用户名: 密码: 验证码:
厌氧—好氧处理垃圾渗滤液与短程深度脱氮
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于我国的垃圾性质、经济实力和技术水平决定了城市垃圾处理中90%以上是采用卫生填埋法。但垃圾卫生填埋以后,由于垃圾的发酵、雨水的下渗以及地下水位的上升等导致垃圾填埋体内有相当数量的渗滤液。垃圾渗滤液是一种水质水量变化大、微生物营养元素比例失调、氨氮含量高、成分复杂的高浓度有机废水。垃圾渗滤液的特性随环境变化而变化。早期渗滤液有机物和氨氮浓度都很高,但有机物易降解,晚期渗滤液中有机物浓度低且难降解,故高氨氮的有效去除是渗滤液处理的重点和难点。目前对垃圾渗滤液的处理仍以生物法为主,而处理垃圾渗滤液最经济、有效的方法是厌氧-好氧组合工艺。
     基于以上研究背景,本试验以实际的高氮垃圾渗滤液为研究对象,首先采用“两级UASB–缺氧/好氧(A/O)系统”处理实际城市生活垃圾渗滤液,完全依靠生物处理,通过短程硝化即实现了氨氮的高效去除,降低了处理成本,简化了处理工艺。该工艺运行方式如下:系统进水同一部分A/O工艺出水混合进入到UASB1(一级UASB),A/O反应器出水中的NOX-‐N(亚硝态氮与硝态氮)作为电子供体,利用原水中丰富的有机碳源在UASB1进行充分的反硝化。在UASB1中,有机物首先作为反硝化碳源被反硝化所利用,同时还通过了厌氧产甲烷去除一部分有机物。剩余有机物在UASB2(二级UASB)中通过产甲烷反应进一步降解。二沉池的污泥回流到A/O工艺缺氧段,回流污泥中的NOX-‐N在此进行反硝化。A/O工艺好氧段主要进行氨氮的硝化。
     采用“两级UASB–A/O系统”首先对早期渗滤液处理进行了研究。早期渗滤液的C/N很高,易于生物处理,采用两级UASB-A/O系统处理,可取得很好的处理效果。通过在A/O反应器中亚硝态氮累积率为88%的短程硝化,实现了氨氮的几乎完全去除,系统氨氮去除率接近100%。
     采用“两级UASB–A/O系统”处理晚期渗滤液,在未投外加碳源时,原水中可降解COD几乎全部作为一级UASB的反硝化碳源被利用,A/O池缺氧段反硝化碳源不足。在A/O池的A段投加适当的无水乙酸钠作为碳源后,由于反硝化产生大量的碱度,补充了硝化所消耗的碱度,使pH值维持在一个比较合适的范围,可实现稳定的短程硝化,亚硝累积率由未投加碳源时的20%提高到87%,系统出水氨氮为10 mg/L左右,氨氮的去除率也由未投加碳源时的92%提高到99.6%。
     只采用两级UASB-A/O工艺处理,其出水总氮浓度不能达到国家最新排放标准(GB16889-2008)中对总氮和氨氮浓度的排放要求。为了进一步降低总氮浓度,A/O反应器出水再进入到SBR中继续处理,即采用两级UASB-A/O-SBR系统深度脱氮。试验结果表明,不论是处理早期还是晚期渗滤液,其最终出水NH_4~+-N浓度都在15 mg/L以内,NO_2~--N和NO_3~--N浓度也都在4mg/L以内,TN降低到30 mg/L左右,系统TN和NH_4~+-N去除率都接近100%,故本系统实现了总氮和氨氮的高效和深度去除。
     对晚期垃圾渗滤液投加碳源方式进行了研究,系统进水采用将原渗滤液与生活污水1:1混合液,且投加外碳源无水乙酸钠,将C/N比由1.7提高到3.0。采用两级UASB-A/O-SBR系统深度脱氮。通过FA与FNA对NOB的联合抑制,在A/O反应器中实现了稳定的短程硝化,其中亚硝态氮积累率大与70%。产生的亚硝态氮和硝态氮在SBR中被彻底去除。最终出水氨氮浓度小于2 mg/L,氨氮的去除率为99%。最终出水总氮浓度为26 mg/L,系统总氮去除率接近98%。
     为了考察游离氨浓度对城市生活垃圾渗滤液短程硝化的影响,采用“两级UASB- A/O系统”处理城市生活垃圾渗滤液。结果表明,适当的游离氨浓度(大于40 mg/L)可实现稳定的短程硝化,但游离氨浓度很高(大于160 mg/L)会抑制全部的硝化反应,当游离氨浓度降低则会解除这种抑制重新实现稳定的短程硝化。通过对原水进行稀释降低了游离氨浓度,从而得到了稳定的短程硝化,其中氨氮的去除率为98.6%,亚硝态氮积累率为92.17%。可见,游离氨是实现和维持城市生活垃圾渗滤液短程硝化的重要影响因素。
     为了考察游离氨(free ammonia,FA)、游离亚硝酸(free nitrite acid,FNA)和温度何为垃圾渗滤液短程硝化的主要影响因素,采用“两级UASB - A/O系统”处理实际城市生活垃圾渗滤液。试验共经历3个阶段即高温无短程硝化,高温实现并维持稳定短程硝化、低温实现并维持稳定短程硝化。结果表明,FA是影响短程硝化的决定因素。适当的FA浓度(1 mg/L~30 mg/L)可实现并维持稳定的短程硝化,如在阶段2中亚硝态氮积累率为93%,氨氮的去除率为99%。但FA在250 mg/L会抑制全部的硝化反应。温度并不是影响短程硝化的关键因素,如果FA在合适范围内,即使降低了10℃(如阶段3在16~18℃),仍然可实现亚硝态氮积累率为88%的短程硝化。当系统内pH值很高(大于8.5),FNA对短程硝化的影响可忽略不计。可见,FA是实现和维持城市生活垃圾渗滤液短程硝化的主要影响因素。
     针对C/N比低的晚期垃圾渗滤液,实现短程硝化脱氮和厌氧氨氧化脱氮工艺的结合,达到深度脱氮的目的。采用两级UASB-A/O-SBR系统深度脱氮,在A/O反应器中通过FA对NOB的选择性抑制实现短程硝化脱氮进而产生亚硝态氮,A/O反应器出水回流到UASB1,其中的亚硝态氮与原水中的氨氮在UASB1中发生厌氧氨氧化去除部分氨氮,从而避免了在A/O反应器中高浓度氨氮对硝化反应的抑制。试验结果表明,A/O反应器出水氨氮浓度仅为15 mg/L,亚硝态氮积累率为87.5%。A/O反应器出水进入到SBR中,同时加入8.5 g无水乙酸钠做为碳源进行反硝化,4 h反硝化结束。最终出水总氮仅为29 mg/L,氨氮也只有7 mg/L,亚硝态氮和硝态氮都还剩不到1 mg/L。因此,在整个系统中通过厌氧段的厌氧氨氧化反应和好氧段A/O反应器中的短程硝化以及后续的SBR最终反硝化脱氮,使得整个系统的氨氮和总氮去除率都接近100%,通过多种工艺的组合,在投加碳源最少的情况下实现了垃圾渗滤液氮的高效和深度去除。
Sanitary landfill method is commonly used to treat municipal refuse in China. Compared to other means, sanitary landfill is the cheapest. However, landfill leachate, a strongly polluted wastewater, has become the subject of recent interest. Leachate is considered the aqueous effluent generated as a consequence of rainwater percolation through wastes, the inherent water content of wastes themselves and biochemical processes in cells of waste. The pollutant composition of landfill leachate is very complicated, and its characteristics vary a lot depending on the environmental conditions. The concentrations of organic material and ammonia nitrogen are high in fresh leachate, while matured leachate contains relatively lower concentration of organic matter but higher concentration of ammonia nitrogen. High concentration ammonia nitrogen is considered as the main reason for low effciency in biological treatment of landfill leachate. Due to operation costs and other reasons, biological technologies are major methods to treat landfill leachate. The anaerobic-aerobic combined process is considered the most economy and effective method to degrade ammonia for landfill leachate treatment.
     Based on the above background, first of all, a system of a two-stage UASB and an anoxic/aerobic (A/O) reactor was fully depended on as biological treatment of the municipal landfill leachate without any pre-physicochemical process. Complete ammonium nitrogen removal via nitrite was achieved. The system decreased operational costs and energy consumption, and simplifed the conventional treatment processes as well. The process procedures as follows: Part of the recycled effluent as well as the inffluent of the system was pumped into the first stage UASB (UASB1). The organic compounds of landfill leachate served as the carbon source for denitritation of the recycled effluent in UASB1. Part of the raw organics was firstly depleted as carbon source for denitritation in UASB1, while simultaneous methanogenesis occurred. Most of the organic compounds of the UASB1 effluent were depleted via methanogenesis in UASB2. Recycled sludge from the clarifying tank was pumped into the anoxic zone, the first chamber of the A/O reactor, in which denitrification of NOX--N (nitrite and nitrate nitrogen) of recycled sludge was taken place. Nitrification of ammonia was carried out in the aerobic zone of A/O reactor.
     The fresh leachate was firstly treated by the system of a two-stage UASB and an anoxic/aerobic (A/O) reactor. The ratio of C/N of fresh leachate is very high. It had a good result of the treatment by using the the system of a two-stage UASB -A/O reactor. Partial nitrification with 88% of nitrite accumulation efficiency took place in the A/O reactor, and the ammonia removal efficiency was nearly 100% in the system.
     The system of a two-stage UASB -A/O reactor was used to treat mature landfill leachate. First of all, when carbon source did not add up to the system, the COD is used as carbon source of denitrification by the first UASB. It is short of carbon source of denitrification in the A/O reactor. Then, when some carbon source were added up to the first shelve of A/O system to advance the denitrification. Because the denitrification can produce some alkalinity, which it can complement some alkalinity by nitrification consumed, and it maintained pH at a suitable scope. By this way, the stable partial nitrification was successfully achieved. Partial nitrification with 87% of nitrite accumulation efficiency took place in the system. But when some carbon source did not add up to the system, the nitrite accumulation of rate was only 20%. The ammonia concentration of effluent leachate was 10 mg/L. The ammonia removal efficience was 99.6%. But when some carbon source did not add up to the system, the ammonia removal efficience was 92% in the system.
     But the removal of total nitrogen (TN) could not reach below 40 mg/L which was requested by the release of new national standard for pollution by only using a two-stage UASB -A/O reactor. In order to reduce the TN concentration further, the process was improved. The final effluent of A/O reactor was further treated by SBR. The system of a two-stage UASB-A/O-SBR was utilized to treat both fresh and mature landfill leachate to remove nitrogen thoroughly.The results of the experiment showed as follows: The ammonia nitrogen concentration in the effuent of the system was no more than 15 mg/L. The nitrite nitrogen and nitrate nitrogen concentrations in the effluent were no more than 4 mg/L. The TN concentration was nearly 30 mg/L. The ammonia and TN removal efficiency was nearly 100% in the system Therefore, the two-stage UASB-A/O-SBR system was a highly effcient process to treat both fresh and mature landfill leachate.
     The experiment investigated the style of carbon source added when mature landfill leachate was treated. The influent leachate is mixed by raw leachate as well as domestic wastewater in a ratio of 1. The external carbon source (sodium acetate anhydrous) is added in order to enhance the C/N ratio from 1.7 to 3.0. The system of a two-stage UASB-A/O-SBR was utilized to treat mature leachate to remove nitrogen thoroughly. Through the cooperative inhibition of the free ammonia (FA) and free nitrite acid (FNA), the particial nitrification is achieved stably in the A/O reactor with more than 70% of the nitrite accumulation ratio. The nitrite and nitrate which are produced by the nitrification could be removed completely in SBR. The ammonia concentration of final effluent is less than 2 mg/L, and its removal efficiency is 99%. The total nitrogen mass concentration of final effluent is about 26 mg/L, and its removal efficiency is about 98%.
     A system consisted of two - stage UASB- A/O reactor was used to study the partial nitrification of the municipal landfill leachate with high ammonia concentration. The study which used real landfill leachate showed that if the concentration of FA was more than 40 mg/L, a stable partical nitrification could be successfully achieved. But if the FA concentration was more than 160 mg/L, the nitrification could be inhibited. And raw leachate was diluted in order to degrade the concentration of FA. Then the partical nitrification was restored. Partical nitrification with 92.17% of nitrite accumulation efficiency took place in the system, and the ammonia removal efficiency was 98.6% in the system. In a word, the concentration of FA was an important factor to achieve a short-cut nitrification of the municipal landfill leachate.
     In order to investigate the effects of free ammonia (FA), temperature and free nitrite acid (FNA) on partial nitrification, a system consisting of a two - stage UASB and an A/O reactor was used to treat leachate from municipal landfill. The results for three phases showed that a suitable FA concentration range exhibited negligible effect on partial nitrification. In this experiment when FA concentration was between 1 mg/L and 30 mg/L , stable partial nitrification could be achieved and maintained successfully. However, when FA concentration was over 250 mg/L, the entire nitrification process could be inhibited. Temperature was not the key factor to partial nitrification. In the third phase, although the temperature was very low (16℃~18℃), partial nitrification occurred and was successfully maintained with a nitrite accumulation rate of 88% in the A/O reactor. When pH was more than 8.5, the influence of FNA on partial nitrification was minimal. In conclusion, FA concentration was a major factor to achieve a partial nitrification of municipal landfill leachate.
     Particial nitrification - anaerobic ammonium oxidation process were used to treat mature leachate in order to remove nitrogen thoroughly. The system of a two-stage UASB-A/O-SBR was utilized to treat mature landfill leachate this stage. In the A/O reactor, FA concentration inhibited only NOB but not AOB. Thus, stable partial nitrification was obtained. Part of the recycled effluent of A/O reactor as well as the inffluent of the system was pumped into UASB1. The nitrite of the recycled effluent and part of the inffluent ammonia nitrogen were removed by Anammox. Because part of the ammonia nitrogen was removed, the inhibition of the high concentration of ammonia nitrogen was avoided. The results of the experiment showed as follows: The ammonia nitrogen concentration in the effuent of the system was only 15 mg/L. Nitrite accumulation efficiency was 87.5%.The effluent of A/O reactor was further treated by SBR. The external carbon source was added into SBR. Denitrification was ceased after the 4th hour. After denitrification, the nitrite nitrogen and nitrate nitrogen concentrations of final effluent were less than 1 mg/L. The TN concentration of final effluent was only 29 mg/L and the ammonia nitrogen concentration of final effluent was 7 mg/L.Therefore, the ammonia nitrogen and TN removal efficiency could reach nearly about 100% by the Anammox of anaerobic, the particial nitrification of A/O reactor and the denitrification of SBR. This combined process is the most economy and high effciency method in biological treatment of landfill leachate.
引文
1曹京哲.城市垃圾渗滤液特性及处理对策.市政技术, 2003, 21(3): 183-186
    2李铁锋,陈艳.试论城市垃圾的处理与处置.河北地质学院学报, 1994, 17 (6): 56-11
    3张树军.两级UASB+A/O系统处理城市垃圾渗滤液及短程脱氮.北京工业大学博士学位论文, 2006: 3-5
    4马丽巍.城市生活垃圾处理方法的探讨.中国环境管理, 2004, 6: 191
    5湖北机械研究所.国外城市生活垃圾处理资料汇编.中国环境科学出版社, 1994: 20-23
    6王中民.城市垃圾处理与处置.中国建筑工业出版社, 1991: 42-45
    7吴美聪,邵凤琴.垃圾填埋场-城乡环卫建设的首选.城市管理. 2005, 1: 661
    8顾捷,陈蕾,夏顺阳.论生活垃圾处理与污染防治技术.污染防治技术. 2006,19(1): 34-37
    9钟红春,周少奇,胡永春.垃圾渗滤液配水对UASB-ANAMMOX反应器进行二次启动的研究.环境科学. 2007, 28(10): 2473-2477
    10吴玉成.治理地下水有机污染抽出处理技术影响因素分析.水文地质工程地质. 1998(1): 27-29
    11孟了,熊向陨,马箭.我国垃圾渗滤液处理现状及存在问题.给水排水. 2003, 29(10): 26-30
    12王宝贞,王琳.城市固体废物渗滤液处理与处置.化学工业出版社, 2005: 3-8
    13迟国东,杨国清,陈红.阳朔县生活垃圾卫生填埋场工程设计.河池学院学报. 2008, 28(2): 103-107
    14陈卫国.城市垃圾卫生填埋场填埋区的设计讨论.国外建材科技. 2006, 27(4):150-157
    15楼子阳,赵由才.渗滤液处理处置技术及工程实例.化学工业出版社, 2006: 10-15
    16赵平.垃圾填埋场渗滤液及产生量的控制措施.环境科学与管理. 2007, 32(1): 103-106
    17 K. Isaka, S. Yoshie, T. Sumino, Y. Inamori, S. Tsuneda. Nitrification of Landfill Leachate Using Immobilized Nitrifying Bacteria at Low Temperatures. Biochemical Engineering Journal. 2007, 37: 49-55
    18 Z.Y. Xu, G.M. Zeng, Z. H. Yang. Biological Treatment of Landfill Leachate with the Integration of Partial Nitrification, Anaerobic Ammonium Oxidation andHeterotrophic Denitrification. Bioresource Technology. 2010, 101: 79-86
    19汪群慧.固体废弃物处理及资源化.第一版.北京:化学工业出版社, 2004: 43-46
    20赵宗升.城市生活垃圾渗滤液水质和处理研究.清华大学博士学位论文. 2001: 30-40
    21杭世珺,张荣辉,王玫.城市垃圾卫生填埋场渗滤液处理工艺研究.北京市市政设计研究院研究所. 2003: 1-25
    22彭永臻,张树军,郑淑文,王淑莹.城市生活垃圾填埋场渗滤液生化处理过程中重金属离子问题.环境污染治理技术与设备. 2006, 7(1): 1-5
    23 G. Andreottola. Chemical and Biological Characteristics of Landfill Leachate: Landfilling of Waste: Leachate. London: Elsevier Applied Science, 1992: 10-30
    24张兰英.垃圾渗滤液中有机污染物的污染去除.中国环境科学, 1998, 18(2): 184-188
    25 Knox K. Leachate treatment with nitrification of ammonia. Water Research, 1985: 895-904
    26 E. Nehrenheim, S. Waara, J. L. Westholm. Metal Retention on Pine Bark and Blast Furnace Slag - on-Site Experiment for Treatment of Low Strength Landfill Leac- hate. Bioresource Technology. 2008, 99 (5): 998-1005
    27 G. Ruiz, D. Jeison, R. Chamy. Nitrification with High Nitrite Accumulation for the Treatment of Wastewater with High Ammonia Concentration. Water Research. 2003,37(6): 1371-1377
    28 D. Kulikowska, E. Klimiuk. The Effect of Landfill Age on Municipal Leachate Composition. Bioresource Technology. 2008, 99:5981-5985
    29国家环境保护部. GB16889-2008:生活垃圾填埋污染控制标准[S].中国环境科学出版社,2008
    30程洁红,李尔炀. Fenton-混凝法在垃圾渗滤液预处理中的试验研究.江苏石油化工学院学报. 2002, 14(2): 27-29
    31 H. Halil, A. Sezahat, I. Ubeyde, K. Serdar, C. Ozer, Y. Cevat, K. Cumali. Stripping-Flocculation-Membrane Bioreactor-Reverse Osmosis Treatment of Municipal Landfill Leachate. Journal of Hazardous Materials. 2009, 171(1-3):309-317
    32罗宇. MBR工艺应用于垃圾渗滤液处理的研究.环境工程. 2004, 22(2): 13-18
    33胡纪全,曹芹.厌氧/好氧工艺处理生活垃圾填埋场渗滤液.中国资源综合利用. 2007, 25(9): 20-21
    34吴淳.厌氧-好氧工艺处理生活垃圾填埋场的渗滤液.污染防治技术. 2008, 21(2):68-76
    35高锋,李晨.厌氧消化与SBR组合工艺处理城市垃圾渗滤液.环境工程. 2008, 26(6): 33-36
    36熊小京,冯喆文.垃圾渗滤液厌氧BF/好氧MBR工艺的脱氮特性.华侨大学学报. 2008, 29(1): 68-72
    37 E. Castillo, M. Vergara, Y. Moreno. Landfill Leachate Treatment Using a Rotating Biological Contactor and an Upward-Flow Anaerobic Sludge Bed Reactor. Waste Management. 2007, 27(5): 720-726
    38黄晓军,孟了.我国垃圾渗滤液处理现状及存在误区.给水排水.增刊, 2009, 35, 176-178
    39郑淑文,王淑莹,张树军,彭永臻.两级UASB与好氧组合工艺处理城市生活垃圾渗滤液的启动研究.环境污染治理技术与设备. 2006, 7(10):88-92
    40 B. Calli. Mertoglu, B. Inanc. Effects of High Free Ammonia Concentrations on the Performances of Anaerobic Bioreactors. Process Biochemistry. 2005, 40(3):1285 -1292
    41 Z. Liang, J. X. Liu. Landfill Leachate Treatment with a Novel Process: Anaerobic Ammonium Oxidation (Anammox) Combined with Soil Infiltration System. J Hazard Mater. 2008, 151(1): 202-212
    42 J. L. Vasel,H. Jupsin,A. P. Annachhatre. Nitrogen Removal During Leachate Treatment: Comparison of Simple and Sophisticated Systems. Water Science and Technology. 2004, 50(6): 45-52
    43 D. J. Kim, D. I. Lee, J. Keller. Effect of Temperature and Free Ammonia on Nitrification and Nitrite Accumulation in Landfill Leachate and Analysis of its Nitrifying Bacterial Community by FISH. Bioresource Technol. 2006, 97(3): 459-468
    44 A. Uygur, F. Karg. Biological Nutrient Removal from Pre-Treated Landfill Leachate in a Sequencing Batch Reactor. J Environ Manage. 2004, 71(1): 9-14
    45 F. Karg, M. Y. Pamukoglu. Aerobic Biological Treatment of Pre-Treatment Landfill Leachate by Fed-Batch Operation. Enzyme Microb Tech. 2003, 33(5): 588-595.
    46 G. Z. Sun, D. Austin. Completely Autotrophic Nitrogen-Removal Over Nitrite in Lab-Scale Constructed Wetlands: Evidence from a Mass Balance Study. Chemposphere, 2007, 68(6): 1120-1128
    47 K. Ohsung, L. Young, N. Soohong. Performance of the NF-RDM (Rotary Disk Membrane) Module for the Treatment of Landfill Leachate. Desalination. 2008, 234 (1-3) 378-385
    48 U. Ane, R. Ana, A.ángela, O. Inmaculada. Integrated Treatment of Landfill Leachates Including Electrooxidation at Pilot Plant scale. Journal of Hazardous Materials. 2009, 166 (2-3): 1530-1534
    49 D. Yang, D. James. Kinetics and Oxidative Mechanism for H2O2-Enhanced Iron-Mediated Aeration (IMA) Treatment of Recalcitrant Organic Compounds in Mature Landfill Leachate. Journal of Hazardous Materials. 2009, 169(1-3): 370-375
    50 C. C. Wang, P. H. Lee, K. Mathava, Y. T. Huang, S. Sung, J. G. Lin. Simultaneous Partial Nitrification, Nnaerobic Ammonium Oxidation and Denitrification (SNAD) in a Full-Scale Landfill-Leachate Treatment Plant. Journal of Hazardous Materials. 2010, 175(1-3): 622-628
    51 J. Y. Liu, J. P. Zhong, Y. Wang, Q. Liu, G. Qian, L. Y. Zhong, R. Z. Guo, P. J. Zhang, Z. P. Xu. Effective Bio-Treatment of Fresh Leachate from Pretreated Municipal Solid Waste in an Expanded Granular Sludge Bed Bioreactor. Bioresource Technology, 2010, 101(5): 1447-1452
    52 Z. Q. Yang, S. Q. Zhou. The Biological Treatment of Landfill Leachate Using a Simultaneous Aerobic and Anaerobic (SAA) Bio-Reactor System. Chemosphere. 2008, 72(11): 1751-1756
    53董春松,樊耀波,李刚,杨文静,袁栋栋.新型管式动态膜生物反应器及处理垃圾渗滤液的研究.环境科学. 2007, 28(4): 747-75
    54 S. Chen, D. Z. Sun, J. S. Chung. Simultaneous Removal of COD and Ammonium from Landfill Leachate Using Anaerobic-Aerobic Moving-Bed Biofilm Reactor System. Waste Manage. 2008, 28(2): 339-346
    55 R. He, D. S. Shen, J. Q. Wang. Biological Degradation of MSW in a Methanogenic Reactor Using Treating Leachate Recirculation. Process Biochem, 2005, 40(12):3660-3666
    56 Y. Z. Peng, S. J. Zhang, W. Zeng. Organic Removal by Denitrification and Methanogenesis and Nitrogen Removal by Nitrification from Landfill Leachate. Water Research. 2008, 42(4/5): 883-892
    57王君琴,沈东升.厌氧分步生物反应器系统处理城市生活垃圾的试验研究.环境科学. 2004, 25(3):160-163
    58何若,沈东升,戴海广.生物反应器填埋场系统中城市生活垃圾原位脱氮研究.环境科学. 2006, 27(3): 604-608
    59许玫英,方卫,张丽娟.生物脱氮新技术在垃圾渗滤液工程化处理中的应用.环境科学. 2007, 28(3): 607-612
    60 H. Timur, I. Zturk. Anaerobic Treatment of Leachate Using Sequencing Batch Reactor and Hybrid Bed Filter. Wat. Sci.Technol. 1997, 36 (6): 501-508
    61 K. J. Kennedy,E. M. Lentz. Treatment of Landfill Leachate Using Sequencing Batch and Continuous Flow Up-Flow Anaerobic Sludge Blanket Reactors. Water Research. 2000, 34 (14): 3640-3656
    62 N. Osnan, T. S. Delia. Anaerobic / Aeronic Treatment of Municipal Landfill Leachate in Sequential Two-Stage Up-Flow Anaerobic Sludge Blanket Reactor (UASB)/Completely Stirred Tank Reactor (CSTR) Systems. Process Biochemistry, 2005, 40: 859-902
    63 H. I. Jeong, J. Hae. Simultaneous organic and Nitrogen Removal from Municipal Landfill Leachate Using an Anaerobic-Aerobic System. Water Research. 2001, 35(10): 2403-2410
    64 I. Kabdasli. Ammonia Removal from Young Landfill Leachate by Magnesium Ammonium Phosphate Precipitation and Air Striping. Wat. Sci. Tech. 2000, (41): 1237-1240
    65 M. Heavey. Low-Cost Treatment of Landfill Leachate Using Peat. Waste Management, 2003, 23 (5): 447-454
    66 Metcalf E. Wastewater engineering treatment and reuse. Fourth Edition. USA: McGraw-Hill Companies, 2003. 580-587
    67 J. P. Voets, H. Vanstaen, W. Verstraete. Removal of nitrogenfrom highly nitrogenous wastewaters. Journal of Water Pollution Control Federation. 1975, 47:394-398
    68 S. Villaverde, F. D. Z. Ploanco, P. A.Garcia. Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters: Start-up Influence. Water Research. 2000, 34(2): 602-610
    69张富韬,方少明,松全元.混凝-吸附法处理垃圾渗滤液的实验研究.北京科技大学学报. 2005, 27(1): 21-23
    70金永祥,陶丽娟,周展浩.复合式缺氧-好氧法处理晚期垃圾渗滤液研究.水处理技术. 2010, 36 (2): 98-101
    71 Y. Tal, J. E. M. Watts, H. J. Schreier. Anaerobic Ammonia-Oxidizing Bacteria and Related Activityin Baltimore Inner Harbor Sediment. Applied and Environmental Microbiology. 2005, 71(4):341-345
    72 A. O. Sliekers,K. A. Third,W. Abma. Cannon and Anammox in a Gas-Lift Reactor. FEMS Microbiol Lett, 2003, 1(2): 218-220
    73 D. G. A. A. Van,A. R. L. Debruijnp. Metabolic Pathway of Anaerobic Ammonium Oxidation on the Basis of Studies in a Fluidized Bed Reactor. Microbiology,1997, 143(7): 2415-2421
    74郑平,徐向阳,胡宝兰.新型生物脱氮技术.科学出版社,2004: 45-49
    75丁爽,唐崇俭,郑平,方炳南,杨翘强.厌氧氨氧化工艺脱氮机理和抑制因素的研究进展.化工进展. 2010, 29(9), 1754-1759
    76 T. Ismail, S. Imen, D. Tarek. Coupling of Anoxic and Aerobic Biological Treatment of Landfill Leachate. Desalination. 2009, 246: 506-513
    77孙洪伟,王淑莹,时晓宁.单一缺氧/厌氧UASB同步反硝化产甲烷与A/O组合工艺处理实际晚期渗滤液.化工学报. 2009, 60 (11): 2891-2896
    78吕斌,杨开,周培疆,杨小俊,莫孝翠.晚期垃圾渗滤液实现短程硝化影响因素分析.哈尔滨工业大学学报. 2006, 38(6): 931-939
    79. APHA. Standard method for the examination of water and wastewater. 19th editon. Washington DC : American Public Health Association, 2005
    80 H. J. Li, Y. C. Zhao, L. Shi, Y. Y. Gu. Three-Stage Aged Refuse Biofilter for the Treatment of Landfill Leachate. Journal of Environmental Sciences. 2009, 21:70 -75
    81 P. L. Mccarty. Stoichiometry of Biological Reaction. Process Water Technol. 1975, 71: 157-172
    82郑兴灿,李亚新.污水除磷脱氮技术.中国建筑出版社, 1998: 124-126
    83刘秀红,王淑莹,高大文等.短程硝化的实现、维持与过程控制的研究现状.环境污染治理技术与设备. 2004, 5(12): 7-10
    84 F. Christan, B. Marc, H. Philipp. Biological Treatment of Ammonium-Rich Wastewater by Partial Nitritation and Subeequent Anaerobic Ammonium Oxidation (Anammox) in A Pilot Plant. Journal of Blotechnology. 2002, 99: 295-306
    85 C. Hellinga, A. Schellen, J. W. Mulder. The SHARON Process: Aninnovative Method for Nitrogen Removal from Ammonium Rich Wastewater. Water Science and Technology. 1998, 37(9):135-142
    86王少坡,彭永臻,于德爽.常温短程内源反硝化生物脱氮.北京工业大学学报. 2005, 31( 3 ): 298-302
    87 L. Zhu, J. X. Liu. Control Factors of Partial Nitritation for Landfill Leachate Treatment. Journal of Environmental Sciences. 2007, 19(5): 523-529
    88杨朝晖,李晨,曾光明.前置MAP-SBBR工艺处理早期及晚期垃圾渗滤液试验.环境工程. 2006, 24(1): 14-17
    89傅金祥,韩晋英,齐建华.常温下pH对短程硝化反硝化的影响.沈阳建筑大学学报(自然科学版). 2010, 26(2): 316-320
    90李军,彭锋,何建平.短程硝化反硝化工艺处理低C/N垃圾渗滤液.环境工程. 2007, 25 (2 ):15-17
    91孙洪伟.垃圾渗滤液厌氧-好氧生物处理短程脱氮及动力学.北京工业大学博士学位论文. 2010: 130-137
    92 S. Aslan, L. Miller, M. Dahab. Ammonium Oxidation via Nitrite Accumulation under Limited Oxygen Concentration in Sequencing Batch Reactors. Bioresource Technology. 2009, 100: 659-664
    93 C. Hellinga, A. Schellen, J. W. Mulder. The Sharon Process: an Innovative Methodfor Nitrogen Removal from Ammonium-Rich Wastewater. Water Science and Technology. 1998, 37: 135-142
    94 T. Yamamoto, K. Takaki, T. Koyama, K. Furukawa. Noval Partial Nitritation Treatment for Anaerobic Digestion Liquor of Swine Wastewater Using Swim-Bed Technology. Biosci Bioeng. 2006, 102: 497-503
    95 F. Christian, B. Marc, H. Philipp. Biological Treatment of Ammonium-Rich Wastewater by Partial Nitritation and Subsequent Anaerobic Ammonium Oxidation (Anammox) in a Pilot Plant. Journal of Biotechnology. 2002, 99: 295-306
    96 H. J. Yoon , D. J. Kim. Nitrification and Nitrite Accumulation Characteristics of High Strength Ammonia Wastewater in a Biological Aerated Filter. J. Chem. Tech. Biotechnol. 2003, 78: 377-383
    97 U. Welander, T. Henrysson, T. Welander. Biological Nitrogen Removal from Municipal Landfill Leachate in a Pilot Scale Suspended Carrier Biofilm Process. Water Res. 1998, 32: 1564-1570
    98 V. M. Vadivelu, J. Kellur, Z. G. Yuan. Effect of Free Ammonia and Free Nitrous Acid Concentration on the Aanabolic and Catabolic Processes of and Enriched Nitrosomonas Culture. Biotechnol Bioeng. 2006, 95:830-839
    99 S. Philips, H. J. Laanbroek, W. Verstraete. Origin Causes and Effects of Increased Nitrite Concentrations in Aquatic Environments. Environ. Sci. Biotechnol. 2002, 1:115-141
    100 M. Beccari, D. Marani, R. Ramadori. A Critical Analysis of Nitrification Alternatives, Water Res. 1979, 13: 185-92
    101 C. Hellinga. The Sharon Process: an Innovative Method for Nitrogen Removal from Ammonium Rich Wastewater. Wat. Sci.Tech. 1998, 37(9): 135-142
    102 B. Balmelle. Study of Factors Controlling Nitrite Build-Up in Biological Processes of Water Nitrification. Wat. Sci. Tech. 1992, 26 (5-6): 1017-1025
    103 Y. Hyungseok. Nitrogen Removal from Synthetic Wastewater by Simultaneus Nitrification and Denitrification via Nitrite in an Intermittently-Aerated Reactor. Wat. Res, 1999, 33(1): 146-149
    104袁林江,彭党聪,王志盈.短程硝化-反硝化生物脱氮.中国给水排水. 2000, 16(2): 29-31
    105蒋家超,万田英,张雁秋.亚硝化过程影响因素分析和讨论.工业安全与环保. 2006, 26(3): 26-28
    106高景峰,彭永臻,王淑莹.以pH作为SBR法硝化过程模糊控制参数的基础研究.应用与环境生物学报. 2003, 9 (5) :549-553
    107肖文胜,郭建林.短程硝化反硝化生物脱氮工艺及影响因子.黄石理工学院学报. 2005. 21(1): 21-23
    108史一欣,倪晋仁.晚期垃圾渗滤液短程硝化影响因素研究.环境工程学报. 2007, 1(7):110-114
    109张树军,彭永臻,王淑莹.城市生活垃圾晚期渗滤液中氨氮的常温短程去除.化工学报. 2007, 58(4): 1042-1047
    110 B. W. A. J. Van, B. P. Derissen, L. M. C. M. Van. Nitrogen Removal Using Nitrifying Biofilm Growth and Denitrifying Suspended Growth in a Biofilm Airlift Suspension. Bioresource Technology. 2006, 97(4): 429 -438
    111张树军,曾薇,彭永臻.高氮城市生活垃圾渗滤液短程生物脱氮.环境科学学报. 2006, 26(5):751 -756.
    112 D. J. Kim, D. L. Lee, J. Keller. Effect of Temperature and Free Ammonia on Nitrification and Nitrite Accumulation in Landfill Leachate and Analysis of its Nitrifying Bacterial Community by Fish. Bioresource Technology. 2005, 97(3): 459 -468
    113吴莉娜,彭永臻,王淑莹.游离氨对城市生活垃圾渗滤液短程硝化的影响.环境科学. 2008, 29(12): 135-140
    114 A. C. Anthonisen, R. C. Loehr, T. B. S. Prakasam. Inhibition of Nitrification by Ammonia and Nitrous-Acid. Water Pollut Control Fed. 1976, 48(5): 835-852
    115魏琛,罗固源.游离氨对稳定生物亚硝化的影响分析.重庆环境科学, 2003, 25(12):50-52
    116 A. Mulder, D. G. A. A. Van, L. A. Robertson. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbiology Ecology. 1995, 16( 3) : 177- 183
    117 D. G. A. A. Van, D. Bruijn, L. A. Robertson. Autortophic Growth of Anaerobic Ammonium- Axidizingmicro- Organisms in a Fluidized Bed Reactor. Microbiology, 1996, 142 (8): 2187-2196
    118朱明石,周少奇,曾武. UASB反应器厌氧氨氧化菌的脱氮特性研究.环境工程学报. 2008, 2(1):11-15
    119孙洪伟,彭永臻,王淑莹,杨庆,侯红勋.厌氧氨氧化生物脱氮技术的演变、机理及研究进展.工业用水与废水. 2008, 39(1): 7-11
    120 U. V. Dongen, M. S. M. Jetten, M. C. M. V. Loosdrecht. The SHARON-ANAMMOX Process for Treatment of Ammoniam Rich Wastewater. Wat Sci Tech. 2001,44(1): 153-160
    121 A. Mulder, D. G. A. A. Van, L. A. Robertson. Anaerobic Ammonioum Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbiol Ecol. 1995, 16: 177-183
    122 D. G. A. A. Van, A. Mulder, D. Bruijn. Anaerobic Oxidation of Ammonium is a Biologically Mediated process. Appl Envir Microbiol. 1995, 61: 1246-1251
    123 D. G. A. A. Van, D. Bruijn, L. A. Robertson. Autotrophlic Growth of Anerobic Ammonium - Oxidizing Microorganisms in a Fluidized Bedreactor. Microbiology. 1996, 142 (8): 2187-2196
    124张勇,高艳娇,张瑞烽.短程硝化-厌氧氨氧化工艺.辽宁化工. 2010, 39(8): 827-829
    125王如一,孙胜东.生物脱氮工艺的发展综述.广西轻工业, 2010, 8: 111-113
    126郝晓地, M. V. Loosdrecht.荷兰鹿特丹DOKHAVEN污水处理厂介绍.给水排水. 2003, 29(10): 19-25
    127郑平,胡宝兰花,徐向阳.厌氧氨氧化电子受体的研究.应用与环境生物学报. 1998, 4(1): 74-76
    128 M. S. M. Jetten, M. Strous, D. P. Van. The Anaerobic Oxidation of Ammonium. FEMS Microbiol Rev. 1999, 22: 421-437
    129 T. Dalsgaard, B. Thamdrup, D. E. Canfield. Anaerobic Ammonium Oxidation (Anammox) in the Marine Environment. Research in Microbiology. 2005, 156(4): 457-464
    130 J. G. Kuenen. Anammox Bacteria: from Discovery to Application. Nature Reviews Microbiology. 2008, 6(4): 320-326
    131廖小兵,许玫英,罗慧东,孙国萍.厌氧氨氧化在污水处理中的研究进展.微生物学通报. 2010, 37(11): 1679-1684
    132 J. G. Kuenen, M. S. M. Jetten. Extraordinary Anaerobic Ammonium Axidation Bacteria. ASM News. 2001, 67( 9): 456- 463
    133王惠,刘研萍,陶莹,刘新春.厌氧氨氧化菌脱氮机理及其在污水处理中的应用.生态学报. 2011, 31(7): 2019-2028
    134 J. Schalk, H. Oustad, J. G. Kuenen. The Anaerobic Oxidation of Hydrazine: a Novel Reaction in Microbial Nitrogen Metabolism. FEMS Microbiology Letters. 1998, 158(1): 61- 67
    135孙洪伟,彭永臻,王淑莹.厌氧氨氧化生物脱氮技术的演变、机理及研究进展.工业用水与废水. 2008, 39(1): 7-11
    136 J. W. Willard. Method of Reducing the Incidence of Infectious Diseases and Relieving Stress in Livestock. United States Patent. 1977: 4
    137唐林平,李小明,曾光明,廖德祥,杨麒,岳秀.短程硝化-厌氧氨氧化联合工艺的经济特性分析净水技术. 2008, 27(2): 4-6, 14
    138杨洋,左剑恶,沈平.温度、pH值和有机物对厌氧氨氧化污泥活性的影响.环境科学, 2006, 27 ( 4 ) : 691-695
    139 M. Trimmer, J. C. Nicholls, N. Morley. Biphasic Behavior of Anammox Regulated by Nitrite and Nitrate in an Estuarine Sediment. Applied and Environmental Microbiology. 2005, 71(4): 1923-1930
    140周少奇,张鸿郭.垃圾渗滤液厌氧氨氧化与反硝化的协同作用.华南理工大学学报(自然科学版). 2008, 36(3): 73-76
    141何岩,周恭明,赵由才,高廷耀.亚硝酸型硝化—厌氧氨氧化联合工艺处理“中老龄”垃圾渗滤液.给水排水. 2006, 32(10): 43-45
    142 L. Zhu, J. X. Liu. Landfill Leachate Treatment with a Novel Process: Anaerobic Ammonium Oxidation (Anammox) Combined with Soil Infiltration System. Journal of Hazardous Materials, 2008, 151: 202-212
    143刘杰,杨洋,左剑恶,朱书全.亚硝化与厌氧氨氧化串联工艺处理高氮低碳废水的研究进展.中国沼气. 2009, 27(3): 13-17
    144 W. R. L. Van der Star, W. R. Abma, D. Bolmmers. Start Up of Reactors for Anoxic Ammonium Oxidation: Experiences from the First Full-Scale Anammox Reactor in Rotterdam. Water Res. 2007, 41 (18): 4149-4163
    145 M. Strous, E. Pelletier, S. Mangenot. Deciphering the Evolution and Metabolism of an Anammox Bacterium from a Community Genome. Nature. 2006, 440: 790-794
    146 M. S. M. Jetten, I. Cirpus, B. Kartal. 1994-2004: 10 Years of Research on the Anaerobic Oxidation of Ammonium. Biochel Soc Trans. 2005, 33 (1): 119 -123
    147唐崇俭,郑平.厌氧氨氧化技术应用的挑战与对策.中国给水排水. 2010, 26(4): 19-23
    148 M. Strous, J. G. Kuenen, M. S. M. Jetten. Key Physiology of Anaerobic Ammonium Oxidation. Applied and Environmental Microbiology. 1999, 65(7): 3248-3250
    149张树德,李杨张.亚硝酸盐对厌氧氨氧化的影响研究.环境污染与防治. 2005, 27(5): 324-327
    150唐崇俭,郑平,陈建伟.基于基质浓度的厌氧氨氧化工艺运行策略.化工学报. 2009, 60(3): 718-725

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700