为了满足煤矿井下对微震监测系统的要求,研制开发、改进并重新设计了系统的部分软硬件设备与安装装置及其安装方法;采取人工爆破试验标定波速模型的方法,研究了监测区域波速的优化选取及其对震源定位精度的影响,并提出了传感器的布置原则;基于长短项平均值法(STA/LTA)信号检测滤除原理,建立了一套多参量识别与滤除噪音的综合分析方法,并对滤出后的信号在三维可视化图中进行了标定。
     考虑到评价指标的时间效应,建立了突出危险性长短时评价指标;基于正态分布函数理论,建立了描述突出危险性的2σ预警模型,并采取人工放炮诱发煤与瓦斯突出的方法,验证了上述预警模型的可行性。研究了断层滑移失稳力学机制及准则,推导了断层结构力学模型,阐述了断层带活动规律与突出之间的关系。结合实例分析,深入研究了2σ预警模型评价掘进及其含断层巷道突出危险性的过程,并采取多种方法对预警结果进行了校检,证明了2σ预警模型的可靠性。
     结合覆岩破坏的基本理论,建立了采动覆岩的力学模型,揭示了覆岩内分别形成了拉应力及剪应力区,且拉应力区主要分布在冒落带破断线之内;剪应力区主要分布在竖向裂隙带内。采用数值模拟的方法对覆岩采动裂隙的初始萌发、扩展直至宏观裂纹贯通的过程及其声发射、能量的动态演化规律进行了详细的分析。并运用分形几何理论,定量地描述了覆岩破坏是一个降维有序、耗散结构的发展过程。在留巷钻孔法抽采卸压瓦斯机理的基础上,提出了覆岩裂隙区内存在着一个不规则闭合的“圆柱形横卧体”竖向裂隙场的观点,并依据该裂隙场的分布规律对顶板倾向低位钻孔进行了优化。
Coal and gas outburst is one of the complex dynamic disasters and also the difficult subject worldwide in this area. Generally, serious outburst disasters not only cause huge economic losses, but also engender possibly great casualties. Over recent years, the disasters of coal and gas outburst occur more frequently, especially after the coal mines are being gradually transferred to deep mines, the phenomenon of high geo-stress, gas pressure and permeability become increasingly apparent, has become a major disaster mainly from outburst of industrial safety field in China, bringing more technical difficulties on the early-warning and control of coal and gas outburst. In this paper, taking some typical strong outburst face of sixth level in Xinzhuangzi coal mine, in Huainan as the research object, A new idea and new method for hazard mechanism and early-warning of coal and gas outburst is proposed, furthermore, the essence mechanism and micro-fracture precursor law for induced outburst are mainly discussed with the use of the theoretical analysis, numerical simulation, mathematical statistics theory, non-linear fractional theory and industrial field tests, In addition, the evaluation indexes and early-warning model of coal and gas outburst hazard in extracting coal face are emphatically elaborated, and the evolution features and gas-rich region determining method of overlying rock mining crack are systematically studied by means of microseismic monitoring technology, consequently some significant research results have been obtained.
     Based on the gas-solid coupling model of coal-rock with gas failure process, on one hand, the multi-field coupling evolution law for stress field, fracture field and seepage field is analyzed and improved; on the other hand, the evolution features for background stress field and its activity information for micro-fracture precursor of outburst process are simulated reconstruction by using of RFPA2D-GasFlow.
     The process of initial cracks occurring and extending for coal-rock sample under vertical loading is simulated in terms of RFPA2D, the microseismic effect and its evolution law of coal-rock failure process is revealed deeply, and the microseismic phenomenon is further verified. The results show that the microseismic effect has its special advantage to study evolution law of micro-cracks, mechanical mechanism and local deformation features for coal-rock mass, and based on this feature, the failure process of coal-rock is real-time and dynamic monitored, finally, which provides technical basis for prediction and forecast of gas outburst disasters.
     In order to meet the needs of microseismic monitoring system for coal mine underground, part of system software-hardware equipments, installation devices and its installation method are developed, improved or redesigned. Taking the artificial burst test to calibrate velocity model method, the optimization of velocity selection for monitoring area and its effects on the source location accuracy are studied, and the layout principle for sensors also put forward. A set of comprehensive analysis method for multi-parameters identifying and filtering out noise is established based on the long and short average method (STA/LTA) detecting principle for complicated signals.
     Taking time effect evaluation into account, the evaluation index of outburst hazard length is established; on account of the normal distribution theory, a 2 a warning model is established to describe outburst hazard, the feasibility of which is verified by manual blasting inducing coal and gas outburst. The mechanical mechanism and criterion of slip instability is investigated, and then the mechanical model of fault structure is derived, based on the above, the relationship between fault zone activity law and outburst is derived. Combined with case analysis, the outburst hazard evaluate process of the tunneling and roadways with faults with the 2 a warning model is further studied, and then whose warning results are checked in various ways, which proved the reliability of 2 a model.
     With the basic overburden rock failure theory, a mining overburden mechanical model, which believes that tensile and shear stress areas are respectively formed within overburden zone, is established, the tensile stress mainly distributes within break line of caving zone, and the shear one within the vertical fracture zone. A detailed analysis by numerical simulation is carried out for the initial fracture germination, propagation until macroscopic extension, the acoustic emission property and the energy dynamic evolution of overburden. With the fractal geometry theory, a quantitative description of overburden failure process is reduced ordered and dissipative. Based on the mechanism of mining pressure relieved gas with roadway retained drilling, we believed that there is an irregular and close vertical fracture field which is a "cylindrical lying mass" within the fracture zone. According to the distribution law of the field, low order drilling on the roof is optimized.
引文
[1]陆菜平.组合煤岩的强度弱化减冲原理及其应用[D].徐州:中国矿业大学矿业学院,2008.
    [2]能源[EB/OL].(2010,10,25)[2010,12,11].http://baike.baidu.com/view/21312.htm.
    [3]山西国阳新能股份有限公司投资价值分析报告[EB/OL].(2003,08,01)[2010,12,11]. http://www.htsec.com/htsec/jsp/gpzx-content/content.jsp?guid={B7AF92E8-C400-11D7-A FCE-52544CBC51C1}&type=5.
    [4]2050年煤炭在我国一次性能源中所占比例不低于50%[EB/OL].(2003,09,19)[2010,12,11]. http://www.coal.com.cn/Gratis/2003-9-19/ArticleDisplay_82199.shtml.
    [5]倪维斗.新能源发展规划不应忽视煤[EB/OL].(2009,08,12)[2010,12,11]. http://www.stdai ly.com/kjrb/content/2009-08/12/content_93048.htm.
    [6]吴吟.在煤矿瓦斯防治(集中整治)领导小组办公室主任会议上的讲话[EB/OL].(2010,06,29) [2010,12,12].http://www.stdaily.com/kjrb/content/2009-08/12/content 93048.htm.
    [7]关闭小煤窑,矿灾可大减[EB/0L].(2010,12,01)[2010,12,11].http://source.takungpao.com/new/10/12/04/ZM-1328077.htm.
    [8]煤矿瓦斯治理“攻坚战”大事记[EB/OL].(2008,07,25)[2010,12,11]. http://www.aqsc.cn/10805/101994/102941/102957/102968、95157.html
    [9]我国启动煤矿安全科技专项以遏制煤矿事故多发[EB/OL].(2005,02,25)[2010,12,11]. http://news.sohu.com/20050225/n224423676.shtml.
    [10]瓦斯[EB/OL].(2005,07,19)[2010,12,11].http://baike.baidu.com/view/1162.htm.
    [11]孙文革,李纯宝.煤与瓦斯突出机理研究现状[J].山东煤炭科技,2009(6):163-165.
    [12]李希建,林伯泉.煤与瓦斯突出机理研究现状及分析[J].煤田地质与勘探,2010,38(1):7-13.
    [13]王永祥,杜卫新.煤与瓦斯突出机理研究进展[J].煤炭技术,2008,27(8):89-91.
    [14]李晓伟.复杂地质条件下石门及井筒揭煤突出危险性快速预测研究[D].徐州:中国矿业大学,2009.
    [15]河南伊川煤矿爆炸,据称井下约有百余人[EB/OL].(2010,04,01)[2010,12,11]. http://www.xjrb.com/2010/0401/153488.html.
    [16]瓦斯爆炸[EB/OL].(201O,07,07)[2010,12,11].http://baike.baidu.com/view/427.htm.
    [17]什么是煤与瓦斯突出?其基本特征是什么?[EB/OL].(2010,08,10)[2010,12,11]. http://www.mining120.com/html/1008/20100810_19411.asp?pay=&page=1.
    [18]煤与瓦斯突出的预兆有哪些?[EB/OL].(2010,01,16)[2010,12,11]. http://zhidao.baidu.com/question/133629458.
    [19]常先隐.浅谈煤与瓦斯突出的机理、类型与一般规律[J].科技信息,2007(30):634-635.
    [20]煤与瓦斯突出[EB/OL].(2010,07,19)[2010,12,11]. http://baike.baidu.com/view/685457.htm.
    [21]李国瑞,罗新荣,郑永昆,等.煤与瓦斯突出机理研究现状及研究新思路[J].能源技术与管理,2010,(1):21-23.
    [22]高芸,谭松,谢晓光,等.关于对高瓦斯矿井瓦斯涌出量的简要分析[J].煤矿现代化,2010,98(5):44-46.
    [23]辽宁省阜新矿业(集团)有限责任公司孙家湾煤矿海州立井“2.14”特别重大瓦斯爆炸事故调查报告[EB/OL]. (2005,05,13)[2010,12,12]. http://www. chinasafety. gov. cn/zhengwugongkai/2005-05/13/content_140400. htm.
    [24]山西同煤集团轩岗煤电公司焦家寨煤矿”11.5”特别重大瓦斯爆炸事故[EB/OL]. (2007,05,11) [2010,12,12]. http://www. chinasafety. gov. cn/2007-05/11/content_236877. htm.
    [25]国家安全监管总局、国家煤矿安监局关于山西省临汾市洪洞县瑞之源煤业有限公司“12.5”特别重大瓦斯爆炸事故的通报[EB/OL]. (2007,12,07)[2010,12,12]. http://news. xinhuanet. com/politics/2007-12/27/content_7322806. htm.
    [26]辽宁省阜新市清河门区河西镇第八煤矿“9.4”重大瓦斯爆炸事故[EB/OL]. (2008,09,04) [2010,12,12]. http://ziliao. aqsc. cn/TACC_archives/2008Archives/103250/132224. html.
    [27]国务院安委会办公室关于黑龙江省龙煤矿业集团股份有限公司鹤岗分公司新兴煤矿“11·21”特别重大煤(岩)与瓦斯突出和瓦斯爆炸事故调查处理结果的通报[EB/OL]. (2010,12,10) [2010,12,12]. http://www. chinacoal-safety. gov. cn/Contents/Channel_5475/2010/1210/117185/content_117185.htm.
    [28]国家安全监管总局国家煤矿安监局关于河南省洛阳市伊川县国民煤业有限公司“3·31”特别重大煤与瓦斯突出事故的通报[EB/OL]. (2010,04,07)[2010,12,12]. http://www. chinasafety. gov. cn/newpage/Contents/Channel_5476/2010/0407/89878/ content_89878. htm.
    [29]段东.煤与瓦斯突出影响因素及微震前兆分析[D].沈阳:东北大学,2009.
    [30]于不凡.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2005.
    [31]Lama RD, Bodziony J. Management of outburst in underground coal mines[J]. International Journal of Coal Geology,1998,25:83-115.
    [32]Cao Yunxing, He Dingdong, Glick DC. Coal and gas outbursts in footwalls of reverse faults[J]. International Journal of Coal Geology,2001,48:47-63.
    [33]霍多特,B.B.(宋世钊、王佑安译).煤与瓦斯突出机理[M].北京:中国工业出版社,1966.3-16.
    [34]Karev V I, Kovalenko Y F. Theoretical model of gas filtration in gassy coal seams[J]. Soviet Mining Science,1989,24(6):528-536.
    [35]Gray I. The mechanism of, and energy release associated with outbursts. Symposium on occurrence, prediction and control of outbursts in coal mines. Aust. Inst. Min. Metall, Melbourne,1980.111-125.
    [36]Paterson, L. A model for outburst in coal[J]. International Journal of Rock Mechanics and Mining Science. Geomechanics. Abstract.1986,23,327-332.
    [37]Litwiniszyn, J. A model for the initiation of coal-gas outbursts[J]. International Journal of Rock Mechanics and Mining Science. Geomechanics. Abstract.1985,22: 39-46.
    [38]周世宁,孙辑正.煤层瓦斯流动理论及其应用[J].煤炭学报,1965,2(1):24-36.
    [39]周世宁.瓦斯在煤层中的流动机理[J].煤炭学报,1990,15(1):61-67.
    [40]周世宁,林伯泉.煤层瓦斯赋存及流动规律[M].北京:煤炭工业出版社,1998,14-16.
    [41]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理.煤与瓦斯突出机理和预测预报第三次科研工作及学术交流会议论文集,1983.3-11.
    [42]李中成.煤巷掘进工作面煤与瓦斯突出机理探讨[J].煤炭学报,1987,3(1):17-27.
    [43]谈庆明,俞善炳,朱怀,等.含瓦斯煤在突然卸压下的开裂破坏[J].煤炭学报,1997,22(5):514-518.
    [44]余善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988,20(2):97-105.
    [45]余楚新,鲜学福.煤层瓦斯渗流有限元分析中的几个问题[J].重庆大学学报,1994,4.
    [46]张广洋,谭学术,鲜学福,等.煤层瓦斯运移的数学模型[J].重庆大学学报,1994,4.
    [47]李萍丰.浅谈煤与瓦斯突出机理的假说-二相流体假说[J].煤矿安全.1989.(11).
    [48]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990,22(2):154-162.
    [49]佩图霍夫и M.预防冲击地压的理论与实践.第22届国际采矿安全会议论文集[C].北京:煤炭工业出版社,1987.
    [50]Valliappan S., Zhang Wohua. Numerical modeling of methane gas migration in dry coal seams[J]. Geomechanics Abstracts,1997,1:10.
    [51]Dziurzynski W, Krach A. Mathematical model of methane emission caused by a collapse of rock mass crump [J]. Archives of Mining Sciences,2001,46 (4):433-449
    [52]何学秋.含瓦斯煤的流变特性及其对煤与瓦斯突出的影响[D].徐州:中国矿业大学,1990.
    [53]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1992.
    [54]蒋承林,俞启香.煤与瓦斯突出的球壳失稳假说[J].煤矿安全.1995,2:17-25.
    [55]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报,1999,22(6):80-84.
    [56]章梦涛,潘一山,梁冰,等.煤岩流体力学[M].北京:科学出版社,1995.107-109,158-16.
    [57]赵阳升.煤体-瓦斯耦合数学模型与数值解法[J].岩石力学与工程学报,1994,(3):229-239.
    [58]刘建军,张盛宗,刘先贵,等.裂缝性低渗透油藏流-固耦合理论与数值模拟[J].力学学报,2002,34(5):779-784.
    [59]赵国景,步道远.煤与瓦斯突出的固-流两相介质力学理论及数值分析[J].工程力学,1995,12(2):1-7.
    [60]丁继辉,麻玉鹏,赵国景等.煤与瓦斯突出的固-流耦合失稳理论及数值分析[J].工程力学,1999,16(4):47-56.
    [61]封富.地震与煤与瓦斯突出统一机理研究[D].阜新:辽宁工程技术大学,2003.
    [62]张国辉.煤层应力状态及煤与瓦斯突出防治研究[D].阜新:辽宁工程技术大学,2005.
    [63]张玉贵.构造煤演化与力化学作用[D].太原:太原理工大学,2006.
    [64]赵玉林.煤与瓦斯突出机理及防治技术研究[D].阜新:辽宁工程技术大学,2007.
    [65]郭德勇.煤与瓦斯突出的构造物理环境及其应用[J].北京科技大学学报.2002,24(6):581-592.
    [66]马中飞.俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报.2006,31(3):329-333.
    [67]韩军.向斜构造煤与瓦斯突出机理探讨[J].煤炭学报.2008,33(8):908-913.
    [68]颜爱华,徐涛.煤与瓦斯突出的物理模拟与数值模拟研究[J].中国安全科学学报.2008,18(9):37-42.
    [69]唐春安,刘红元,刘建新.瓦斯突出过程的数值模拟研究[J].煤炭学报.2000,25(5):501-505.
    [70]徐涛,唐春安,宋力,等.含瓦斯煤岩破裂过程流固耦合数值模拟[J].岩石力学与工程学报.2005,24(10):1667-1672.
    [71]防治煤与瓦斯突出细则[M].北京:煤炭工业出版社,1995.
    [72]撒占友,何学秋,王恩元.煤岩流变电磁辐射效应及突出预测[M].北京:煤炭工业出版社,2006.
    [73]聂百胜,何学秋,王恩元,等.煤与瓦斯突出预测技术研究现状及发展趋势[J].中国安全科学学报.2003,13(6):40-43.
    [74]孙忠强,苏昭桂,张金锋.煤与瓦斯突出预测预报技术研究现状及发展趋势[J].能源技术与管理.2008(2):56-57.
    [75]杨羽,陈长华,李春财.煤与瓦斯突出预测及防治措施[J].辽宁工程技术大学学报.2010,29(5)增:5-7.
    [76]彭立世.用地质观点进行煤与瓦斯突出预测[J].煤矿安全,1985,12.
    [77]杨陆武,彭立世,曹运兴.应用瓦斯地质单元法预测煤与瓦斯突出[J].中国地质灾害与防治学报,1997,8(3):21-26.
    [78]张宏伟,陈学华,王魁军.地层结构的应力分区与煤瓦斯突出预测分析[J].岩石力学与工程学报.2000,19(4):464-466.
    [79]郭德勇,韩德馨,张建国.平顶山矿区构造煤分布规律及成因研究[J].煤炭学报.2003,13(6):249-253.
    [80]H.埃克尔,H.I.卡藤贝格.利用通风监测技术预报煤与瓦斯突出[J].煤炭工程师,1990(4):51-56.
    [81]苏文叔.利用瓦斯涌出动态指标预测煤与瓦斯突出[J].煤炭工程师,1996(5):1-7.
    [82]卢欣祥.河南省秦岭-大别山地区燕山期中酸性小岩体的基本地质特征及成矿专属性[J]河南地质,1983,1(1):49-55.
    [83]彭苏萍.不同结构类型煤体地球物理特征差异分析和纵横波联合识别与预测方法研究[J].地质学报.2008,82(10):1311-1322.
    [84]V. I. Frid. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Applied Geophysics,1997,38(2):97-104.
    [85]撒占有,何学秋,王恩元.煤岩流变电磁辐射效应及突出预测[M].北京:煤炭工业出版社,2006.
    [86]王恩元,何学秋,聂百胜,等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报.2000,29(3):225-229.
    [87]王恩元,何学秋,窦林名,等.煤矿采掘过程中煤岩体电磁辐射特征及应用[J].地球物理学报.2005,48(1):216-221.
    [88]秦汝祥.煤与瓦斯突出预报研究现状综述[J].能源技术与管理.2005(1):7-9.
    [89]石显鑫,蔡栓荣,冯宏,等.利用声发射技术预测预报煤与瓦斯突出[J].煤田地质与勘探,1998,26(3):60-65.
    [90]李春辉,陈日辉,苏恒瑜.BP神经网络在煤与瓦斯突出预测中的应用[J].矿冶,2010,19(3):21-23.
    [91]王灿召.灰色系统理论在煤与瓦斯突出预测中的应用研究[D].太原:太原理工大学,2010.
    [92]高庆华,王福忠,杨凌霄.瓦斯突出预测中的信息融合结构研究[J].煤矿现代化,2006,26(2):27-28.
    [93]谭云亮,肖亚勋,孙伟芳.煤与瓦斯突出自适应小波基神经网络辨识和预测模型[J].岩石力学与工程学报,2007,26(1)增:3373-3377.
    [94]孙斌.基于危险源理论的煤矿瓦斯事故风险评价研究[D].西安:西安科技大学,2003.
    [95]何俊,刘明举,聂百胜.井田突出危险性分形预测研究[J].河南理工大学学报,2005,24(4):255-258.
    [96]肖福坤,秦宪礼,张娟霞,等.煤与瓦斯突出过程的突变分析[J].辽宁工程技术大学学报,2004,23(4):442-444.
    [97]张银平.岩体声发射与微震监测定位技术及其应用[J].工程爆破,2002,8(1):58-61.
    [98]Cook NGW. The application of seismic techniques to problems in rock mechanics [J]. International Journal of Rock Mechanics and Mining Science,1964,1:169-179.
    [99]微地震监测技术[EB/OL]. (2010,07,05)[2010,12,15]. http://baike.baidu.com/view/1162 .htm.
    [100]李世愚,和雪松,张少泉,等.矿山地震监测技术的进展及最新成果[J].地球物理学进展,2004,19(4):853-859.
    [101]张少泉,张诚,修济刚,等.矿山地震研究评述[J].地球物理学进展,1993,8(3):69-85.
    [102]郑治真,刘万琴,陆其鹄,等.公里尺度地球物理实验、观测和研究[R].国家自然科学基金资助项目研究报告,1995.
    [103]李世愚,腾春凯,刘晓红,等.1999年度中俄合作岩石破裂实验研究[J].国际地震动态,2000(3):1-3.
    [104]薛冠群,谢晋珠.用地音和瓦斯监测预警突出的尝试[J].煤矿安全,1995(2):40-42.
    [105]李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
    [106]国家自然科学基金“重大国际(地区)合作研究项目”[EB/OL].(2003,06,04)[2010,12,16]. http://www.sdust.edu.cn/content_SDUST263.htm.
    [107]煤矿SOS微震监测系统检测中心[EB/OL].(2009,07,03) [2010,12,16]. http://www.mkaq.cn/yp/web/show.php?userid-36/category-news/id-7.htm.
    [108]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
    [109]赵兴东,李元辉,刘建坡,等.红透山矿深部开采岩爆潜在区微震活动性研究[J].东北大学学报,2009,30(9):1330-1333.
    [110]刘超,唐春安,张省军,等.微震监测系统在张马屯帷幕区域的应用研究[J].采矿与安全工程学报,2009,26(3):349-353.
    [111]刘超,唐春安,李连崇,等.基于背景应力场与微震活动性的注浆帷幕突水危险性评价[J].岩石力学与工程学报,2009,28(2):366-372.
    [112]唐春安.矿山动力灾害前兆规律及微震监测分析技术研究[EB/OL].(2006,06,26) [2010,12,16]. http://www.ndrc.gov.cn/nyjt/mkwsfzzl/mzyxx/t20060626_74566.htm.
    [113]唐春安.岩爆及其微震监测预报一可行性与初步实践[J].岩石力学与工程学会《通讯》“专家论坛”,2010,89(1):43-55.
    [114]高保彬.采动煤岩裂隙演化及其透气性能试验研究[D].北京:北京交通大学,2010.
    [115]Keller J U. Determination of absolution gas adsorption isotherms by combined calorimetric and dielectric measurements. Adsorption,2003,9(2):177-188.
    [116]韩光,孙志文,董蕴晰.煤与瓦斯突出固气祸合方法研究[J].辽宁工程技术大学学报,2005,24(4):20-22.
    [117]李中锋.煤与瓦斯突出机理及其发生条件评述[J].煤炭科学技术,1997,25(4):44-47.
    [118]段东,唐春安,李连崇,等.煤和瓦斯突出过程中地应力作用机理[J].东北大学学报,2009,30(9):1326-1329.
    [119]景国勋,张强.煤与瓦斯突出过程中瓦斯作用的研究[J].煤炭学报,2005,30(2):169-171.
    [120]赵旭生,邹云龙.近两年我国煤与瓦斯突出事故原因分析及对策[J].矿业安全与环保,2010,37(1):84-86.
    [121]黄旭超,孟贤正,何清,等.深部矿井开采煤与瓦斯突出导突因素探讨[J].矿业安全与环保,2009,36(3):72-74.
    [122]胡千庭.煤与瓦斯突出的力学作用机理及应用研究[D].北京:中国矿业大学(北京),2007.
    [123]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [124]胡千庭,周世宁,周心权.煤与瓦斯突出过程的力学作用机理[J].煤炭学报,2008,33(12):1368-1372.
    [125]蒋承林,俞启香.煤与瓦斯突出过程中能量耗散规律的研究[J].煤炭学报,1996,21(2):173-178.
    [126]周世宁,林柏泉.煤层瓦斯赋存与流动理论[M].北京:煤炭工业出版社,1998.12-46.
    [127]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2000:15-60.
    [128]程远平,俞启香,袁亮,等,煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [129]Valliappan S. Zhang W H. Numerical modeling of methane gas migration in dry coal seams[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996,20(8):571-593.
    [130]曾亚武,杨建,刘继国.轴对称压缩条件下岩石局部化剪切带数值模拟[J].岩石力学与工程学报,2006,25(2)增:3953-3958.
    [131]唐春安,费鸿禄,徐小荷.系统科学在岩石破裂失稳研究中的应用(一)[J].东北大学学报,1994,15(1):24-29.
    [132]赵兴东.基于声发射监测及应力场分析的岩石失稳机理研究[D].沈阳:东北大学,2006.
    [133]李银平,曾静,陈龙珠,等.含预制裂隙大理岩破坏过程声发射特征研究[J].地下空间,2004,24(3):290-293.
    [134]赵兴东,杨素俊,徐世达,等.基于声发射监测的巴西盘试样破裂过程[J].东北大学学报(自然科学版),2010,31(8):1182-1186.
    [135]李元辉,刘建坡,赵兴东,等.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学,2009,30(9):2509-2563.
    [136]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):289-292.
    [137]Mogi K. Earthquake predict ion [M]. Academic Press, Harcourt Brace Jovanovich, Tokyo, 1985.32-57.
    [138]孙吉主,周健,唐春安.岩石破裂失稳的前兆规律研究[J].同济大学学报,1997,25(6):734-738.
    [139]耿乃光,陈颙,姚孝新.应力途径和破裂前兆[J].地震学报,1980,2(3):121-127.
    [140]陈颙,阎虹.实验室中岩石破裂的变形前兆[J].地球物理学报,1989,32(1):346-251.
    [141]张国民,傅征祥.由岩体失稳讨论地震前兆的复杂性[J].地震研究,1990,13(3):215-221.
    [142]孙吉主,周健,唐春安.“弹性回跳”前的微破裂活动与变形序列[J].地震研究,1997,20(4):410-416.
    [143]王振,胡千庭.掘进工作面煤岩失稳的动态分析及能量判据[J].煤矿安全,2009,28:1-4.
    [144]姜福兴,XUN Luo,杨淑华.采场覆岩空间破裂与采动应力场的微震探测研究[J].岩土工程学报,2003,25(1):23-25.
    [145]刘京红,姜耀东,赵毅鑫.声发射及CT在煤岩体裂纹扩展实验中的应用进展[J].金属矿山,2008,388(10):13-15.
    [146]邹银辉.煤岩体声发射传播机理研究[D].青岛:山东科技大学,2007.
    [147]Shearer, P, M. Introduction to seisinology[M]. Cambridge:Cambridge University Press,1999.
    [148]秦四清.岩石声发射技术及应用[D].沈阳:东北大学,1992.
    [149]纪洪广.混凝土材料声发射性能研究与应用[M].北京,煤炭工业出版社,2003.
    [150]谭峰屹.钙质砂声发射试验研究[D].武汉:中国科学院武汉岩土力学研究所,2007.
    [151]Volker Oye, Michael Roth. Automated seismic event location for hydrocarbon reservoirs [J]. Computers & Geosciences,2003,29(7):851-863.
    [152]Kijko A, Sciocatti M. Optimal spatial distribution of seismic stations in mines[J]. Int. J. Rock Mech. and Mining Sci,1995,32(6):607-615.
    [153]Kijko A. An algorithm for the optimum distribution of a regional seismic network [J]. Pure Appl. Geophys,1977,115:999-1009.
    [154]Gibowicz S J, Kijko A. An Introduction to Mining Seismology[M]. New York:Academic Press,1994.
    [155]Van Aswegen G, Butler A. Applications of quantitative seismology in SA Gold Mines [A]. In:Young R P ed. Proceedings of the 3rd International Symposium on Rockburst and Seismicity in Mines[C]. Kingston:A. A. Balkerma,1993.261-266.
    [156]胡静云,林峰,彭府华,沈慧明,等.香炉山钨矿残采区地压灾害微震监测技术应用分析[J].中国地质灾害与防治学报,2010,21(4):109-115.
    [157]唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
    [158]牟宗龙,窦林名,巩思园,等.矿井SOS微震监测网络优化设计及震源定位误差数值分析[J].煤矿开采,2009,14(3):8-12.
    [159]于承峰.基于微震监测技术的注浆帷幕区稳定性研究[D].沈阳:东北大学,2008.
    [160]Gendzwill D. J., Prugger A. F. Algorithms for microearthquake locations[J], Proc.4th Symp. On Acoustic Emissions and Microseismicity, Penn State Uninversity, College Park, Pennsylvania,1985.
    [161]袁瑞甫.岩石破裂过程中的声发射分布规律及其分形特征[D].沈阳:东北大学,2007.
    [162]林峰,李庶林,薛云亮,等.基于不同初值的微震源定位方法[J].岩石力学与工程学报,2010,29(5):996-1002.
    [163]康玉梅,刘建坡,李海滨,等.一类基于最小二乘法的声发射源组合定位算法[J].东北大学学报(自然科学版),2010,31(11):1648-1656.
    [164]NELSON G D, VIDALE J E. Earthquake locations by 3D finite difference travel times [J]. Bulletin of the Seismological Society of America,1990,80(2):395-410.
    [165]CROSSON R S. Crustal structure modeling of earthquake data 1, simultaneous least squares estimation of hypocenter and velocity parameters [J]. Journal of Geophysical Research,1976,81(17):3036-3046.
    [166]PAVLIS G, BOOKER J R. The mixed discrete-continuous inverse problem:application of the simultaneous determination of earthquake hypocenters and velocity structure[J]. Journal of Geophysical Research,1980,85(9):4801-4810.
    [167]赵仲和.北京地区地震参数与速度结构的联合测定[J].地球物理学报,1983,26(2):131-139.
    [168]陈炳瑞,冯夏庭,李庶林,等.基于粒子群算法的岩体微震源分层定位方法[J].岩石力学与工程学报,2009,28(4):740-749.
    [169]Milkereit B, Bohlen T, Adam E, et al. Reservoir imaging monitoring:A modeling study[J].EAGE 64th Conference & Exhibition-Florence, Italy,2002,27-30.
    [170]Linville A F, Meek R A. A procedure for optimally removing localized coherent noise [J]. Geophysics,1995,60(1):191-203.
    [171]朱卫星.相关滤波在微地震数据处理中的应用[J].勘探地球物理进展,2007,30(2):130-134.
    [172]许大为,潘一山,李国臻,等.基于小波变换的矿山微震信号滤波方法研究[J].地质灾害与环境保护,2008,19(3):74-77.
    [173]陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
    [174]王继,陈九辉.应用人工神经元网络方法自动检测地震事件[J].地震地磁观测与研究,2008,29(3):41-45.
    [175]杨光亮,朱元清,于海英.基于HHT的地震信号自动去噪算法[J].大地测量与地球动力学,2010,30(3):39-42.
    [176]宋维琪,何欣,吕世超.应用卡尔曼滤波识别微地震信号[J].石油地球物理勘,2009,44(1)增:34-38.
    [177]罗俊海,李录明,叶丹霞,等.基于改进的RBF模糊神经网络滤波的噪声消除[J].系统仿真学报,2007,19(21):4918-4921.
    [178]朱卫星,宋洪亮,曹自强,等.自适应极化滤波在微地震信号处理中的应用[J].勘探地球物理进展,2010,33(5):367-371.
    [179]高淑芳,李山有,武东坡,等.一种改进的STA/LTA震相自动识别方法[J].世界地震工程,2008,24(2):37-41.
    [180]许亮华,郭永刚,张进.数字强震监测系统中触发、记录方法[J].水电自动化与大坝监测,2007,31(3):50-52.
    [181]周彦文,刘希强.初至震相自动识别方法研究与发展趋势[J].华北地震科学,2007,25(4):18-22.
    [182]GPS[EB/0L]. (2011,02,22) [2011,02,27]. http://baike.baidu.com/view/628443.htm.
    [183]李善绪.21世纪井下安全系统展望[J].矿山机械,2001,29(7):6-7.
    [184]矿井人员定位系统方案[EB/OL]. (2007,11,19) [2011,02,27]. http://www.gongkong.com/webpage/solutions/200711/6-B98B-35FF18FB93CC.htm.
    [185]王栓林.煤与瓦斯突出危险性实时跟踪预测技术研究[D].西安:西安科技大学,2009.
    [186]于警伟,王兆丰,许彦鹏,等.松软煤层巷道掘进快速消突技术应用研究[J].河南理工大学学报(自然科学版),2009,28(5):557-570.
    [187]中国矿业大学,淮南矿业集团.深井高地压煤巷围岩控制技术方案及参数初步设计[R].2007.
    [188]孟贤正,王君得.钻屑量指标预测综采面煤突出危险性研究[J].陕西煤炭,2003,(4):20-23.
    [189]国家煤矿安全监察局.防治煤和瓦斯突出细则[M].北京:煤炭工业出版社,2005.
    [190]钱鸣高,石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [191]潘一山,王来贵,章梦涛,等.断层冲击地压发生的理论与试验研究[J].岩石力学与工程学报,1998,17(6):642-649.
    [192]李志华.采动影响下断层滑移诱发煤岩冲击机理研究[D].徐州:中国矿业大学,2009.
    [193]张明伟,窦林名,王占成,等.深井巷道过断层群期间微震规律分析[J].煤炭科学技术,2010,38(5):9-12.
    [194]刘昭伦.地质构造对煤与瓦斯突出的控制作用[J].科技资讯,2006,(8):219-220.
    [195]程伟.煤与瓦斯突出危险性预测及防治技术[M].徐州:中国矿业大学出版社,2003.
    [196]管恩太.河南省煤矿开采水害综合控制技术研究[M].北京:地质出版社,2006.
    [197]韩习运.三维地震勘探技术在地质补充勘探中的应用[J].中州煤炭,2009,161(5):63-66.
    [198]李新安.高分辨率地震技术在宁东煤田构造勘查中的应用[J].中国煤炭地质,2009,21(7):57-61.
    [199]武学明,邓洪亮.三维地震在煤矿隐伏断层探测中的应用[J].中国煤炭地质,2008,20(9)增:67-69.
    [200]毛惠庚.二维地震勘探在新疆准东煤田普查中的应用[J].科技信息,2010, (3):31-33.
    [201]缪卫东,周国兴,冯金顺,等.二维地震勘探方法在南通区调工作中的应用[J].地震地质,2010,32(3):520-531.
    [202]中国煤层气资源开发的关键性问题及前景分析[EB/OL]. (2007,04,11) [2011,03,16]. http://www.projectbidding.cn/info/scfx/16383.html.
    [203]大力推进煤矿瓦斯抽采利用[EB/OL]. (2009,12,16) [2011,03,16]. http://news,hexun.com/2009-12-16/122054458,html.
    [204]俞启香.矿井瓦斯防治[M].北京:煤炭工业出版社,1992:66-68.
    [205]何学秋,聂百胜,王恩元,等.矿井煤岩动力灾害电磁辐射预警技术[J].煤炭学报,2007,32(1):56-59.
    [206]煤炭科学院北京开采所.煤矿地表移动与覆岩破断规律及其应用[M].北京:煤炭工业出版社,1981.
    [207]钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(3):225-230.
    [208]Wang L G, Miu X X, Wu Y, et al. Discrimination conditions and process of water-resistant key strata[J].Mining Science and Technology,2010,20(2):224-229.
    [209]Liu H Y, Cheng Y P, Zhou H X, et al. Fissure evolution and evaluation of pressure-relief gas drainage in the exploitation of super-remote protected seams[J]. Mining Science and Technology,2010,20(2):178-182.
    [210]Peng SS, Chiang HS. Long wall mining. New York:Wiley;1984. p.708.
    [211]Bai M, Elsworth D. Some aspects of mining under aquifers in China[J], Mining Science Technology,1990,10(1):81-91.
    [212]Yavuz H. An estimation method for cover pressure re-establishment distance and pressure distribution in the goaf of long wall coal mines[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41:193-205.
    [213]刘天泉.矿山岩体采动影响与控制工程学及其应用[J].煤炭学报,1995,20(1):1-5.
    [214]焉德斌,秦玉金,姜文忠.采场覆岩破坏高度影响因素[J].煤矿安全,2007:84-86.
    [215]刘保卫.采场覆岩“三带”高度与岩性的关系[J].煤炭技术,1998,23(5).
    [216]王云龙.深井煤层开采“三带”高度与近距离煤层顶板水关系的研究[J].山东煤炭科技,2004,(1):55-56.
    [217]高保彬.采动煤岩裂隙演化及其透气性能试验研容[D].北京:北京交通大学,2010.
    [218]许家林.岩层移动与控制的关键层理论及其应用[D].徐州:中国矿业大学,1999.
    [219]钱鸣高,缪协兴,许家林,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2000.
    [220]许家林,钱鸣高.覆岩采动裂隙分布特征的研究[J].矿山压力与顶板管理,1997(3,4):210-212.
    [221]许家林,钱鸣高.覆岩注浆减沉钻孔布置的研究[J].中国矿业大学学报,1998,27(3):276-279.
    [222]钱鸣高,许家林.覆岩采动裂隙分布的“0”形圈特征研究[J].煤炭学报,1998,23(5):466-469.
    [223]唐春安,刘红元.石门揭煤突出过程的数值模拟研究[J].岩石力学与工程学报,2002,21(10):1467-1472.
    [224]余国锋,薛俊华,袁瑞甫.远距离保护层开采卸压机理数值模拟分析[J].煤矿安全,2007,(11):5-8.
    [225]Liu W Q, Zhu L. Mode-I-crack compression modeling and numerical simulation for evaluation of in-situ stress around advancing coal workface[J]. Mining Science and Technology,2009,19(5):569-573.
    [226]徐永福.岩石力学中的分形几何[J].水力水电科技进展,1995,15(6):15-20.
    [227]谢和平.分形—岩石力学导论[M].北京:科学出版社,1996.
    [228]胡海浪,方涛,李孝平,等.分形理论在岩土工程中的应用[J].采矿技术,2006,6(4):71-73.
    [229]陆冰洋.岩石类材料损伤演化的分形几何行为特征及其分形机理研究[D].贵州:贵州大学,2007.
    [230]于广明,谢和平,张玉卓,等.节理岩体采动沉陷实验及损伤力学分析[J].岩石力学与工程学报,1998,17(1):16-23.
    [231]Yu Guanming, Xie Heping, Zhan jianfeng, et al. Eractal evolution of a crack network in overburden rock stratum[J]. Discrete Dynamics in nature and Soeiety,1998, 35(8):1107-1111.
    [232]梁正召.三维条件下的岩石破裂过程分析及其数值试验方法研究[D].沈阳:东北大学,2005.
    [233]高峰.顶板诱导崩落机理及次生灾变链式效应控制研究[D].长沙:中南大学,2009.
    [234]陈洪凯,祝江林,张永兴,等.三峡工程永久船闸断裂构造分布的分形特性及其意义[J].重庆交通学院学报,1996,(15)增:14-18.
    [235]王志国,周宏伟,谢和平.深部开采上覆岩层采动裂隙网络演化的分形特征研究[J].岩石力学,2009,30(8):2403-2408.
    [236]刘秀英.采空区上覆岩体裂隙分形规律的实验研究[J].太原科技大学学报,2009,30(5):428-431.
    [237]袁亮.低透气性煤层群无煤柱煤气共采理论与实践[M].北京:煤炭工业出版社,2008.
    [238]刘向红,刘盛东,胡彩春.原位探测技术在覆岩破坏监测中的应用[J].煤炭科技,2009,(1):44-46.
    [239]钱鸣高,刘昕成.矿山压力及其控制[M].北京:煤炭工业出版社,1996.
    [240]袁亮,刘泽功.淮南矿区开采煤层顶板抽放瓦斯技术的研究[J].煤炭学报,2003,28(2):149-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700