用户名: 密码: 验证码:
准噶尔盆地巴塔玛依内山组火山岩储层地质学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准噶尔盆地巴塔玛依内山组火山岩中油气勘探业已取得重大突破,目前亟需一个完整的标准喷发序列来对比提升现有勘探成果。本论文以巴塔玛依内山组八条野外剖面为基础,在累计地层厚度13000多米的连续剖面上开展火山岩储层地质学研究,通过将盆内钻井与盆缘剖面对比,指出盆内火山岩勘探目标。
     根据野外剖面建立的完整巴塔玛依内山组标准火山喷发序列包含四段九个喷发旋回。火山岩岩性的确定按照成因-化学成分-矿物结构三级分类方案,出露总厚度火山熔岩类占72%,中性岩类占64%,安山岩占50%。火山岩相划分为“五相十二亚相”,其中喷溢相出露厚度最大,占总厚度69.4%。火山岩储集空间由原生和次生两大类型,十二种具体类型构成,其影响因素包括原始喷发相带、构造活动、深部热液流体和火山机构。与盆缘剖面对比,滴西凸起巴塔玛依内山组同样形成于岛弧火山构造环境,目前仅揭示其下部的一段和二段,上部三段和四段还未揭示,钻井揭示岩性以爆发相火山碎屑岩类为主,大规模的喷溢相熔岩未发现。
     本次研究首次恢复建立了巴塔玛依内山组火山岩的完整喷发序列,为盆内钻井间喷发序列对比提供了参考标准,对恢复盆内巴塔玛依内山组地层与火山喷发序列,明确后续油气勘探目标奠定了地质基础。根据剖面火山岩储层地质研究结果,盆内油气勘探在关注风化壳型油藏的同时,重点应当以熔岩型火山机构中心相带为主要目标,火山喷发旋回顶部为主要层位,火山通道相和喷溢相中上部亚相的多孔熔岩和集块熔岩为主要储集岩体。
Since 1990s, Great achievements on hydrocarbon exploration in volcanic rocks have been made in the Batamayineishan formation, upper Cretaceous, Junggar basin. Several large scales of oil & gas fields, such as Shixi oilfield and Wucaiwan gas field, have been built up to produce hydrocarbon hosted in volcanic reservoir. One of the most urgent tasks for further effective hydrocarbon exploration is to clarify the entire eruptive sequence of Batamayineishan formation and offer a standard for inter-well volcanic sequence comparison. There is no single petroleum drill which can acts as the standard sequence within the Junggar basin yet. There are continuous and entire outcrop sections of the Batamayineishan formation in the boundary area of the Junggar basin. These sections are perfect natural laboratories for volcanic reservoir geological study.
     Typical outcrop sections of the Batamayineishan formation are the strato-type section, Shuangjingzi section in Qitai, Jinshangou section in Qitai, Zhifang section in Balikun, and Baijiangou section in Jimusar. The total stratigraphical thickness of those outcrop sections is about 13,000m. Volcanic reservoir geological studies on the lithology, lithofacies, reservoir space, and geological features, have carried out in the continuous sections. The entire eruptive sequence of Batamayineishan formation is established by inter-section correlation. By comparing the petroleum drills to the standard sequence, the preferential volcanic targets for hydrocarbon exploration within the basin can be sketched out.
     1. Entire eruptive sequence of the Batamayineishan formation
     The volcanic eruptive sequence is subdivided into formation, member, eruptive cycle and eruptive stage. Single eruptive cycle or stage is bounded with typical geological interfaces that include wreathing crust, thin sedimentary bedding, unconsolidated layer and tuff layer. The internal eruptive process is characterized based on the lithological and lithofacies composition.
     The entire eruptive sequence of Batamayineishan formation is divided into four members and nine eruptive cycles. The sequence could act as the standard for petroleum wells comparison. The 1~(st) member is mainly composed of intermediate and basaltic volcanic rocks and includes four eruptive cycles. The lowest Cycle 1 is characterized by acid-intermediate lithological combination with a thickness of 150-600m. Cycle 2 is characterized by basaltic volcanic rock with a thickness of 150-350m. Cycle 3 is characterized by basaltic-intermediate-acid lithological combination with a thickness of 300-600m. The uppermost cycle 4 is characterized by intermediate-acid lithological combination with a thickness of 250-450m. The 2nd member is made up of two intermediate-acid lithological combinations which correspond to two eruptive cycles, Cycle 5 with a thickness of 550-990m and Cycle 6 with a thickness of 300-500m. The 3~(rd) member only include Cycle 7 which consists of acid volcanic rock with a thickness of ca. 500m. The 4~(th) member is mainly composed of intermediate-acid lithological combination and two eruptive cycles. Cycle 8 is composed of intermediate-acid lithological combination with a thickness of 300- 500m, Cycle 9 is composed of intermediate volcanic rocks with a thickness of 200-300m.
     2. Lithological and lithofacies characteristics
     The specific lithology of volcanic rock is named in the order of genetic mechanism, the content of SiO_2, and the mineral & structures. There are ca. 16 kinds of volcanic rocks have been identified in the outcrops. Based on the genetic mechanism, the volcanic rocks are classified as lava, welded pyroclastic rocks and pyroclastic rocks. The lave contributes the total thickness of ca. 72% and the rest contribute ca. 15%, respectively. Based on the content of SiO_2, the volcanic rocks are classified as acid, intermediate-acid, intermediate, intermediate-basic, and basic volcanic rocks. The intermediate volcanic rocks contribute the total thickness of ca. 64%, and the acid and basic rocks contribute ca. 18%, respectively. With respect to specific volcanic rock, the andesite is the most abundant with a contribution of 50%, the basalt, rhyolite and intermediate pyroclastics contribute ca. 10%, respectively.
     The volcanic lithofacies of the Batamayineishan formation is classified as“five lithofacies and twelve subfacies”. Effusive facies and explosive facies contribute the total thickness of ca. 69.4% and 18.0%, respectively. The rest facies’contributions are less than 10%, respectively. With respect to the subfacies compositions, the contributions of lower subfacies and middle-upper subfacies are 48.8% and 20.5%, respectively. No other subfacies contribution exceeds 10%.
     3. Volcanic reservoir space features and influencing factors
     According to the genetic mechanism, the volcanic reservoir spaces of Batamayineishan formation are classified as primary space and secondary space. Each kind of reservoir spaces are composed of pores and fissures. The primary reservoir spaces consists of seven kinds of spaces including vesicular pore, pores within almond-shaped structures, pores within lithophysa, inter-pyroclastic spaces, shrinkage fissure, inner-phenocryst fissure, and shrinkage joint. The secondary reservoir spaces consists of five kinds of spaces including eroded pores within phenocryst, matrix, and almond-shaped fills, tectonic joints and weathered joints. The influencing factors of volcanic reservoir spaces include primary eruptive lithological and lithofacies characteristics, tectonic activities, deep hydrothermal fluids and volcanic edifice. The central assemblage of volcanic edifice collects all the beneficial factors for reservoir space development, hence, the central assemblage is the most important target during the modern hydrocarbon exploration in volcanic rocks. The geological features of central assemblage of volcanic edifice mainly include special structural units and petrological compositions. The normal structural units are ring faults, radial dikes, and columnar joints. The normal petrological compositions are crypto-explosive breccias and welded breccia/agglomerate lave of conduit facies, pearlite of extrusive facies, breccias/agglomerate of explosive facies, vesicular lave of effusive facies. Besides these, Sulfur deposits and hydrothermal activities could be observed by chance.
     4. Volcanic features of petroleum drills in Dixi uplift
     The petroleum drills in Dixi uplift have discovered only lower units of the Batamayineishan formation today. The 1~(st) and 2~(nd) member remained and the 3~(rd) and 4~(th) member have not been found yet, correspondingly, the lower cycles from cycle 1 to cycle 6 are remained and the upper cycles from cycle 7 to cycle 9 have not been found yet. The pyroclastic rocks are dominating with 57% of total thickness, and the lava contributes 24% of total thickness. With respect to the lithofacies composition, the explosive facies contributes about 51%, and the conduit facies, volcano- sedimentary facies, effusive facies contribute 17%, 15% and 13%, respectively, to the total thickness of the Batamayineishan formation in Dixi uplift.
     5. Correlation of volcanic characteristics between outcrops & petroleum drills and its significance of volcanic reservoir
     It is the first practice that to restore entire eruptive sequence of the Batamayineishan formation. The standard eruptive sequence will play a key role during the stratigraphic correlation within the Junggar basin, and sketch out the geological targets for hydrocarbon exploration. Compared with the outcrops, the upper units of the Batamayineishan formation have not been found, the lithology is pyroclastic rock dominating and the lithofacies is explosive facies domination. According to the statistical results of surface porosity, the volcanic rocks with better porosity and permeability have the following characteristics in general. The lithology belongs to intermediate-acid lave with vesicular structure and basaltic breccia lava, the lithofacies belongs to middle-upper subfacies of effusive facies, pyroclastic flow subfacies and proximal air-fall subfacies of explosive facies, the beneficial position is upper units of eruptive cycle and central assemblage of volcanic edifice. Based on the volcanic reservoir geological characteristics, and taking into account the loss of the upper units of the Batamayineishan formation, the target of hydrocarbon exploration within the Junggar basin could be summarized as following combination. The ideal combination is the central assemblage of lava edifice in lateral, the upper units of eruptive cycles in vertical, the vesicular lava and agglomerate lava of effusive and conduit facies as the reservoir.
引文
[1] Allen M B, Sengoer A M C, Natal'In B A. Junggar, Turfan and Alakol basins as Late Permian to Early Triassic extensional structures in a sinistral shear zone in the Altaid orogenic collage, Central Asia [J]. Journal of the Geological Society, London. 1995, 152(2): 327-338.
    [2] Benyamin. Facies distribution approach from log and seismic to identification hydrocarbon distribution in volcanic fracture [C]. 9th SPWLA Japan Formation evaluation SYMP. 2007.
    [3] Bergman S C, Talbot J P, Thompson P R. The Kora Miocene submarine andesite stratovolcano hydrocarbon reservoir, northern Taranaki Basin, New Zealand [C]. New Zealand Oil Exploration Conference. Wellington, New Zealand: 1992.
    [4] Bian W H, Hornung J, Liu Z H, Wang P J, Hinderer M. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, Northwest China [J]. Palaeobiodiversity and Palaeoenvironments. 2010, 90(3): 175-186.
    [5] Busby C J, Ingersoll R V. Tectonics of sedimentary basins [M]. Blackwell, 1995: 579.
    [6] Cabanis B, Lecolle M. Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale [J]. C. R. Acad. Sci. Ser. II. 1989, 309: 2023-2029.
    [7] Carroll A R, Liang Y H, Graham S A, Xiao X C, Hendrix M S, Chu J C, Mcknight C L. Junggar basin, northwest China: trapped Late Paleozoic ocean [J]. Tectonophysics. 1990, 181(1-4): 1-14.
    [8] Carroll A R, Graham S A, Hendrix M S, Ying D, Zhou D. Late Paleozoic tectonic amalgamation of northwestern China: Sedimentary record of the northern Tarim, northwestern Turpan, and southern Junggar Basins [J]. Geological Society Of America Bulletin. 1995, 107(5): 571-594.
    [9] Carroll A R, Graham S A, Smith M. Walled sedimentary basins of China [J]. Basin Research. 2010, 22(1): 17-32.
    [10] Cas R A F, Wright J V. Volcanic successions: ancient and modern [M]. London: Allen and Unwin, 1987.
    [11] Chayes F. Distribution of basalt, basanite, andesite and dacite in a normative equivalent of the QAPF double triangle [J]. Chemical Geology. 1981, 33(1-4): 127-140.
    [12] Cross W, Cross J P, Pirsson L V, Washington H S. A quantitative chemico-mineralogical classification and nomenclature of igneous rocks [J]. the Journal of Geology. 1902, 10(6): 555-690.
    [13] Davy B W, Caldwell T G. Gravity, magnetic and seismic surveys of the caldera complex, Lake Taupo, North Island, New Zealand [J]. Journal of Volcanology and Geothermal Research. 1998, 81(1-2): 69-89.
    [14] De Grave J, Buslov M M, Van den Haute P. Distant effects of India-Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-trackthermochronology [J]. Journal of Asian Earth Sciences. 2007, 29(2-3): 188-204.
    [15] Feng Z Q. Volcanic rocks as prolific gas reservoir: A case study from the Qingshen gas field in the Songliao Basin, NE China [J]. Marine and Petroleum Geology. 2008, 25(4-5): 416-432.
    [16] Fisher R V. Proposed classification of volcaniclastic sediments and rocks [J]. Geological Society of America Bulletin. 1961, 72(9): 1409-1414.
    [17] Fisher R V, Schmincke H U. Pyroclastic rocks [M]. Berlin-Heidelberg-New York: Springer, 1984.
    [18] Greene T J, Carroll A R, Wartes M, Graham S A, Wooden J L. Integrated provenance analysis of a complex orogenic terrane: Mesozoic Uplift of the Bogda Shan and inception of the Turpan-Hami Basin, NW China [J]. Journal of Sedimentary Research. 2005, 75(2): 251-267.
    [19] Hendrix M S, Graham S A, Carroll A R, Sobel E R, Mcknight C L, Schulein B J, Wang Z X. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan: Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, northwest China [J]. Geological Society of America Bulletin. 1992, 104(1): 53-79.
    [20] Hendrix M S, Dumitru T A, Graham S A. Late Oligocene-early Miocene unroofing in the Chinese Tian Shan: An early effect of the India-Asia collision [J]. Geology. 1994, 22(6): 487-490.
    [21] Hendrix M S. Evolution of Mesozoic sandstone compositions, Southern Junggar, Northern Tarim, and Western Turpan Basins, Northwest China: a detrital record of the ancestral Tian Shan [J]. Journal of Sedimentary Research. 2000, 70(3): 520-532.
    [22] Irvine T N, Barager W R A. A guide to the chemical classification of the common volcanic rocks [J]. Canadian Journal of Earth Sciences. 1971, 8(5): 523-548.
    [23] Kawamoto T. Distribution and alteration of the volcanic reservoir in the Minami-Nagaoka gas field [J]. Journal of the Japanese Association for Petroleum. 2001, 66(1): 46-55.
    [24] Lajoie J. Facies models 15: Volcaniclastic rocks [J]. Geoscience Canada. 1979, 6(3): 129-139.
    [25] Le Bas M J, Maitre R W L, Streckeisen A, Zanettin B, Iugs. A chemical classification of volcanic rocks based on the total alkali-silica diagram [J]. Journal of Petrology. 1986, 27(3): 745-750.
    [26] Le Maitre R W, Bateman P, Dudek A, Keller J, Lameyre M J, Sabine P A, Schmid R, Sorensen H, Streckeisen A, Wooley A R, Zanettin B. A classification of igneous rocks and glossary of terms [M]. London: Blackwell Scientific Publications, 1989.
    [27] Luo X R, Liu L J, Li X Y. Overpressure distribution and pressuring mechanism on the southern margin of the Junggar Basin, Northwestern China [J]. Chinese Science Bulletion. 2006, 51(19): 2383-2390.
    [28] Macdonald G A, Katsura T. Chemical composition of Hawaiian lavas [J]. Journal of Petrology. 1964, 5(1): 82-133.
    [29] Marianelli P, Métrich N, Sbrana A. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius [J]. Bulletin of Volcanology. 1999, 61(1): 48-63.
    [30] Nappi G, Antonelli F, Coltorti M, Milani L, Renzulli A, Siena F. Volcanological and petrological evolution of the Eastern Vulsini District, Central Italy [J]. Journal of Volcanology and Geothermal Research. 1998, 87(1-4): 211-232.
    [31] Niggli P. Die quantitative mineralogische klassifikation der eruptivgesteine [J]. Schweiz. min. petr. Mitt. 1931, 11: 296-394.
    [32] Rampino M R, Self S. Sulphur-rich volcanic eruptions and stratospheric aerosols [J]. Nature. 1984, 310(5979): 677-679.
    [33] Rittmann A, Gottini V, Hewers H, Stengelin R. Stable mineral assemblages of igneous rocks [M]. Berlin. Heidelberg. New York: Springer-Verlag, 1973.
    [34] Rogers K L, Neuhoff P S, Pedersen A K, Bird D K. CO2 metasomatism in a basalt-hosted petroleum reservoir, Nuussuaq, West Greenland [J]. Lithos. 2006, 92(1-2): 55-82.
    [35] Schmid R. Descriptive nomenclature and classification of pyroclastic deposits and fragments [J]. Geologische Rundschau. 1981, 70(2): 794-799.
    [36] Schutter S R. Occurrences of hydrocarbons in and around igneous rocks [J]. Geological Society, London, Special Publications. 2003, 214: 35-68.
    [37] Sengor A M C, Natal'In B A, Burtman V S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia [J]. Nature. 1993, 364(6435): 299-307.
    [38] Shao L, Stattegger K, Li W, Haupt B J. Depositional style and subsidence history of the Turpan Basin (NW China) [J]. Sedimentary Geology. 1999, 128(1-2): 155-169.
    [39] Shao L, Stattegger K, Garbe-Schoenberg C. Sandstone petrology and geochemistry of the Turpan basin (NW china): Implications for the tectonic evolution of a continental basin [J]. Journal of Sedimentary Research. 2001, 71(1): 37-49.
    [40] Sruoga P, Rubinstein N. Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquen basins, Argentina [J]. Aapg Bulletin. 2007, 91(1): 115-129.
    [41] Streckeisen A. Account of classification and nomenclature of igneous rocks [C]. Prague: 1968.
    [42] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes [J]. Geological Society, London, Special Publications. 1989, 42(1): 313-345.
    [43] Tang Z H, Parnell J, Longstaffe F J. Diagenesis and reservoir potential of Permian-Triassic fluvial/lacustrine sandstones in the southern Junggar Basin, northwestern China [J]. Aapg Bulletin. 1997, 81(11): 1843-1865.
    [44] Troeger W E. Spezielle Petrographie der Eruptivgesteine [M]. Berlin: Deutsche Mineral. Ges., 1935: 360.
    [45] Wang B, Cluzel D, Shu L, Faure M, Charvet J, Chen Y, Meffre S, de Jong K. Evolution of calc-alkaline to alkaline magmatism through Carboniferous convergence to Permiantranscurrent tectonics, western Chinese Tianshan [J]. International Journal of Earth Sciences. 2009, 98(6): 1275-1298.
    [46] Wood C A. Morphometric evolution of cinder cones [J]. Journal of Volcanology and Geothermal Research. 1980a, 7(3-4): 387-413.
    [47] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province [J]. Earth and Planetary Science Letters. 1980b, 50(1): 11-30.
    [48] Xiao W J, Windley B F, Huang B C, Han C M, Yuan C, Chen H L, Sun M, Sun S, Li J L. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia [J]. International Journal of Earth Sciences. 2009, 98(6): 1189-1217.
    [49] Zhao W, Wang H, Yuan X, Wang Z, Zhu G. Petroleum systems of Chinese nonmarine basins [J]. Basin Research. 2010, 22(1): 4-16.
    [50]边伟华,陈玉魁,唐华风,杨帝,王璞珺.火山岩相的岩屑识别-以松辽盆地南部东岭探区为例[J].吉林大学学报(地球科学版). 2007, 37(6): 1104-1109.
    [51]蔡土赐.新疆维吾尔自治区岩石地层[M].武汉:中国地质大学出版社, 1999: 430.
    [52]蔡忠贤,陈发景,贾振远.准噶尔盆地的类型和构造演化[J].地学前缘. 2000, 07(04): 431-440.
    [53]陈建文,王德发,张晓东,李长山.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘. 2000a, 7(04): 371-379.
    [54]陈建文,魏斌,李长山,郑浚茂,王德发.火山岩岩性的测井识别[J].地学前缘. 2000b, 7(04): 458.
    [55]陈克荣,刘昌实,彭亚鸣,蒋仲英,叶嘉喜,楚雪君,曾家湖.古破火山机构及其次火山花岗岩体特征的研究[J].南京大学学报(自然科学版). 1980(01): 97-120.
    [56]陈新,卢华复,舒良树,王惠民,张国清.准噶尔盆地构造演化分析新进展[J].高校地质学报. 2002, 8(03): 257-267.
    [57]陈永波,潘建国,许多年,黄林军,王斌,王彦军,谭开俊,尹路.准噶尔盆地西北缘火山岩储层的综合地球物理预测[J].石油物探. 2010, 49(04): 364-372.
    [58]地球科学大辞典编委会.地球科学大辞典:基础科学卷[M].北京:地质出版社, 2006.
    [59]地质部六三一队. 1:50万石油地质普查报告[M]. 1955.
    [60]丁安娜,惠荣耀,孟仟祥,张中宁.准噶尔盆地侏罗系烃源岩及油气形成特征[J].石油勘探与开发. 1996, 23(03): 11-18.
    [61]董冬,杨申镳,段智斌.滨南油田下第三系复合火山相与火山岩油藏[J].石油与天然气地质. 1988, 9(04): 346-355.
    [62]冯志强.松辽盆地庆深大型气田的勘探前景[J].天然气工业. 2006, 26(06): 1-5.
    [63]高有峰,刘万洙,纪学雁,白雪峰,王璞珺,黄玉龙,郑常青,闵飞琼.松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响[J].吉林大学学报(地球科学版).2007, 37(06): 1251-1258.
    [64]高志勇,韩国猛,朱如凯,郭宏莉,王道串,李本亮.准噶尔盆地南缘古近纪—新近纪前陆盆地沉积格局与演变[J].古地理学报. 2009, 11(05): 491-502.
    [65]郭飚,刘启元,陈九辉,赵大鹏,李顺成,赖院根.中国境内天山地壳上地幔结构的地震层析成像[J].地球物理学报. 2006, 49(6): 1693-1700.
    [66]郭振华,王璞珺,印长海,黄玉龙.松辽盆地北部火山岩岩相与测井相关系研究[J].吉林大学学报(地球科学版). 2006, 36(02): 207-214.
    [67]国建英,李志明.准噶尔盆地石炭系烃源岩特征及气源分析[J].石油实验地质. 2009, 31(03): 275-281.
    [68]韩宝福,何国琦,王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].中国科学D辑. 1999, 29(01): 16-21.
    [69]何登发,陈新发,张义杰,况军,石昕,张立平.准噶尔盆地油气富集规律[J].石油学报. 2004, 25(03): 1-10.
    [70]何登发,翟光明,况军,张义杰,石昕.准噶尔盆地古隆起的分布与基本特征[J].地质科学. 2005a, 40(02): 248-261.
    [71]何登发,贾承造,德生,张朝军,孟庆任,石昕.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质. 2005b, 26(01): 64-77.
    [72]何登发,陈新发,况军,袁航,樊春,唐勇,吴晓智.准噶尔盆地石炭系烃源岩分布与含油气系统[J].石油勘探与开发. 2010, 37(04): 397-408.
    [73]何志平,邵龙义,康永尚,刘永福,罗文林,齐雪峰.准噶尔盆地侏罗系八道湾组聚煤作用控制因素分析[J].沉积学报. 2004, 22(3): 449-454.
    [74]黄洁真,刘辅臣.山东埠后古火山机构显微构造研究[J].地球科学. 1985, 10(04): 97-103.
    [75]黄玉龙,王璞珺,邵锐.火山碎屑岩的储层物性——以松辽盆地营城组为例[J].吉林大学学报(地球科学版). 2010, 40(02): 227-236.
    [76]黄志英.准噶尔盆地西北缘下二叠统佳木河组沉积-岩相特征及与油气关系[J].岩相古地理. 1999, 19(02): 38-46.
    [77]贾承造,赵文智,邹才能,冯志强,袁选俊,池英柳,陶士振,薛叔浩.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发. 2007, 34(03): 257-272.
    [78]姜传金,冯肖宇,詹怡捷,张元高.松辽盆地北部徐家围子断陷火山岩气藏勘探新技术[J].大庆石油地质与开发. 2007, 26(04): 133-137.
    [79]金伯禄,张希有.长白山火山地质研究[M].延吉:东北朝鲜民族教育出版社, 1994.
    [80]靳军,张朝军,刘洛夫,刘河江,张立平.准噶尔盆地石炭系构造沉积环境与生烃潜力[J].新疆石油地质. 2009, 30(02): 211-214.
    [81]康玉柱.新疆两大盆地石炭—二叠系火山岩特征与油气[J].石油实验地质. 2008, 30(04): 321-327.
    [82]康玉柱.准噶尔盆地古生界油气前景与勘探方向[J].新疆石油地质. 2010, 31(05): 449-453.
    [83]科普切尼-德沃尔尼科夫B C,雅科夫列娃E B,彼特罗娃M A.火山岩及研究方法[M].北京:地质出版社, 1978.
    [84]匡立春,吕焕通,薛晶晶,朱筱敏,李德江.准噶尔盆地西北缘五八开发区二叠系佳木河组火山岩储层特征[J].高校地质学报. 2008, 14(02): 164-171.
    [85]况军,齐雪峰.准噶尔前陆盆地构造特征与油气勘探方向[J].新疆石油地质. 2006, 27(01): 5-9.
    [86]郎晓玲,韩龙,王世瑞,陈树民,姜传金. XB地区火山岩岩相划分及储层精细刻画[J].石油地球物理勘探. 2010, 45(02): 272-277.
    [87]李长山,陈建文,游俊,王德发,郑浚茂.火山岩储层建模初探[J].地学前缘. 2000, 7(04): 381-389.
    [88]李成立,田晓红,谷社峰,唐金生.高位火山岩的圈定及其顶部埋深和厚度的计算方法[J].大庆石油地质与开发. 2006, 25(02): 91-93.
    [89]李建忠,吴晓智,齐雪峰,郑曼,张庆春.新疆北部地区上古生界火山岩分布及其构造环境[J].岩石学报. 2010, 26(01): 195-206.
    [90]李金龙,王璞珺,郑常青,唐华风,吴颜雄,边伟华.松辽盆地东南隆起区营城组柱状节理流纹岩特征和成因[J].吉林大学学报(地球科学版). 2007, 37(06): 1131-1138.
    [91]李锦轶,何国琦,徐新,李华芹,孙桂华,杨天南,高立明,朱志新.新疆北部及邻区地壳构造格架及其形成过程的初步探讨[J].地质学报. 2006, 80(01): 148-168.
    [92]李石,王彤.火山岩[M].北京:地质出版社, 1981.
    [93]李玮,胡健民,瞿洪杰.新疆准噶尔盆地西北缘中生代盆地边界探讨[J].西北大学学报(自然科学版). 2009, 39(5): 820-821.
    [94]李勇,宋宗平,李琼,李正文.地震相和测井相联合预测火山岩相分布特征研究[J].矿物岩石. 2009, 29(01): 106-113.
    [95]林振盛.利用趋势面分析粒度等值线图圈定火山喷发中心——以福建福清凤迹火山机构为例[J].中国区域地质. 1987(02): 188-191.
    [96]刘传虎,彭勇发,向奎,马立群.准噶尔盆地腹部层序地层研究及隐蔽圈闭预测[M].北京:地质出版社, 2006: 129.
    [97]刘登明.应用物探技术识别和预测火山岩储集层——以松辽盆地和准噶尔盆地为例[J].新疆石油地质. 2009, 30(01): 109-113.
    [98]刘万洙,王璞珺,门广田,边伟华,尹秀珍,许利群.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质. 2003, 24(1): 28-31.
    [99]刘万洙,庞彦明,吴河勇,高有峰,门广田,任延广.松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J].吉林大学学报(地球科学版). 2007, 37(04): 698-702.
    [100]刘为付.松辽盆地徐家围子断陷深层火山岩储层特征及有利区预测[J].石油与天然气地质. 2004, 25(01): 115-119.
    [101]刘为付,朱筱敏.松辽盆地徐家围子断陷营城组火山岩储集空间演化[J].石油实验地质. 2005, 27(01): 44-49.
    [102]刘文彬.准噶尔盆地西北缘风城组沉积环境探讨[J].沉积学报. 1989, 7(01): 61-70.
    [103]刘文灿,孙善平,李家振.大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征[J].现代地质. 1997, 11(02): 237-243.
    [104]刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物[M].长春:吉林大学出版社, 1997.
    [105]罗静兰,曲志浩,孙卫,石发展.风化店火山岩岩相、储集性与油气的关系[J].石油学报. 1996, 17(01): 32-39.
    [106]马乾,鄂俊杰,李文华,成锁银.黄骅坳陷北堡地区深层火成岩储层评价[J].石油与天然气地质. 2000, 21(04): 337-340.
    [107]蒙启安,门广田,张正和.松辽盆地深层火山岩体、岩相预测方法及应用[J].大庆石油地质与开发. 2001, 20(03): 21-24.
    [108]庞彦明,章凤奇,邱红枫,战剑飞.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报. 2007, 28(06): 72-76.
    [109]邱家骧.火山岩相及其主要特征[J].地质科技情报. 1984, (02): 45-52.
    [110]邱家骧,陶奎元,赵俊磊,马昌前.火山岩[M].北京:地质出版社, 1996.
    [111]曲国胜,马宗晋,邵学钟,张先康.准噶尔盆地基底构造与地壳分层结构[J].新疆石油地质. 2008, 29(06): 669-674.
    [112]任作伟,金春爽.辽河坳陷洼609井区火山岩储集层的储集空间特征[J].石油勘探与开发. 1999, 26(04): 54-56.
    [113]宋传春.准噶尔盆地中部沉积体系及沉积特征[M].北京:地质出版社, 2006: 177.
    [114]苏玉平,郑建平,L G W,汤华云,Y O S,林向洋.东准噶尔盆地巴塔玛依内山组火山岩锆石U-Pb年代及Hf同位素研究[J].科学通报. 2010, 55(30): 2933-2945.
    [115]孙国强,赵竞雪,纪宏涛,张国清,史基安.准噶尔盆地陆西地区石炭系火山岩岩相[J].天然气工业. 2010, 30(02): 16-20.
    [116]孙善平,李家振,朱勤文,魏海泉.国内外火山碎屑岩的分类命名历史及现状[J].地球科学. 1987, 12(06): 571-577.
    [117]孙善平,刘永顺,钟蓉,白志达,李家振,魏海泉,朱勤文.火山碎屑岩分类评述及火山沉积学研究展望[J].岩石矿物学杂志. 2001, 20(03): 313-317.
    [118]谭开俊,张帆,赵应成,潘建国,尹路.准噶尔盆地西北缘火山岩溶蚀孔隙特征及成因机制[J].岩性油气藏. 2010, 22(03): 22-25.
    [119]唐华风,王璞珺,姜传金,刘杰,张庆晨,冯有良.松辽盆地火山岩相地震特征及其与控陷断裂的关系[J].吉林大学学报(地球科学版). 2007a, 37(01): 73-78.
    [120]唐华风,王璞珺,姜传金,于晶,刘万洙,程日辉.波形分类方法在松辽盆地火山岩相识别中的应用[J].石油地球物理勘探. 2007b, 42(04): 440-444.
    [121]唐华风,王璞珺,姜传金,边伟华,黄玉龙.松辽盆地白垩系营城组隐伏火山机构物理模型和地震识别[J].地球物理学进展. 2007c, 82(02): 530-536.
    [122]唐华风,庞彦明,边伟华,王璞珺,闵飞琼,丁日新.松辽盆地白垩系营城组火山机构储层定量分析[J].石油学报. 2008, 29(06): 841-845.
    [123]陶奎元,吴岩,黄光昭,陈捷干.娘娘山古火山口的构造和岩相特征[J].地质学报. 1978(01): 40-52.
    [124]陶奎元.鉴别火山口-火山颈的岩石、构造标志[J].地质与勘探. 1979, 15(02): 50-54.
    [125]陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社, 1994.
    [126]汪帮耀,姜常义,李永军,吴宏恩,夏昭德,卢荣辉.新疆东准噶尔卡拉麦里蛇绿岩的地球化学特征及大地构造意义[J].矿物岩石. 2009, 29(03): 74-82.
    [127]王传成,侯贵廷,李江海,刘文龙,贺电,刘守偈.大庆徐家围子断陷火山岩储集性控制因素分析[J].北京大学学报(自然科学版). 2008(01): 46-51.
    [128]王德滋,周新民.火山岩岩石学[M].北京:科学出版社, 1982.
    [129]王璞珺,迟元林,刘万洙,程日辉,单玄龙,任延广.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版). 2003a, 33(4): 449-456.
    [130]王璞珺,陈树民,刘万洙,单玄龙,程日辉,张艳,吴海波,齐景顺.松辽盆地火山岩相与火山岩储层的关系[J].石油与天然气地质. 2003b, 24(1): 18-23, 27.
    [131]王璞珺,吴河勇,庞颜明,门广田,任延广,刘万洙,边伟华.松辽盆地火山岩相:相序、相模式与储层物性的定量关系[J].吉林大学学报(地球科学版). 2006, 36(05): 805-812.
    [132]王璞珺,郑常青,舒萍,刘万洙,黄玉龙,唐华风,程日辉.松辽盆地深层火山岩岩性分类方案[J].大庆石油地质与开发. 2007a, 26(04): 17-22.
    [133]王璞珺,庞颜明,唐华风,黄玉龙,郑常青.松辽盆地白垩系营城组古火山机构特征[J].吉林大学学报(地球科学版). 2007b, 37(06): 1064-1073.
    [134]王璞珺,冯志强,刘万洙,陈树民,单玄龙,吴河勇,程日辉,王玉华,边伟华,任延广,郑常青,冯子辉,黄薇,唐华风,黄玉龙.盆地火山岩:岩性、岩相、储层、气藏、勘探[M].北京:科学出版社, 2008: 309.
    [135]王绪龙,赵孟军,向宝力,达江,蒋宜勤,刘翠敏.准噶尔盆地陆东—五彩湾地区石炭系烃源岩[J].石油勘探与开发. 2010, 37(05): 523-530.
    [136]王宜林,王英民,齐雪峰,管守锐,赵秀岐,李儒峰.准噶尔盆地侏罗系层序地层划分[J].新疆石油地质. 2001, 22(05): 382-385.
    [137]王宜林,张义杰,王国辉,王绪龙.准噶尔盆地油气勘探开发成果及前景[J].新疆石油地质. 2002, 23(06): 449-455.
    [138]王振疆,史占芳.利用磁异常推断火山机构的探讨[J].地质与勘探. 1980, 16(04): 54-57.
    [139]蔚远江,胡素云,雷振宇,何登发,张立平,许世军.准噶尔西北缘前陆冲断带三叠纪-侏罗纪逆冲断裂活动的沉积响应[J].地学前缘. 2005, 12(4): 423-436.
    [140]魏斌,陈建文,李长山,郑浚茂,王德发.徐家围子断陷火山岩岩性的测井识别技术[J].特种油气藏. 2003, 10(01): 73-75.
    [141]吴磊,徐怀民,季汉成,李彦民.松辽盆地杏山地区深部火山岩有利储层的控制因素及分布预测[J].现代地质. 2005, 19(04): 585-595.
    [142]吴小奇,刘德良,魏国齐,李剑,李振生.准噶尔盆地陆东—五彩湾地区石炭系火山岩地球化学特征及其构造背景[J].岩石学报. 2009, 25(01): 55-66.
    [143]谢家莹.熔结火山碎屑岩熔结程度的鉴别[J].火山地质与矿产. 1995(01).
    [144]谢家莹,蓝善先,张德宝,周茂,赵宇,许乃政.运用火山地质学理论研究竹田头火山机构[J].火山地质与矿产. 2000, 21(02): 87-95.
    [145]新疆地质局区测大队.库普幅1:20万区域地质矿产报告[M]. 1966.
    [146]新疆区域地层表编写组.西北地区区域地层表-新疆维吾尔自治区分册[M].北京:地质出版社, 1981.
    [147]新疆石油管理局.准噶尔盆地东北缘1:50000石油普查报告[M]. 1957.
    [148]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区区域地质志[M].北京:地质出版社, 1993.
    [149]徐斌,路彦明,顾雪祥,章文忠.新疆卡拉麦里地区金成矿流体和O、H、S同位素地球化学特征[J].地学前缘. 2010(04): 227-240.
    [150]徐松年.玄武岩双层柱状节理的形态特征及其形成机理的探讨[J].地质论评. 1980, 26(06): 510-515.
    [151]徐希坤,沈扬,赵宏亮,庄新明,黎剑.准噶尔盆地油气成藏规律与中石化区块勘探前景[C].准噶尔油气勘探—中国地球物理学会准噶尔盆地油气勘探研讨会文集.北京:石油工业出版社, 2004.
    [152]徐颖新,尚华,李秀珍,邢红阁,徐艳玲,李红革,张延庆.火山岩地震解释技术在松辽盆地长岭断陷深层天然气勘探中的应用[J].石油地球物理勘探. 2008, 43(S1): 63-68.
    [153]杨高学,李永军,李注苍,刘晓宇,杨宝凯,吴宏恩.东准噶尔东北缘后碰撞火山岩成因与构造环境[J].地学前缘. 2010, 17(01): 49-60.
    [154]余淳梅,郑建平,唐勇,杨召,齐雪峰.准噶尔盆地五彩湾凹陷基底火山岩储集性能及影响因素[J].地球科学. 2004, 29(03): 303-308.
    [155]余家仁.隐伏火山岩体岩相解释及储集性能研究[J].石油勘探与开发. 1995, 22(03): 24-29.
    [156]袁复礼.新疆准噶尔东部地质报告[J].地质学报. 1956a(02): 113-132.
    [157]袁复礼.新疆天山北部山前拗陷带及准噶尔盆地陆台地质初步报告[J].地质学报. 1956b(02): 133-144.
    [158]翟人杰,童永生.新疆古生物考察报告[M].北京:科学出版社, 1978.
    [159]张伯新,于红果,祁杰.准噶尔盆地六九区火山岩岩性识别方法[J].石油天然气学报. 2010, 32(04): 97-101.
    [160]张殿成,何德友,尚广弟,孟宪禄.松辽盆地汪家屯东火山岩储层预测[J].石油物探. 2000, 39(02): 36-43.
    [161]张功成,陈新发,刘楼军,余亮平,王智.准噶尔盆地结构构造与油气田分布[J].石油学报. 1999, 20(01): 21-26.
    [162]张光亚,邹才能,朱如凯,袁选俊,赵霞.我国沉积盆地火山岩油气地质与勘探[J].中国工程科学. 2010, 12(05): 30-38.
    [163]张国俊,王仲侯,吴虻,吴庆福,杨斌,杨文孝,杨瑞麒,范光华,郑德森,赵白,彭希龄,雍天寿.新疆油气区(上册)准噶尔盆地[M].北京:石油工业出版社, 1993: 390.
    [164]张季生,洪大卫,王涛.由航磁异常判断准噶尔盆地基底性质[J].地球学报. 2004, 25(04): 473-478.
    [165]张晓东,霍岩,包波.松辽盆地北部地区火山岩特征及分布规律[J].大庆石油地质与开发. 2000, 19(04): 10-12.
    [166]张义杰,王惠民,何正怀.准噶尔盆地基底结构及形成深化分析[J].新疆石油地质. 1999, 20(增刊): 568-571.
    [167]张永忠,何顺利,周晓峰,程日恒.兴城南部深层气田火山机构地震反射特征识别[J].地球学报. 2008, 29(05): 577-581.
    [168]张致民,吴绍祖.新疆古生界(下) [M].乌鲁木齐:新疆人民出版社, 1991.
    [169]赵澄林,刘孟慧,胡爱梅.特殊油气藏[M].北京:石油工业出版社, 1997.
    [170]赵海玲,王成,刘振文,孙文亮,卿忠,陈令,朱峰.火山岩储层斜长石选择性溶蚀的岩石学特征和热力学条件[J].地质通报. 2009a, 28(04): 412-419.
    [171]赵海玲,黄微,王成,狄永军,齐井顺,肖勇,刘杰.火山岩中脱玻化孔及其对储层的贡献[J].石油与天然气地质. 2009b, 30(01): 47-52.
    [172]赵俊猛,黄英,马宗晋,邵学钟,程宏岗,王伟,徐强.准噶尔盆地北部基底结构与属性问题探讨[J].地球物理学报. 2008, 51(06): 1767-1775.
    [173]郑常青,王璞珺,刘杰,舒萍,刘万洙,黄玉龙,唐华风.松辽盆地白垩系火山岩类型与鉴别特征[J].大庆石油地质与开发. 2007, 26(04): 9-16.
    [174]中国地质学会岩石专业委员会火山岩分类命名小组.火山碎屑岩的分类和命名[J].岩石矿物及测试. 1984, 3(4): 301-309.
    [175]中科院地质所,新疆地质局区测大队.托斯特幅1:20万地质矿产图说明书[M]. 1974.
    [176]朱筱敏,康安,张琴,张满郎,况军,吴晓智,韩军.准噶尔盆地东北缘侏罗系含煤岩系层序地层和隐蔽圈闭[J].石油与天然气地质. 2002, 23(02): 121-126.
    [177]邹才能,张光亚,陶士振,胡素云,李小地,李建忠,董大忠,朱如凯,袁选俊,侯连华,瞿辉,赵霞,贾进华,高晓辉,郭秋麟,王岚,李新景.全球油气勘探领域地质特征、重大发现及非常规石油地质[J].石油勘探与开发. 2010, 37(02): 129-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700